
A Details on the models and benchmarks862

A.1 Benchmarking details863

A.1.1 Regression864

For regression on the dataset, we perform leave-one-out cross validation. For the single solvents,865

we leave out one solvent at a time. For the full data, we leave out one solvent ramp at a time. We866

measure the performance of the model on each leave-one-out data split, then take the mean of their867

performance across the dataset. We exclude any experiments involving acetonitrile and acetic acid,868

due to the observed side-reactions. In addition, when considering the testing in single solvent data,869

we create a set of single data-points by averaging over repeated measurements, in order to remove870

mean error weighting from the longer residence times, in order to understand if the models catch the871

time-series nature of the data.872

A.1.2 Transfer learning873

As above, we perform leave-one-out cross validation on the solvent ramps in the catechol dataset.874

However, when we train each model, we append the training data from the ethyl dataset, alongside a875

binary feature indicating which dataset each observation is from. We also replace the three outputs of876

the catechol dataset (SM, Product 2, Product 3) with a single column, Product, which is the sum of877

the two products. This allows us to compare across the two datasets, since the ethyl dataset only has878

a Product column.879

A.1.3 Active learning and Bayesian optimization880

For Bayesian optimization we optimize the weighted objective function:881

f(SA, Sb, b, ⌧, T ) = �1(P2 + P3) + �2
P2

P2 + P3
� �3

T � 175

50
� �4⌧ (4)

where SA is solvent A, SB is solvent B, b is the percentage composition of solvent B, ⌧ is the882

residence time, T the temperature, and P2 / P3 the yields of Products 2 and 3 respectively. We set the883

weight parameter values to:884

�1 = 5; �2 = 1; �3 = 3; �4 =
1

20

For the Upper Confidence Bound acquisition function we use the standard exploration parameter885

� = 1.96.886

For locations with repeated measurements we simply consider average of all observations as the true887

product yields. All acquisition function optimizations are done through a simple exhaustive search of888

the space.889

A.2 Model details890

In this section, we provide the details necessary to reproduce the models used in the experiments. Any891

information that is not listed here can be found in our code, at https://github.com/jpfolch/892

catechol_solvent_selection.893

A.2.1 Gaussian processes894

We implement the GP models in this paper in BoTorch v0.13.0 [61]. We use the priors recommended895

by Hvarfner et al. [71], to ensure good performance across featurizations of different dimensions. We896

use an RBF kernel, with the lengthscale prior897

p(`) = LN (
p
2 + log

p
D,

p
3)

All GPs were trained using the MLII likelihood (maximum a posterior), with a training timeout of 30898

seconds. For all of the GP extensions (in Table 3), we use the Spange featurization.899

22

https://github.com/jpfolch/catechol_solvent_selection
https://github.com/jpfolch/catechol_solvent_selection
https://github.com/jpfolch/catechol_solvent_selection


Figure 6: An example of a learned input warping, after training the GP on the full dataset.

BaselineGP. This model is a GP trained only using the residence time, and the temperature. This900

model does not factor in which solvent each experiment is from.901

DeepGP. This model first trains a BaselineGP, then uses that as a mean function for another GP. In902

this way, far away from known solvents this model will fall back to the BaselineGP as a prior.903

Decomposed kernel. We take inspiration from Ru et al. [58], and separate our kernel into two parts.904

Specifically, we consider the input to the model to be the concatenation of the solvent featurization,905

f , and the non-featurized inputs, x, which include residence time and temperature. We then use the906

following kernel,907

kdecomp([x, f ], [x
0, f 0]) = kx(x, x

0) · kf (f, f 0) + kx(x, x
0) + kf (f, f

0)

Similarly to the deep GP, this allows the features in x to still contribute to the prediction, even when908

the unseen solvent is far from the known solvents.909

Multitask GP. We use two different types of multitask GP in this paper. First, in Section 3.3, we use910

a multitask GP to represent each of the three measured yields. This kernel consists of a data kernel,911

and a task kernel,912

kMT([x, o], [x
0, o0]) = kx(x, x

0) · ko(o, o0),
where ko is an O ⇥O matrix (for this dataset, O = 3) that is used to learn the correlations between913

the outputs. Since all outputs are observed for each experiment, we can use a Kronecker structured914

kernel.915

In Section 3.4, we use another multitask GP with 2 tasks, where each task corresponds to one of the916

two datasets. We use the same kernel as above, however only one task is observed at each reaction917

condition.918

Input warping. In Section 3.3, we describe how the underlying chemistry is nonstationary. To919

attempt to address this, we take inspiration from Snoek et al. [60] and Balandat et al. [61], learning a920

bijective map � : [0, 1] ! [0, 1] that can capture the nonlinear effect of mixing solvents. This map921

has hyperparameters that can be learned,922

SA[B(b) = (1� �(b))SA + �(b)SB , �(b) = 1� (1� b↵)� ,

where � is the Kumaraswamy cumulative distribution function. We place a log normal prior on the923

parameters, ↵,� ⇠ LN (0,
p
0.3). This prior has median value of 1, which corresponds to a linear924

mapping.925

We also use the input warping for the residence time. Since most of the reaction occurs in the first few926

minutes of the reaction, the lengthscale is far shorter compared to the later parts of the reaction. We927

find that this is indeed learned by the model, as shown in Figure 6; the mapping effectively ‘spreads928

out’ the observations early in the reaction, while compressing the later observations that tend to have929

a slower rate of change. Whilst the warping for the solvent composition learns a slight sigmoidal930

shape, we show experimentally in Section 3.3 that warping this feature does not improve regression931

performance.932

A.2.2 Neural networks933

Two types of neural network models were constructed for the regression tasks. The first was a934

standalone multilayer perceptron (MLP) model, and the second combined a large language model935

(LLM) backbone with an MLP head.936

23



For the single-solvent task, the MLP model took as input the reaction time, temperature, and a feature937

vector representing the solvent. The network architecture consisted of two hidden layers with 128938

and 64 neurons, respectively, each followed by ReLU activations and dropout (dropout rate of 0.5),939

and an output layer with 3 neurons.940

For the mixed-solvent task, the MLP model used the same architecture, but the solvent input was941

computed as a sigmoid-weighted combination of the individual solvent feature vectors:942

SA[B = (1� �✓(b))SA + �✓(b)SB ,

where SA and SB are the featurizations of solvents A and B, b is the percentage of solvent B in the943

mixture, and �✓ is a sigmoid function with trainable parameters ✓.944

The second model architecture used pretrained LLMs—RXNFP and ChemBERTa—to generate945

embeddings from reaction SMILES strings. For the single-solvent task, the SMILES representation946

of the reaction using the selected solvent was passed through the LLM to obtain the corresponding947

embedding. For the mixed-solvent task, the SMILES strings of the reactions carried out in solvents948

A and B, denoted RSA and RSB , were each processed independently through the LLM to produce949

embeddings EA and EB , respectively. These embeddings were then combined using a sigmoid-950

weighted sum:951

EA[B = (1� �✓(b))EA + �✓(b)EB ,

where b is the percentage of solvent B in the mixture and �✓ is a sigmoid function with trainable952

parameters ✓.953

The resulting embedding was concatenated with the time and temperature, and passed through an954

MLP with the same architecture as the standalone MLP model. The LLM backbones were kept955

frozen during training, and only the MLP head was optimized.956

The ChemBERTa model and tokenizer used were seyonec/ChemBERTa-zinc-base-v1, loaded via957

the Hugging Face transformers library. Similarly, the pretrained RXNFP model and tokenizer used958

are available from the rxnfp repository.959

All models were trained using a learning rate of 0.001, a batch size of 32, for up to 400 epochs, or960

until reaching a maximum runtime of 720 minutes.961

A.2.3 ODE962

The ODE models were trained with a learning rate of 0.001, and 100 epochs. For the latent state and963

latent dynamics, we used a 32-dimensional space, and for all of the other representations we used a964

64-dimensional space. Further information can be found in the provided code.965

A.3 Additional results966

We showcase additional results for Neural Processes [54] and graph Gaussian processes [50, 51] in967

table 5.968

B Details on data collection969

B.1 Reactor details970

Here we include the reactor and detail procedures.971

The automated reactor setup used to collect the data is shown in Figure 7. Knauer Azure 4.1S pumps972

fitted with stainless steel 10 mL pump heads were used as pumps 1 and 2. All tubing used for the973

entire reactor was made of 316 stainless steel (1.5875 mm OD, 1 mm ID). An Agilent inline jet974

weaver HPLC mixer (350 µL volume) was used as an inline mixer to ensure the reactant solution was975

homogeneous before entering the reactor. An Agilent 6890 GC oven was used to heat the stainless976

steel coiled reactor (1.5875 mm OD, 1 mm ID, 7.95 mL volume) during the reaction to the desired977

temperature. A customized cooling system made from an aluminum block and a Peltier assembly978

24

https://github.com/rxn4chemistry/rxnfp


Table 5: Regression performance on the single solvent dataset. Mean squared error (MSE) and
negative log predictive density (NLPD) are averaged across all leave-one-out data splits. We include
the shortest path kernel (sp) and the encoded shortest path kernel (esp).

Single solvent
Model Featurization MSE (#) NLPD (#)

NP acs 0.153 -1.173
drfps 0.139 -1.587
fragprints 0.135 -1.495
spange 0.089 -1.472

GraphGP sp 0.046 2.464
esp 1.068 2.453

Figure 7: Piping & instrumentation diagram of the automated continuous flow coiled reactor used to
collect the transient flow data reported in this paper.

was then placed inline to rapidly cool the flow of solution and quench the reaction. A Vici four port-2979

position sampling valve followed the Peltier to sample small aliquots (500 nL) into the HPLC for980

online analysis measurements of the reaction. An IDEX 1000 PSI BPR was then placed before the981

waste tubing of the reactor to depressurize the reaction solution back to atmospheric pressure. The982

pumps, oven and Vici valve were automated by code developed in house in Python.983

B.1.1 Methods984

A typical reaction run was performed as following:985

1. The reactant solutions were made up by adding allyl phenyl ether (50 µL) and the internal986

standard - ethyl benzene (50 µL) in to both solvent A and solvent B (250 mL) in separate987

volumetric flasks.988

989

2. The reactant pumps were primed with their respective solvents and pumped through the990

system at 1 mL min�1 for 15 minutes.991

992

3. The pumps were then primed with the reactant solutions and pumped through the system at993

1 mL min�1 for 5 minutes.994

995

4. The HPLC was started and a sequence was created to record external sampling via the Vici996

Valve.997

998

5. The python code that runs the experiments was then initialized and the experiment was999

started.1000

1001

6. Once the reaction run was completed, the reactor is flushed with their respective solvents1002

for 10 minutes at 1 mL min�1, followed by a flush of the system with a miscible solvent1003

(usually IPA) and cleaned for the next reaction. The data was stored in a SQL database and1004

is then deconvolved offline.1005

25



B.2 Fine-tuning calibration via optimization1006

The HPLC data we obtained is uncalibrated, which means we cannot calculate yields directly from1007

the peak areas collected from online HPLC measurements. However, the yields of each product1008

follows the linear relationship with peak areas:1009

yproduct = ✏product ⇥
cIS
c0

⇥ peak_ratio (5)

where cIS is the internal standard concentration in mol L�1, c0 is the initial concentration of starting1010

material in mol L�1, and ✏ is the calibration constant. The peak_ratio refers to value given by1011

dividing the area of the peak of interest (starting material, product 2 or product 3) by the peak area of1012

the internal standard. This constant is calculated by performing calibrations of the HPLC detector1013

with injections of pure compounds at different concentrations, while keeping the internal standard1014

concentration constant, and therefore observing the linear relationship and obtaining the response1015

factor of the compounds. Obtaining a pure sample of Product 2 and Product 3 however, turned out1016

to be particularly difficult due to the compounds being isomers, making the separation of the pure1017

products tough. Therefore, we instead focused on using the estimates we had and then fine-tuning1018

them via an optimization procedure.1019

Our initial HPLC tests gave us the following estimates:1020

✏̂SM =
1

1.5
; ✏̂P2 =

1

3
; ✏̂P3 =

1

3

From here, we decided to fine-tune the estimates in order for the calculated yields to ensure the reaction1021

yields were mass balanced. We identified specific measurements where we expected full conversion1022

(i.e. the sum of yields should be 100), and we further allowed for experimental concentrations to vary1023

according to the error in the laboratory analytical pipettes used for making the reactant solutions.1024

This results in the following optimization problem, where we penalized deviation from our initial1025

calibration measurements, and deviation from full conversion at specified measurements K:1026

min
{ci, ✏j}

↵
X

i

(ci � 2.25)2 + �
X

j

(✏j � ✏̂j)
2 + �

X

k2K

0

@
X

j

ykj � 100

1

A
2

where yij = const · peak_ratioij · ✏j · ci, 8i = 1, ..., 1227; j 2 {SM,P2, P3}
ci = ci0 if i, i0 are in the same experimental run

with constraints to restrict total yield under 100% and possible errors in concentrations:1027

X

j

yij  100, 8i

ci 2 [1.25, 2.5], 8i
0.2  ✏j  0.5, 8j

where:1028

• ci are the corrected concentration ratios,1029

• ✏j are the calibration scaling factors for each compound,1030

• peak_ratioij are the observed HPLC peak area ratios,1031

• K is the set of indices where full conversion is expected,1032

• ↵, �, and � are weighting parameters.1033

we optimized with ↵ = � = � = 1, optimized using scipy’s minimize function with the Sequential1034

Least Squares Programming (SLSQP) algorithm. To select the initial values, we used a 100,0001035

initial grid search. This resulted in the following parameter estimates:1036

✏SM = 0.525; ✏P2 = 0.222; ✏P3 = 0.361

26



B.3 Spange descriptor interpolation1037

The descriptors from Spange et al. [40] were obtained from the supplementary material on the paper.1038

However, there are a few values missing from some rows, including for the solvents we gathered data1039

for. In order to estimate the missing values, we trained a multi-task Gaussian process model on the1040

whole table, under a Taniamoto kernel, which we then used to predict the missing values that are used1041

for all the main methods in the paper.1042

27


	Introduction
	Related works
	The dataset

	Dataset collection and techniques
	Transient flow and solvent ramping
	Solvent selection
	Data acquisition and preprocessing

	Machine Learning Benchmarks
	Solvent featurization
	Regression
	Gaussian process extensions
	Transfer learning
	Active learning and Bayesian optimization

	Conclusions and future work
	Details on the models and benchmarks
	Benchmarking details
	Regression
	Transfer learning
	Active learning and Bayesian optimization

	Model details
	Gaussian processes
	Neural networks
	ODE

	Additional results

	Details on data collection
	Reactor details
	Methods

	Fine-tuning calibration via optimization
	Spange descriptor interpolation


