862

863

864

865
866
867
868
869
870
871
872

873

874
875
876
877
878
879

880

881

882
883
884

885
886

887
888
889

890

891
892
893

894

895
896
897

898
899

A Details on the models and benchmarks

A.1 Benchmarking details
A.1.1 Regression

For regression on the dataset, we perform leave-one-out cross validation. For the single solvents,
we leave out one solvent at a time. For the full data, we leave out one solvent ramp at a time. We
measure the performance of the model on each leave-one-out data split, then take the mean of their
performance across the dataset. We exclude any experiments involving acetonitrile and acetic acid,
due to the observed side-reactions. In addition, when considering the testing in single solvent data,
we create a set of single data-points by averaging over repeated measurements, in order to remove
mean error weighting from the longer residence times, in order to understand if the models catch the
time-series nature of the data.

A.1.2 Transfer learning

As above, we perform leave-one-out cross validation on the solvent ramps in the catechol dataset.
However, when we train each model, we append the training data from the ethyl dataset, alongside a
binary feature indicating which dataset each observation is from. We also replace the three outputs of
the catechol dataset (SM, Product 2, Product 3) with a single column, Product, which is the sum of
the two products. This allows us to compare across the two datasets, since the ethyl dataset only has
a Product column.

A.1.3 Active learning and Bayesian optimization

For Bayesian optimization we optimize the weighted objective function:

P T —175
2 A3 — AT 4)

b, 7,T) = M (P> + P A -
f(SA7Sb7 » Ty) 1(2+ 3)+ 2P2_|_P3 50

where S, is solvent A, Sp is solvent B, b is the percentage composition of solvent B, 7 is the
residence time, 7' the temperature, and P» / Ps the yields of Products 2 and 3 respectively. We set the
weight parameter values to:

For the Upper Confidence Bound acquisition function we use the standard exploration parameter
8 = 1.96.

For locations with repeated measurements we simply consider average of all observations as the true
product yields. All acquisition function optimizations are done through a simple exhaustive search of
the space.

A.2 Model details

In this section, we provide the details necessary to reproduce the models used in the experiments. Any
information that is not listed here can be found in our code, at https://github.com/jpfolch/
catechol_solvent_selection!

A.2.1 Gaussian processes

We implement the GP models in this paper in BoTorch v0.13.0 [61]. We use the priors recommended
by Hvarfner et al. [71], to ensure good performance across featurizations of different dimensions. We
use an RBF kernel, with the lengthscale prior

p(f) = LN (V2 +log VD, V3)

All GPs were trained using the MLII likelihood (maximum a posterior), with a training timeout of 30
seconds. For all of the GP extensions (in Table[3), we use the Spange featurization.

22

https://github.com/jpfolch/catechol_solvent_selection
https://github.com/jpfolch/catechol_solvent_selection
https://github.com/jpfolch/catechol_solvent_selection

900
901

902
903

904
905
906

908
909

910
911
912

913
914
915

916
917
918

919
920
921
922

923
924
925

926
927
928
929
930
931
932

933

935
936

1.0 1.0
(5]
£ 2
+ m

[

3 4
% 05 505 /
o ks
'g jen
£]
]
£ =

0.0 0.0

0.0 0.5 1.0 0.0 0.5 1.0
Normalized residence time Solvent B%

Figure 6: An example of a learned input warping, after training the GP on the full dataset.

BaselineGP. This model is a GP trained only using the residence time, and the temperature. This
model does not factor in which solvent each experiment is from.

DeepGP. This model first trains a BaselineGP, then uses that as a mean function for another GP. In
this way, far away from known solvents this model will fall back to the BaselineGP as a prior.

Decomposed kernel. We take inspiration from Ru et al. [58]], and separate our kernel into two parts.
Specifically, we consider the input to the model to be the concatenation of the solvent featurization,
f, and the non-featurized inputs, x, which include residence time and temperature. We then use the
following kernel,

kdeCOmp([gja f]v [lE’, f/D = km(‘r7 :L‘/) : kf(fa f/) + km(xa {ZZ/) + kf(f7 f/)
Similarly to the deep GP, this allows the features in z to still contribute to the prediction, even when
the unseen solvent is far from the known solvents.

Multitask GP. We use two different types of multitask GP in this paper. First, in Section 3.3, we use
a multitask GP to represent each of the three measured yields. This kernel consists of a data kernel,
and a task kernel,

kMT([xv 0]1 [xlv O/]) = kﬂﬁ(xa xl) : ko(ov 0/)7
where k, is an O x O matrix (for this dataset, O = 3) that is used to learn the correlations between
the outputs. Since all outputs are observed for each experiment, we can use a Kronecker structured
kernel.

In Section 3.4, we use another multitask GP with 2 tasks, where each task corresponds to one of the
two datasets. We use the same kernel as above, however only one task is observed at each reaction
condition.

Input warping. In Section 3.3, we describe how the underlying chemistry is nonstationary. To
attempt to address this, we take inspiration from Snoek et al. [[60] and Balandat et al. [61], learning a
bijective map ¢ : [0, 1] — [0, 1] that can capture the nonlinear effect of mixing solvents. This map
has hyperparameters that can be learned,

Saun(b) = (1 - 6(0)Sa+6(B)Sp, ¢(b) =1— (1 -)",

where ¢ is the Kumaraswamy cumulative distribution function. We place a log normal prior on the
parameters, a, 5 ~ LN (0,+/0.3). This prior has median value of 1, which corresponds to a linear
mapping.

We also use the input warping for the residence time. Since most of the reaction occurs in the first few
minutes of the reaction, the lengthscale is far shorter compared to the later parts of the reaction. We
find that this is indeed learned by the model, as shown in Figure[6} the mapping effectively ‘spreads
out’ the observations early in the reaction, while compressing the later observations that tend to have
a slower rate of change. Whilst the warping for the solvent composition learns a slight sigmoidal
shape, we show experimentally in Section 3.3 that warping this feature does not improve regression
performance.

A.2.2 Neural networks

Two types of neural network models were constructed for the regression tasks. The first was a
standalone multilayer perceptron (MLP) model, and the second combined a large language model
(LLM) backbone with an MLP head.

23

937
938
939
940

941
942

943
944

945
946
947
948
949
950
951

953

954
955
956

958
959

960

961

962

963
964
965

966

967
968

969

970

971

972
973
974
975

977
978

For the single-solvent task, the MLP model took as input the reaction time, temperature, and a feature
vector representing the solvent. The network architecture consisted of two hidden layers with 128
and 64 neurons, respectively, each followed by ReLLU activations and dropout (dropout rate of 0.5),
and an output layer with 3 neurons.

For the mixed-solvent task, the MLP model used the same architecture, but the solvent input was
computed as a sigmoid-weighted combination of the individual solvent feature vectors:

SauB = (1 — Ug(b)) Sa+ Cfg(b)SB,

where S4 and Sp are the featurizations of solvents A and B, b is the percentage of solvent B in the
mixture, and oy is a sigmoid function with trainable parameters 6.

The second model architecture used pretrained LLMs—RXNFP and ChemBERTa—to generate
embeddings from reaction SMILES strings. For the single-solvent task, the SMILES representation
of the reaction using the selected solvent was passed through the LLM to obtain the corresponding
embedding. For the mixed-solvent task, the SMILES strings of the reactions carried out in solvents
A and B, denoted RS 4 and RS g, were each processed independently through the LLM to produce
embeddings E 4 and Ep, respectively. These embeddings were then combined using a sigmoid-
weighted sum:

Eaup=(1—09(b))Es + 09(b)Ep,

where b is the percentage of solvent B in the mixture and oy is a sigmoid function with trainable
parameters 6.

The resulting embedding was concatenated with the time and temperature, and passed through an
MLP with the same architecture as the standalone MLP model. The LLM backbones were kept
frozen during training, and only the MLP head was optimized.

The ChemBERTa model and tokenizer used were seyonec/ChemBERTa-zinc-base-v1, loaded via
the Hugging Face transformers library. Similarly, the pretrained RXNFP model and tokenizer used
are available from the rxnfp repository.

All models were trained using a learning rate of 0.001, a batch size of 32, for up to 400 epochs, or
until reaching a maximum runtime of 720 minutes.

A23 ODE

The ODE models were trained with a learning rate of 0.001, and 100 epochs. For the latent state and
latent dynamics, we used a 32-dimensional space, and for all of the other representations we used a
64-dimensional space. Further information can be found in the provided code.

A.3 Additional results

We showcase additional results for Neural Processes [54] and graph Gaussian processes [50,51]] in
table 3

B Details on data collection

B.1 Reactor details

Here we include the reactor and detail procedures.

The automated reactor setup used to collect the data is shown in Figure[/| Knauer Azure 4.1S pumps
fitted with stainless steel 10 mL pump heads were used as pumps 1 and 2. All tubing used for the
entire reactor was made of 316 stainless steel (1.5875 mm OD, 1 mm ID). An Agilent inline jet
weaver HPLC mixer (350 pL volume) was used as an inline mixer to ensure the reactant solution was
homogeneous before entering the reactor. An Agilent 6890 GC oven was used to heat the stainless
steel coiled reactor (1.5875 mm OD, 1 mm ID, 7.95 mL volume) during the reaction to the desired
temperature. A customized cooling system made from an aluminum block and a Peltier assembly

24

https://github.com/rxn4chemistry/rxnfp

979
980
981
982
983

984

985

986
987
988
989

990
991
992

993
994
995

996
997
998

999
1000
1001

1002
1003
1004
1005

Table 5: Regression performance on the single solvent dataset. Mean squared error (MSE) and
negative log predictive density (NLPD) are averaged across all leave-one-out data splits. We include
the shortest path kernel (sp) and the encoded shortest path kernel (esp).

Single solvent
Model Featurization MSE () NLPD ({)

NP acs 0.153 -1.173
drfps 0.139 -1.587
fragprints 0.135 -1.495
spange 0.089 -1.472
GraphGP sp 0.046 2.464
esp 1.068 2.453
Inline mixer- 7~ "~ vICI -
Pump 1 @_&_ HPLEJ;;OV\:iave: ----- Excl;’:z‘r'rtger 500 nL SL
Solvent A (. \ ‘
Pump 2 _m' ©))))>))) 1 % | BPR -
Solvent B (:) E .<] : Reactor— |~~~ ~~ 1000 PS!
' GCoven : HPLC —|_,_

Waste

Figure 7: Piping & instrumentation diagram of the automated continuous flow coiled reactor used to
collect the transient flow data reported in this paper.

was then placed inline to rapidly cool the flow of solution and quench the reaction. A Vici four port-2
position sampling valve followed the Peltier to sample small aliquots (500 nL) into the HPLC for
online analysis measurements of the reaction. An IDEX 1000 PSI BPR was then placed before the
waste tubing of the reactor to depressurize the reaction solution back to atmospheric pressure. The
pumps, oven and Vici valve were automated by code developed in house in Python.

B.1.1 Methods

A typical reaction run was performed as following:

1.

The reactant solutions were made up by adding allyl phenyl ether (50 L) and the internal
standard - ethyl benzene (50 L) in to both solvent A and solvent B (250 mL) in separate
volumetric flasks.

. The reactant pumps were primed with their respective solvents and pumped through the

system at 1 mL min~—! for 15 minutes.

. The pumps were then primed with the reactant solutions and pumped through the system at

1 mL min—! for 5 minutes.

. The HPLC was started and a sequence was created to record external sampling via the Vici

Valve.

. The python code that runs the experiments was then initialized and the experiment was

started.

. Once the reaction run was completed, the reactor is flushed with their respective solvents

for 10 minutes at 1 mL min~!, followed by a flush of the system with a miscible solvent
(usually IPA) and cleaned for the next reaction. The data was stored in a SQL database and
is then deconvolved offline.

25

1006

1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

1020

1021
1022
1023
1024
1025
1026

1027

1028

1029

1030

1031

1032

1033

1034

1035
1036

B.2 Fine-tuning calibration via optimization

The HPLC data we obtained is uncalibrated, which means we cannot calculate yields directly from
the peak areas collected from online HPLC measurements. However, the yields of each product
follows the linear relationship with peak areas:

Cis .
Yproduct = €product X T X Peak_ratlo (5)
0

where cyg is the internal standard concentration in mol L1, ¢y is the initial concentration of starting
material in mol L', and e is the calibration constant. The peak_ratio refers to value given by
dividing the area of the peak of interest (starting material, product 2 or product 3) by the peak area of
the internal standard. This constant is calculated by performing calibrations of the HPLC detector
with injections of pure compounds at different concentrations, while keeping the internal standard
concentration constant, and therefore observing the linear relationship and obtaining the response
factor of the compounds. Obtaining a pure sample of Product 2 and Product 3 however, turned out
to be particularly difficult due to the compounds being isomers, making the separation of the pure
products tough. Therefore, we instead focused on using the estimates we had and then fine-tuning
them via an optimization procedure.

Our initial HPLC tests gave us the following estimates:

1 R 1 1
e o= T pa—
1.57 P2 3) P3 3
From here, we decided to fine-tune the estimates in order for the calculated yields to ensure the reaction
yields were mass balanced. We identified specific measurements where we expected full conversion
(i.e. the sum of yields should be 100), and we further allowed for experimental concentrations to vary
according to the error in the laboratory analytical pipettes used for making the reactant solutions.
This results in the following optimization problem, where we penalized deviation from our initial
calibration measurements, and deviation from full conversion at specified measurements K:

€sm =

2
min aZ(ci —2.25)% + ﬂZ(Ej — &)+ Z Zyk-j — 100
{Civ 5.7} i i ek j
where y;; = const - peak_ratio,; - €; - ¢;, Vi =1,...,1227;j € {SM, P2, P3}
ci = ¢y if 4,4’ are in the same experimental run

with constraints to restrict total yield under 100% and possible errors in concentrations:
Z Yij < 100, Vi
J

¢ €[1.25,2.5), Vi
02<¢ <05, Vj

where:

 ¢; are the corrected concentration ratios,
* ¢; are the calibration scaling factors for each compound,
* peak_ratio, ; are the observed HPLC peak area ratios,
» [Cis the set of indices where full conversion is expected,
* «, 3, and ~y are weighting parameters.
we optimized with o = 8 = v = 1, optimized using scipy’s minimize function with the Sequential

Least Squares Programming (SLSQP) algorithm. To select the initial values, we used a 100,000
initial grid search. This resulted in the following parameter estimates:

esy = 0.525; eps =0.222; ep3z = 0.361

26

1037

1038
1039
1040
1041
1042

B.3 Spange descriptor interpolation

The descriptors from Spange et al. [40]] were obtained from the supplementary material on the paper.
However, there are a few values missing from some rows, including for the solvents we gathered data
for. In order to estimate the missing values, we trained a multi-task Gaussian process model on the
whole table, under a Taniamoto kernel, which we then used to predict the missing values that are used
for all the main methods in the paper.

27

	Introduction
	Related works
	The dataset

	Dataset collection and techniques
	Transient flow and solvent ramping
	Solvent selection
	Data acquisition and preprocessing

	Machine Learning Benchmarks
	Solvent featurization
	Regression
	Gaussian process extensions
	Transfer learning
	Active learning and Bayesian optimization

	Conclusions and future work
	Details on the models and benchmarks
	Benchmarking details
	Regression
	Transfer learning
	Active learning and Bayesian optimization

	Model details
	Gaussian processes
	Neural networks
	ODE

	Additional results

	Details on data collection
	Reactor details
	Methods

	Fine-tuning calibration via optimization
	Spange descriptor interpolation

