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ABSTRACT

Recent progress in text-guided image inpainting, based on the unprecedented
success of text-to-image diffusion models, has led to exceptionally realistic and
visually plausible results. However, there is still significant potential for im-
provement in current text-to-image inpainting models, particularly in better align-
ing the inpainted area with user prompts. Therefore, we introduce HD-Painter,
a training-free approach that accurately follows prompts. To this end, we
design the Prompt-Aware Introverted Attention (PAIntA) layer enhancing self-
attention scores by prompt information resulting in better text aligned genera-
tions. To further improve the prompt coherence we introduce the Reweighting
Attention Score Guidance (RASG) mechanism seamlessly integrating a post-hoc
sampling strategy into the general form of DDIM to prevent out-of-distribution
latent shifts. Our experiments demonstrate that HD-Painter surpasses existing
state-of-the-art approaches quantitatively and qualitatively across multiple met-
rics and a user study. Code is publicly available at: https://github.com/
Picsart-AI-Research/HD-Painter.

1 INTRODUCTION

The recent wave of diffusion models (Ho et al., 2020; Song et al., 2021) has taken the world by
storm, becoming an increasingly integral part of our everyday lives. After the unprecedented suc-
cess of text-to-image models (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Wu
et al., 2022) diffusion-based image manipulations such as prompt-conditioned editing (Hertz et al.,
2022; Brooks et al., 2023), controllable generation (Zhang & Agrawala, 2023; Mou et al., 2023),
personalized and specialized image synthesis (Ruiz et al., 2023; Gal et al., 2022; Lu et al., 2023)
became hot topics in computer vision leading to a huge amount of applications. Particularly, text-
guided image completion or inpainting (Wang et al., 2023; Wu et al., 2022; Avrahami et al., 2022)
allows users to generate new content in user-specified regions of given images based on textual
prompts, leading to use cases like retouching specific areas of an image, replacing or adding objects,
and modifying subject attributes such as clothes, colors, or emotion.

Pretrained text-to-image generation models such as Stable Diffusion (Rombach et al., 2022), Imagen
(Saharia et al., 2022), and Dall-E 2 (Ramesh et al., 2022) can be adapted for image completion by
blending diffused known regions with generated (denoised) unknown regions during the backward
diffusion process. Although such approaches (Avrahami et al., 2022; 2023) produce visually plausi-
ble completions, they are not well harmonized and lack global scene understanding, especially when
denoising in high diffusion timesteps.

To address this, existing methods (Rombach et al., 2022; Nichol et al., 2021; Podell et al., 2023;
Saharia et al., 2022), modify pretrained text-to-image models to take additional context information
and fine-tune specifically for text-guided image completion. GLIDE (Nichol et al., 2021) and Stable
Inpainting (Rombach et al., 2022) concatenate the mask and the masked image as additional chan-
nels to the input of the diffusion UNet, initializing the new convolutional weights with zeros, then
fine tune the modified model using random masks together with the initial prompt.

∗ Indicates equal contribution.
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Figure 1: Inpainting results with our approach. Results have been upscaled to 2048px large side
using our developed inpainting-specialized super-resolution technique. The method is able to faith-
fully fill the masked region according to the prompt even if the combination of the prompt and the
known region is highly unlikely. Zoom in to view details.

However, SmartBrush (Xie et al., 2023) and Imagen Editor (Wang et al., 2023) mention the weak
image-text alignment of such models, attributing it to the random masking strategies, and the mis-
alignment of the global prompts used during training with the local context of the masked region. In
this paper, we will address this issue as prompt neglect. To alleviate this problem, both papers intro-
duce novel, object-aware masking strategies. Additionally SmartBrush proposes BLIP captioning
approach, to ensure a better alignment of the inpainting prompt with the masked region. Nonethe-
less, we find that while this approach reduces prompt neglect, it also decreases the generation quality.

We notice that prompt neglect is commonly expressed in two ways: either the model fills in the
masked region with background (background dominance, fig. 5, columns 1, 3, 5), or the model
completes a nearby object partially occluded by the mask (nearby object dominance, fig. 5, columns
2, 4, 6). In both cases the issue seems to be caused by the model preferring the local context of the
known region to the textual information provided by the prompt.

To address the mentioned problems we introduce Prompt-Aware Introverted Attention (PAIntA),
without any training or fine-tuning requirements. PAIntA enhances the self-attention scores accord-
ing to the given textual condition aiming to decrease the impact of non-prompt-relevant information
from the image known region while increasing the contribution of the prompt-aligned known pixels.

To improve the text-alignment of the generation results even further we apply a post-hoc guidance
mechanism by leveraging the cross-attention scores. However the vanilla post-hoc guidance mech-
anism used by seminal works such as (Dhariwal & Nichol, 2021; Epstein et al., 2023) may lead
to generation quality degradation due to out-of-distribution shifts caused by the additional gradient
term in the backward diffusion equation. To this end we propose Reweighting Attention Score Guid-
ance (RASG), a post-hoc mechanism seamlessly integrating the gradient component in the general
form of DDIM process. This allows to simultaneously guide the sampling towards more prompt-
aligned latents and keep them in their trained domain leading to visually plausible inpainting results.

To summarize, our main contributions are as follows:

• We introduce the Prompt-Aware Introverted Attention (PAIntA) layer to alleviate the prompt
neglect issues of background and nearby object dominance in text-guided image inpainting.

• To further improve the text-alignment of generation we present the Reweighting Attention
Score Guidance (RASG) strategy which enables to prevent out-of-distribution shifts while
performing post-hoc guided sampling.
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• Our pipeline for text-guided image completion is training-free and demonstrates a signifi-
cant advantage over current state-of-the-art approaches quantitatively and qualitatively.

2 RELATED WORK

2.1 IMAGE INPAINTING

Early deep learning approaches for image inpainting (Yu et al., 2018; Yi et al., 2020; Navasardyan &
Ohanyan, 2020) introduce mechanisms to propagate deep features from known regions. Later (Zhao
et al., 2021; Zheng et al., 2022; Xu et al., 2023; Sargsyan et al., 2023) utilize StyleGAN-v2-like
(Karras et al., 2020) decoder and discriminative training for better image detail generation.

Image inpainting also benefited from diffusion models, particularly with the emergence of text-
guided inpainting. Given a pre-trained text-to-image diffusion model Avrahami et al. (2022; 2023)
replace the unmasked region of the latent by the noised version of the known region during sam-
pling. Nichol et al. (2021); Wang et al. (2023); Podell et al. (2023); Xie et al. (2023) fine-tune pre-
trained text-to-image models for text-guided image inpainting by conditioning the denoising model
on the inpainting mask and the known region, concatenating them with the input latents. Zhang
& Agrawala (2023) obtain an inpainting model by attaching trainable modules to the UNet, while
keeping the base model unchanged. We propose a training-free approach leveraging plug-and-play
components PAIntA and RASG, improving text-prompt alignment.

2.2 INPAINTING-SPECIFIC ARCHITECTURAL BLOCKS

Early deep learning approaches were designing special layers for better/more efficient inpainting.
Particularly, Liu et al. (2018); Yu et al. (2019); Navasardyan & Ohanyan (2020) introduce special
convolutional layers dealing with the known region of the image to effectively extract the informa-
tion useful for visually plausible image completion. Yi et al. (2020) introduce the contextual atten-
tion layer reducing the unnecessarily heavy computations of all-to-all self-attention for high-quality
inpainting. In this work we propose Prompt-Aware Introverted Attention (PAIntA) layer, specifi-
cally designed for text-guided image inpainting. It aims to decrease (increase) the prompt-irrelevant
(-relevant) information from the known region for better text aligned inpainting generation.

2.3 POST-HOC GUIDANCE IN DIFFUSION PROCESS

Post-hoc guidance methods are backward diffusion sampling techniques which guide the next step
latent prediction towards a specific objective function minimization. Particularly Dhariwal & Nichol
(2021) introduced classifier-guidance aiming to generate images of a specific class. Later CLIP-
guidance was introduced by Nichol et al. (2021) leveraging CLIP (Radford et al., 2021) as an open-
vocabulary classification method. Chefer et al. (2023) guide image generation by maximizing the
maximal cross-attention score relying on multi-iterative optimization process resulting in more text
aligned results. Epstein et al. (2023) utilizes the cross-attention scores for object position, size,
shape, and appearance guidances. All the mentioned post-hoc guidance methods shift the latent
generation process by a gradient term (see eq. (7)) sometimes leading to image quality degradations.

To this end we propose the Reweighting Attention Score Guidance (RASG) mechanism allowing
to perform post-hoc guidance with any objective function while preserving the diffusion latent
domain. Specifically for inpainting, to alleviate the issue of prompt neglect, we benefit from a guid-
ance objective function based on the open-vocabulary segmentation properties of cross-attentions.

3 METHOD

We first formulate the text-guided image completion problem followed by an introduction to diffu-
sion models, particularly Stable Diffusion and Stable Inpainting (Rombach et al., 2022). We then
discuss the overview of our method and its components. Afterwards we present our Prompt-Aware
Introverted Attention (PAIntA) block and Reweighting Attention Score Guidance (RASG) mecha-
nism in detail.
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Let I ∈ R
H×W×3 be an RGB image, M ∈ {0, 1}H×W be a binary mask indicating the region in I

one wants to inpaint with a textual prompt τ . The goal of text-guided image inpainting is to output
an image Ic ∈ R

H×W×3 such that Ic contains the objects described by the prompt τ in the region
M while outside M it coincides with I , i.e. Ic ⊙ (1−M) = I ⊙ (1−M).

3.1 STABLE DIFFUSION AND STABLE INPAINTING

Stable Diffusion (SD) is a diffusion model that functions within the latent space of an autoencoder
D(E(·)) (VQ-GAN (Esser et al., 2021) or VQ-VAE (Van Den Oord et al., 2017)) where E denotes
the encoder and D the corresponding decoder. Specifically, let I ∈ R

H×W×3 be an image and x0 =
E(I), consider the following forward diffusion process with hyperparameters {βt}Tt=1 ⊂ [0, 1]:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), t = 1, .., T (1)

where q(xt|xt−1) is the conditional density of xt given xt−1, and {xt}Tt=0 is a Markov chain. Here
T is large enough to allow an assumption xT ∼ N (0, 1). Then SD learns a backward process (below
similarly, {xt}0t=T is a Markov chain)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σt1), t = T, .., 1, (2)

and hyperparameters {σt}Tt=1, allowing the generation of a signal x0 from the standard Gaussian
noise xT . Here µθ(xt, t) is defined by the predicted noise ϵtθ(xt) modeled as a neural network (Ho

et al., 2020): µθ(xt, t) =
1√
βt

(

xt − βt√
1−αt

ϵtθ(xt)
)

. Then Î = D(x0) is returned.

The following claim can be derived from the main DDIM principle, (Song et al., 2021), Theorem 1.

CLAIM 1 After training the diffusion backward process (eq. (2)) the following {σt}Tt=1-
parameterized family of DDIM sampling processes can be applied to generate high-quality images:

xt−1 =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+
√

1− αt−1 − σ2
t ϵ

t
θ(xt) + σtϵt, (3)

where ϵt ∼ N (0, 1), αt =
∏t

i=1(1− βi), and 0 ≤ σt ≤
√
1− αt−1 can be arbitrary parameters.

Usually (e.g. in SD or Stable Inpainting described below) σt = 0 is taken to get a deterministic
process:

xt−1 =
√
αt−1

(

xt −
√
1− αtϵ

t
θ(xt)√

αt

)

+
√

1− αt−1ϵ
t
θ(xt), t = T, . . . , 1. (4)

For text-to-image synthesis, SD guides the processes with a textual prompt τ . Hence the function
ϵtθ(xt) = ϵtθ(xt, τ), modeled by a UNet-like (Ronneberger et al., 2015) architecture, is also condi-
tioned on τ by its cross-attention layers. For simplicity sometimes we skip τ in writing ϵtθ(xt, τ).

As mentioned earlier, Stable DIffusion can be modified and fine-tuned for text-guided image inpaint-
ing. To do so Rombach et al. (2022) concatenate the features of the masked image IM = I⊙(1−M)
obtained by the encoder E , and the (downscaled) binary mask M to the latents xt and feed the re-
sulting tensor to the UNet to get the estimated noise ϵtθ([xt, E(IM ), down(M)], τ), where down is
the downscaling operation to match the shape of the latent xt. Newly added convolutional filters
are initialized with zeros while the rest of the UNet from a pretrained checkpoint of Stable Diffu-
sion. Training is done by randomly masking images and optimizing the model to reconstruct them
based on image captions from the LAION-5B (Schuhmann et al., 2022) dataset. The resulting model
shows visually plausible image completion and we refer to it as Stable Inpainting.

3.2 HD-PAINTER: OVERVIEW

The overview of HD-Painter is presented in fig. 2. To complete the missing region M according to
the prompt τ we take a pre-trained inpainting diffusion model, replace the self-attention layers by
PAIntA layers, and perform a diffusion backward process with our RASG mechanism. After getting
the estimated latent x0, it is decoded resulting in an inpainted image Ic = D(x0) ∈ R

H×W×3.

Additionally, by leveraging high-resolution diffusion models and time-iterative blending, we design
a simple yet effective pipeline for up to 2048× 2048px resolution inpainting (see Appendix E).
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Figure 2: In each diffusion step we denoise the latent xt by conditioning on the inpainting mask M
and the masked downscaled image IM = down(I)⊙ (1−M) ∈ R

H×W×3 (encoded with the VAE
encoder E). To make better alignment with the given prompt our PAIntA block is applied instead of

self-attention layers. After predicting the denoised xpred
0 in each step t, we provide it to our RASG

guidance mechanism to estimate the next latent xt−1.

3.3 PROMPT-AWARE INTROVERTED ATTENTION (PAINTA)

A thorough analysis of existing text-guided image inpainting methods shows that they often overlook
user-provided prompts, relying instead on the surrounding visual context of the inpainting area. For
example, in fig. 5, most existing methods fail to create a vase matching the prompt or to generate the
boat. We hypothesize that the visual context dominance over the prompt is attributed to the prompt-
free, only-spatial nature of self-attention layers. To support this we visualize the self-attention
scores in fig. 3 (a). The heatmaps illustrate how, on average, pixels in the masked region attend to
other pixels in the image (see Appendix B for implementation details). For example in the forth
row (the image with the vase) we see that the masked region pixels have high attention scores not
only with themselves but also with other background pixels. This results in generated pixels that
closely resemble the background, undermining the intended generation (given by the prompt). This
behavior highlights a limitation of the self-attention layer: it not only disregards the prompt context
(as it does not incorporate the prompt as input) but also reinforces similarity between the generated
region and the background. Therefore, to alleviate the issue, we introduce plug-in replacement
for self-attention, Prompt-Aware Introverted Attention (PAIntA, see fig. 4 (a)) which adjusts the
attention scores between mask pixels i and non-mask pixels j according to the alignment of the
pixels j with the prompt (higher when more aligned, lower otherwise). fig. 3 (b) shows the attention
maps of PAIntA and here we clearly see that the mask region mostly attends to itself by so allowing
the prompt to influence the generation process later. This leads to outputs where the desired objects
are accurately generated. Below we discuss PAIntA in detail.

Let X ∈ R
(h×w)×d be the input tensor of PAIntA. Similar to self-attention, PAIntA first applies

projection layers to get the queries, keys, and values we denote by Qs,Ks, Vs ∈ R
(h×w)×d respec-

tively, and the similarity matrix Aself =
QsK

T
s√

d
∈ R

hw×hw. Then, as discussed above, we mitigate

the too strong influence of the known region over the unknown by adjusting the corresponding atten-
tion scores. To do so, for each unknown pixel i and known region pixel j we multiply the attention
scores (Aself )i,j by a factor cj ∈ [0, 1]. cj represents the amount of how much we want to suppress
the impact of the known region pixel j on the completion of the missing region. As we want the
generation in the missing region to be more aligned with the provided textual prompt, we set cj
based on the similarity between j and the prompt in the embedding space. In other words, we set
cj low for such pixels j from the known region that are not semantically close to the given prompt,
and we set cj high otherwise. Specifically, leveraging the prompt τ , PAIntA defines a new similarity
matrix:

Ãself ∈ R
hw×hw, (Ãself )ij =

{

cj · (Aself )ij Mi = 1 and Mj = 0,

(Aself )ij otherwise,
(5)

where M is the resized and flattened input mask , and cj is defined as follows.

We define {cj}hwj=1 using the cross-attention spatio-textual similarity matrix Scross =

SoftMax(QcK
T
c /
√
d), where Qc ∈ R

(h×w)×d, Kc ∈ R
l×d are query and key tensors of cor-
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Figure 3: Comparison of self-attention similarity maps averaged across masked pixels for genera-
tions without/with PAIntA’s scaling of the original self-attention scores. Images are generated from
the same seed.

responding cross-attention layers, and l is the number of tokens of the prompt τ . Specifically, we
consider CLIP text embeddings of the prompt τ and separate the ones which correspond to the words
of τ and End of Text (EOT) token (in essence we just disregard the SOT token and the null-token
embeddings), and denote the set of chosen indices by ind(τ) ⊂ {1, 2, . . . , l}. We include EOT since
(in contrast with SOT) it contains information about the prompt τ according to the architecture of
CLIP text encoder. For each jth pixel we define its similarity with the prompt τ by summing up it’s
similarity scores with the embeddings indexed from ind(τ), i.e. cj =

∑

k∈ind(τ)(Scross)jk. Also,

we found beneficial to normalize the scores cj = clip
(

cj−median(ck; k=1,...,hw)
max(ck; k=1,...,hw) , 0, 1

)

, where clip

is the clipping operation between [0, 1].

Note that in vanilla SD cross-attention layers come after self-attention layers, hence in PAIntA to get
query and key tensors Qc,Kc we borrow the projection layer weights from the next cross-attention
module (see fig. 2). Finally we get the output of the PAIntA layer with the residual connection with

the input: Out = X + SoftMax(Ãself ) · Vs.

3.4 REWEIGHTING ATTENTION SCORE GUIDANCE (RASG)

The experiments show that while PAIntA improves prompt-alignment in generation by manipulat-
ing the self-attention layers, the issue of prompt-alignment is not completely resolved. Therefore we
additionally leverage the concept of post-hoc sampling guidance. The idea, introduced in (Dhari-
wal & Nichol, 2021) as classifier-guidance and generalized further (Rombach et al. (2022), Chefer
et al. (2023), Epstein et al. (2023)), is to guide the sampling (denoising) process xt → xt−1 to the
direction of more prompt-alignment. However, the vanilla post-hoc guidance, as noticed in (Chefer
et al., 2023), may shift the domain of diffusion latents xt−1 resulting in image quality degradations.
To this end we introduce the Reweighting Attention Score Guidance (RASG) strategy which benefits
from the general DDIM backward process, eq. (3), and introduces a gradient reweighting mechanism
resulting in latent domain preservation. Below we first discuss the vanilla post-hoc guidance with
an objective function S(x) which we define later to be specifically in charge of prompt-alignment.
Then we discuss RASG and how it approaches to the out-of-domain latent shift problem of the
vanilla guidance. And finally we present our choice for the post-hoc objective function S(x).

Let S(x) be an objective function the post-hoc guidance mechanism should be applied with. Then,
according to (Dhariwal & Nichol, 2021), the update rule1 for ϵtθ(xt) will be

ϵ̂tθ(xt)← ϵtθ(xt) +
√
1− αt · s∇xt

S(xt), (6)

1for brevity we write ϵtθ(xt) instead of ϵtθ([xt, E(I
M ), down(M)], τ)
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Figure 4: (a) PAIntA block takes an input tensor X ∈ R
h×w×d and the CLIP embeddings of τ . After

computing the self- and cross-attention scores Aself and Across, we update the former (eq. (5)) by

scaling with the normalized values {cj}hwj=1 obtained from Scross = SoftMax(Across). Finally

the the updated attention scores Ãself are used for the convex combination of the values Vs to
get the residual of PAIntA’s output. (b) RASG mechanism takes the predicted scaled denoised

latent
√
αt−1x

pred
0 =

√
αt−1√
αt

(

xt −
√
1− αtϵθ(xt)

)

and guides the xt−1 estimation process towards

minimization of S(xt) defined by eq. (10). Gradient reweighting makes the gradient term close to
being sampled from N (0, 1) (green area) by so ensuring the domain preservation (blue area).

where s is a hyperparameter controlling the amount of the guidance. This, according to the (de-
terministic) DDIM process eq. (4), will result in (by substituting ϵtθ(xt) with ϵ̂tθ(xt)) the following
update rule for xt−1:

xt−1 =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+

√

1− αt−1ϵ
t
θ(xt)− ξt∇xt

S(xt),

ξt =
√
1− αt · s

(
√
1− αt

√
αt−1√

αt
−
√

1− αt−1

)

.

(7)

Notice that in eq. (7) we get the additional term −ξt∇xt
S(xt) not present in the original sampling

process given by eq. (4). This term may shift the original distribution of xt−1.

To this end we introduce the Reweighting Attention Score Guidance (RASG) strategy which benefits
from the general DDIM backward process (eq. (3)) and introduces a gradient reweighting mech-
anism resulting in latent domain preservation. Specifically, according to Claim 1, xt−1 obtained
either by eq. (4) or by eq. (3) remains in the required domain (see fig. 4). Hence in eq. (3) by re-
placing the stochastic component ϵt by the rescaled version of the gradient ∇xt

S(xt) (to make it
closer to a sampling from N (0, 1)), we can keep xt−1 in the required domain and at the same time
guide its sampling towards minimization of S(xt). Rescaling of the gradient ∇xt

S(xt) is done by
dividing it on its standard deviation (we do not change the mean to keep the direction of the S(xt)
minimization, for more discussion see Appendix C). Thus, RASG sampling is done by the formula

xt−1 =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+

√

1− αt−1 − σ2
t ϵ

t
θ(xt) + σt

∇xt
S(xt)

std(∇xt
S(xt))

. (8)

Now let us define the function S(x) (for more discussion on its choice see Appendix C). We want
the objective S(x) to guide the sampling to more prompt-alignment, at the same time keeping the
generated object in the mask-indicated region. On the other hand we know that (Chefer et al., 2023)
cross-attention maps contain similarities between the prompt and the pixels of latent xt, therefore
the cross-attention maps can serve as a segmentation maps for the objects described via the given
prompt. Thus we define S(x) as a segmentation loss function between the cross-attention maps and
the given inpainting mask. Below we discuss the construction of S(x) in detail.

First we consider all cross-attention maps Across with the output resolution of H
32 × W

32 :

A1
cross, . . . , A

m
cross ∈ R

(H/32·W/32)×l, where m is the number of such cross-attention layers, and
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l is the number of token embeddings. Then for each k ∈ ind(τ) ⊂ {1, . . . , l} we average the

attention maps and reshape to H
32 × W

32 :

A
k

cross(xt) =
1

m

m
∑

i=1

Ai
cross[:, k] ∈ R

H
32

×W
32 . (9)

Using post-hoc guidance with S(xt) we aim to maximize the attention scores in the unknown region

determined by the binary mask M ∈ {0, 1}H
32

×W
32 , hence we take the average negative binary cross

entropy between A
k
(xt) and M (M is downscaled with NN interpolation, σ here is sigmoid):

S(xt) =
∑

k∈ind(τ)

H
32

·W
32

∑

i=1

[Mi log σ(A
k

cross(xt)i) + (1−Mi) log(1− σ(A
k

cross(xt)i))]. (10)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We apply HD-Painter on 3 different Stable Diffusion models: Stable Diffusion 1.5, Stable Diffusion
2.0 and Dreamshaper-8 (Lykon, 2023). PAIntA is used to replace the self attention layers on the
H/32 ×W/32 and H/16 ×W/16 resolutions for the first half of generation steps. For RASG we
select only cross-attention similarity matrices of the H/32×W/32 resolution since utilizing higher
resolutions did not offer significant improvements. For hyperparameters {σt}Tt=1 we chose

σt = η
√

(1− αt−1)/(1− αt)
√

1− αt/αt−1, η = 0.15. (11)

In PAIntA’s implementation, we reuse calculated cross-attention similarity maps, which results in a
very small performance impact. With PAIntA the model is about just 10 % slower, making ∼ 3.3
seconds from ∼ 3 seconds of the baseline.

For RASG, naturally, the backward pass of the model increases the runtime about twice. However,
optimizations, like using RASG only for a subset of steps, etc., can potentially greatly decrease the
runtime while keeping the generation distribution. We keep such investigations for future research.

4.2 EXPERIMENTAL SETUP

Here we compare with existing state-of-the-art methods such as GLIDE (Nichol et al., 2021), Sta-
ble 2.0 Inpainting (Rombach et al., 2022), DreamShaper Inpainting (Lykon, 2023), Blended Latent
Diffusion (BLD) (Avrahami et al., 2023), ControlNet-Inpainting (Zhang & Agrawala, 2023) (with
DreamShaper base), SDXL-Inpainting and SmartBrush (Xie et al., 2023). As authors of the Smart-
Brush paper don’t provide code and model, we reproduce it according to paper and refer to it as
SmartBrush reprod.. We present the results of SmartBrush reprod. based on DreamShaper text-to-
image model, since it had the best performance. We evaluate the methods on a random sample of
10000 (image, mask, prompt) triplets from the validation set of MSCOCO 2017 (Lin et al., 2014),
where the prompt is chosen as the label of the selected instance mask. We noticed that when a
precise mask of a recognizable shape is given to Stable Inpainting, it tends to ignore the prompt
and inpaint based on the shape. To prevent this, we use the convex hulls of the object segmentation
masks and compute the metrics accordingly.

We evaluate the CLIP score on a cropped region of the image using the bounding box of the input
mask. As CLIP score can still assign high scores to adversarial examples, we additionally compute
the generation class accuracy. So, we utilize a pre-trained instance detection model for MSCOCO:
MMDetection (Chen et al., 2019). We run it on the cropped area of the generated image, and, as
there might be more than one objects included in the crop, we treat the example as positive if the
prompt label is in the detected object list.

To measure the visual fidelity of the results we employ the LAION aesthetic score.2 The aesthetic
score is computed by an MLP trained on 5000 image-rating pairs from the Simulacra Aesthetic
Captions dataset (Pressman et al., 2022), and can be used to assign a value from the [0, 10] range to
images based on their aesthetic appeal.

2https://github.com/christophschuhmann/improved-aesthetic-predictor
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Table 1: Quantitative comparison. 95% confidence interval of 5 runs with different seeds.

Model Name CLIP score ↑ Accuracy, % ↑ Aesthetic score ↑

GLIDE 25.09 ± 0.01 43.08 ± 0.30 4.476 ± 0.002
BLD 25.64 ± 0.05 55.64 ± 0.59 4.822 ± 0.006
SDXL Inpainting 24.80 ± 0.02 52.98 ± 0.91 4.682 ± 0.024
DreamShaper-ControlNet Inp. 25.73 ± 0.01 58.74 ± 0.27 4.946 ± 0.005
SmartBrush reprod. 25.86 ± 0.03 66.88 ± 0.48 4.856 ± 0.004
Stable 1.5 Inpainting 25.10 ± 0.02 55.25 ± 0.46 4.881 ± 0.006
Stable 2.0 Inpainting 25.07 ± 0.03 51.74 ± 0.54 4.885 ± 0.006
DreamShaper Inpainting 25.61 ± 0.02 58.93 ± 0.18 4.965 ± 0.004

Stable 1.5 + HD-Painter 25.83 ± 0.05 59.57 ± 0.58 4.864 ± 0.006
Stable 2.0 + HD-Painter 26.48 ± 0.03 59.74 ± 0.56 4.846 ± 0.011
Dreamshaper 8 + HD-Painter 26.32 ± 0.03 68.05 ± 0.48 4.980 ± 0.003

4.3 QUANTITATIVE AND QUALITATIVE ANALYSIS

Table 1 shows that HD-Painter increases the prompt alignment of the corresponding baseline models.
It can be noticed that while SmartBrush trained over DreamShaper Inpainting improves the accuracy
over the baseline, the CLIP score improvement is marginal and the overall quality is significantly
dropped according to aesthetic score. On the other hand, our method significantly improves the
prompt-alignment as measured by both CLIP score and accuracy while also maintaining the quality.
Additionally, we performed a user study (see Appendix Appendix D).

The examples in fig. 5 demonstrate qualitative comparison between our method and the other state-
of-the-art approaches. In many cases the baseline DreamShaper Inp. generates a background (fig. 5,
columns 1, 3, 5) or reconstructs the missing regions as continuation of the known region objects
disregarding the prompt (fig. 5, columns 4, 6, 7), while our method, thanks to the combination of
PAIntA and RASG, successfully generates the target objects. Notice that even though DreamShaper-
ControlNet-Inpainting and SmartBrush reprod. may also generate the required object, the quality of
the generation is poor compared to ours.

Table 2: Ablation for PAIntA and RASG on the Dreamshaper 8 base. 95% confidence interval of 5
runs with different seeds.

Model Name CLIP score ↑ Accuracy ↑ Aesthetic score ↑

base (DreamShaper Inp.) 25.61 ± 0.02 58.93 ± 0.18 4.965 ± 0.004
only PAIntA 26.07 ± 0.03 63.95 ± 0.50 4.985 ± 0.003
only RASG 25.94 ± 0.02 63.75 ± 0.48 4.965 ± 0.003

RASG & PAIntA 26.32 ± 0.03 68.05 ± 0.48 4.980 ± 0.003

4.4 ABLATION STUDY

In table 2 we show that PAIntA and RASG separately provide substantial improvements to the model
quantitatively. We also provide more discussion on each of them in our supplementary material,
including thorough analyses on their impact, demonstrated by visuals. For qualitative ablation study
see figs. 6 and 7 in Appendices B and C.

5 CONCLUSION

In this paper, we introduced a training-free method to prompt-faithful text-guided image inpainting,
addressing the prevalent challenges of prompt neglect: background and nearby object dominance.
Our contributions, the Prompt-Aware Introverted Attention (PAIntA) layer and the Reweighting
Attention Score Guidance (RASG) mechanism, effectively mitigate the mentioned issues leading
our method to surpass the existing state-of-the-art approaches qualitatively and quantitatively.

6 REPRODUCIBILITY STATEMENT

We have included the codebase, evaluation scripts, and comprehensive instructions for reproducing
our experiments in the supplementary material. This ensures the reproducibility of our results and
facilitates independent validation. Furthermore, we report confidence intervals for all computed
metrics, demonstrating the robustness of our findings to random factors.
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Figure 5: Comparison with state-of-the-art text-guided inpainting methods. Zoom in for details. For
more comparison see Appendix A.
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A EXTENDED QUALITATIVE COMPARISON

In fig. 18 we show more visual comparison with the other state-of-the-art methods. Figure 19 in-
cludes more comparison on the validation set of MSCOCO 2017 (Lin et al., 2014). The results show
the advantage of our method over the baselines.

B DISCUSSION ON PAINTA

In this section we discuss the effectiveness of the proposed PAIntA module as a plug-in replacement
for self-attention (SA) layers. To that end, first we visualize SA similarity maps averaged across
masked locations from resolutions H/16×W/16 and H/32×W/32 where PAIntA is applied (see
fig. 3). Then, we see that PAIntA successfully scales down the similarities of masked locations with
prompt-unrelated locations from the known region, and, as a result, a prompt-specified object is
generated inside the mask.

For a given resolution (H/16 × W/16 or H/32 × W/32), in order to visualize the average SA
similarity map across masked pixels, first we resize the input mask to match the dimensions of
the corresponding resolution (we use nearest interpolation in resize operation). Then, for each SA
layer in the given resolution, we form a 2D similarity map by reshaping and averaging the simi-
larity matrix rows corresponding to the masked region. Further, we average obtained 2D similarity
maps across all SA layers (of the given resolution) and diffusion timesteps. More specifically, if
A1

self , . . . , A
L
self ∈ R

hw×hw (h×w is either H/16×W/16 or H/32×W/32) are the self-attention

matrices of Stable Inpainting layers of the given resolution, and, respectively, are being updated by

PAIntA to the matrices Ãi
self (see eq. (5)), then we consider the following similarity maps:

A =
1

|M | · L
∑

i,Mi=1

L
∑

l=1

(Al
self)i ∈ R

hw,

Ã =
1

|M | · L
∑

i,Mi=1

L
∑

l=1

(Ãl
self)i ∈ R

hw,

(12)

and reshape them to 2D matrices of size h × w. So, Aij and Ãij show the average amount in
which masked pixels attend to to other locations in the cases of the vanilla self-attention and PAIntA
respectively. Finally, in order to visualize the similarity maps, we use bicubic resize operation
to match it with the image dimensions and plot the similarity heatmap using JET colormap from
OpenCV (Itseez, 2015).

Next, we compare the generation results and corresponding similarity maps obtained from above

procedure when PAIntA’s SA scaling is (the case of Ã) or is not (the case of A) used. Because
PAIntA’s scaling is only applied on H/32×W/32 and H/16×W/16 resolutions, we are interested
in those similarity maps. Rows 1-3 in fig. 3 demonstrate visualizations on nearby object dominance
issue (when known objects are continued to the inpainted region while ignoring the prompt) of the
vanilla diffusion inpainting, while rows 4-6 demonstrate those of with background dominance issue
(when nothing is generated, just the background is coherently filled in).

For example, on row 1 (fig. 3) in case of Stable Inpainting without PAIntA generation, the average
similarity of the masked region is dominated by the known regions of the car on both 16 and 32
resolutions. Whereas, as a result of PAIntA scaling application, the average similarity of the masked
region with the car is effectively reduced, and the masked region is generated in accordance to the
input prompt.

Row 4 (fig. 3) demonstrates an example where the result without PAIntA continues the background
based on visual context instead of following the user prompt. In this case, visualization shows
that usage of PAIntA successfully reduces the similarity of the masked region with the unrelated
background. As a result, by reducing the similarity of masked region with the unrelated known
regions PAIntA enables prompt-faithful generation. You can find additional examples of PAIntA’s
effect on the final generation in fig. 6.
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Figure 6: Visual ablation of PAIntA. Generated images use the same seed. In row 3 only PAIntA is
used.

C DISCUSSION ON RASG
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Figure 7: Visual ablation of RASG. Generated images use the same seed. In row 3 only RASG is
used.

In this section we discuss the choice of RASG objective guidance function S(x), then demonstrate
the effect of RASG and motivate the part of gradient reweighting by its standard deviation. Finally,
we present additional examples of RASG’s effect on the final generation in fig. 7.
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C.1 THE OBJECTIVE FUNCTION S(x)

As we already mentioned in the main paper, Stable Inpainting may fail to generate certain objects in
the prompt, completely neglecting them in the process. We categorized these cases into two types,
namely background and nearby object dominance issues. Chefer et al. (2023) also mentions these
issues but for text-to-image generation task, and refers them as catastrophic neglect problem. To
alleviate this problem Chefer et al. (2023) propose a mechanism called generative semantic nursing,
allowing the users to “boost” certain tokens in the prompt, ensuring their generation. In essence the
mechanism is a post-hoc guidance with a chosen objective function maximizing the maximal cross-
attention score of the image with the token which should be “boosted”. This approach can be easily
adapted to the inpainting task by just restricting the maximum to be taken in an unknown region so
that the object is generated there, and averaging the objectives across all tokens, since we don’t have
specific tokens to “boost”, but rather care about all of them. In other words, by our notations from
the main paper, the following guidance objective funciton can be used:

S(xt) = −
1

|ind(τ)|
∑

k∈ind(τ)

max
i: Mi=1

{Ak
(xt)i}. (13)

However we noticed that with this approach the shapes/sizes of generated objects might not be
sufficiently aligned with the shape/size of the input mask, which is often desirable for text-guided
inpainting (see fig. 9). Therefore, we utilize the segmentation property of cross-attention similarity
maps, by so using Binary Cross Entropy as the energy function for guidance (see eq. (10) in the
main paper). As can be noticed from fig. 9 the results with the binary cross-entropy better fit the
shape of the inpaining mask.

C.2 EFFECT OF RASG STRATEGY

Although the objective function S(x) defined by eq. (10) (main paper) results in better mask
shape/size aligned inpainting, the vanilla post-hoc guidance may lead the latents to become out
of their trained domain as also noted by Chefer et al. (2023): “many updates of xt may lead to
the latent becoming out-of-distribution, resulting in incoherent images”. Due to this the post-hoc
guidance mechanism (semantic nursing) by Chefer et al. (2023) is done using multiple iterations of
very small, iterative perturbations of xt, which makes the process considerably slow. In addition, the
generation can still fail if the iterative process exceeds the maximum iteration limit without reaching
the necessary thresholds.

Thanks to RASG’s seamless integration of the ∇xt
S(xt) gradient component into the general form

of DDIM diffusion sampling, our RASG mechanism keeps the modified latents xt within the ex-
pected distribution, while introducing large enough perturbations to xt with only one iteration of
guidance per time-step. This allows to generate the objects described in the prompts coherently with
the known region without extra-cost of time.

Figure 8 demonstrates the advantage of RASG’s strategy over the vanilla guidance mechanism.
Indeed, in the vanilla post-hoc guidance there is a hyperparameter s controlling the amount of
guidance. When s is too small (e.g. close to 0 or for some cases s = 100) the vanilla guidance
mechanism does not show much effect due to too small guidance from s∇xt

S(xt). Then with in-
creasing the hyperparameter (s = 1000, 10000) one can notice more and more text/shape alignment
with prompt/inpainting mask, however the generated results are unnatural and incoherent with the
known region. This is made particularly challenging by the fact, that different images, or even dif-
ferent starting seeds with the same input image might require different values of the perturbation
strength to achieve the best result. In contrast, RASG approach is hyperparameter-free allowing
both: prompt/mask-aligned and naturally looking results.

C.3 RESCALING WITH STANDARD DEVIATION

The core idea of RASG is to automatically scale perturbation using certain heuristics, such that the
guidance process has a consistent effect on the output, without harming the quality of the image.
Our main heuristic relies on the fact that Song et al. (2021) have defined a parametric family of
stochastic denoising processes, which can all be trained using the same training objective as DDPM
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Figure 8: Comparison of RASG strategy with default Stable Inpainting and vanilla guidance mech-
anism with different guidance scales. In contrast to vanilla guidance, where the generation highly
depends on the guidance scale, RASG consistently produces naturally looking and prompt-aligned
results.

(Ho et al., 2020). Recall the general form of parametric family of DDIM sampling processes:

xt−1 =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+
√

1− αt−1 − σ2
t ϵ

t
θ(xt) + σtϵt, (14)

where ϵt ∼ N (0, 1). Particularly ϵt can be taken to be collinear with the gradient ∇xt
S(xt) which

will result in xt−1 distribution preservation by at the same time guiding the generation process
towards minimization of S(xt).

Therefore we propose to scale the gradient ∇xt
S(xt) with a value λ and use instead of ϵt in the

general form of DDIM. To determine λ we analyse the distribution of ∇xt
S(xt) and found out that

the values of the gradients have a distribution very close to a gaussian distribution, with 0 mean and
some arbitary σ, which changes over time-step/image (fig. 10). Therefore, computing the standard
deviation of the values of∇xt

S(xt), and normalizing it by λ = 1
std(∇xt

S(xt))
results in the standard

normal distribution (see fig. 11). So the final form of RASG guidance strategy is

xt−1 =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+
√

1− αt−1 − σ2
t ϵ

t
θ(xt) + σt

∇xt
S(xt)

std(∇xt
S(xt))

. (15)
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Figure 10: Histogram of∇xt
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Figure 11: Histogram of
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values (i.e. after gradient standardization)

D USER STUDY

We perform a user study for a qualitative comparison with the competitor state-of-the art methods.
The 12 participants were shown 20 (image, mask, prompt) triplets and the inpainting results of all
methods in random order. For each sample image we asked to select the best results based on (i)
prompt alignment and (ii) overall quality, allowing the choice of no methods when all methods were
bad, or multiple methods when the quality was similar. We calculate the total votes for all methods
for each question. The results are presented in fig. 12 demonstrating a clear advantage of our method
in both aspects over all competitor methods.

E INPAINTING-SPECIALIZED CONDITIONAL SUPER-RESOLUTION

Here we discuss our method for high-resolution inpainting utilizing a pre-trained diffusion-based
super-resolution model. We leverage the fine-grained information from the known region to upscale
the inpainted region (see fig. 13.). In our experiments we utilized Stable Diffusion x4 Upscaler
(Rombach et al., 2022).

Assume that I ∈ R
H×W×3 is the high-resolution image we want to inpaint, M ∈ R

H×W is the
inpainting mask, and E is the encoder of VQ-GAN (Esser et al., 2021). We start by downscaling
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Figure 12: Total votes of each method based on our user study for prompt alignment and overall
quality. Our method HD-Painter has a clear advantage over all competitors.
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Figure 13: For inpainting-specific super resolution we condition the high-resolution latent Xt de-

noising process by the lower resolution inpainted result Iclow, followed by blending Xpred
0 ⊙Mlow+

E(I) ⊙ (1 −Mlow). Finally we get Ic by Poisson blending the decoded output with the original
image I .
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Figure 14: Comparison of our inpainting-specialized super-resolution approach with vanilla upscal-
ing methods for inpainting. Best viewed when zoomed in.

I and M to smaller resolution image Ilow ∈ R
H
4
×W

4
×3, and mask Mlow ∈ R

H
4
×W

4 . We then
use HD-Painter to obtain a low-resolution inpainted image Iclow. To perform inpainting-specialized
conditional super-resolution, we consider X0 = E(I) and take a standard Gaussian noise XT ∈
R

H
4
×W

4
×4. Then we apply a backward diffusion process (eq. (4)) on XT by using the upscale-
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specialized SD model and conditioning it on Iclow. After each diffusion step we blend the estimated

denoised latent Xpred
0 = (Xt −

√
1− αtϵ

t
θ(Xt))/

√
αt with X0 by using Mlow:

Xpred
0 ←Mlow ⊙Xpred

0 + (1−Mlow)⊙X0, (16)

and use the new Xpred
0 to determine the latent Xt−1 (by eq. (4)). After the last diffusion step Xpred

0
is decoded and blended (Poisson blending) with the original image I .

It’s worth noting that our blending approach is inspired by seminal works (Sohl-Dickstein et al.,
2015; Avrahami et al., 2022) blending Xt with the noisy latents of the forward diffusion. However,

in contrast to those works, we blend high-frequencies from X0 with the denoised prediction Xpred
0

allowing noise-free image details propagate from the known region to the missing one during all
diffusion steps.

In fig. 14 we compare our inpainting-specialized super-resolution method with vanilla approaches
of Bicubic or Stable Super-Resolution-based upscaling of the inpainting results followed by Poisson
blending in the unknown region. We can clearly see that our method, leveraging the known region
fine-grained information, can seamlessly fill in with high quality.

In figs. 20 and 21 we show more visual comparisons between our method and the approach of Stable
Super-Resolution.

F LARGE QUANTITY OF OBJECTS

In this section we examine the challenging case, when multiple instances of the target object are
already present in the known region of the input image. Many inpainting methods often do not
generate the target object in this case when it is already present in the image. Usually this means
that the input prompt is considered in the global scope of the image and not just the masked area.
Increasing the number of the existing objects makes this problem particularly challenging.

fig. 15 shows the effect of applying HD-Painter on the Dreamshaper-8 base. As evident from the
example, HD-Painter enforces that the requested object is generated inside of the given mask, thus
ensuring that the object is properly generated.

G MULTI-OBJECT MASKS

In this section we evaluate the ability of our method to handle masks consisting of multiple parts.
This can be useful when trying to generate multiple objects at the same time. The results presented
in fig. 16 show that our method is able to generate objects in the case of multiple masks. Note that
this is more relevant when all objects are of the same type, as generating objects of multiple types
also requires specifying which type of object should be generated in each region. However, the task
we investigate in this paper is text-guided image inpainting, which assumes that the only inputs are
the mask and the textual prompt.

H LIMITATIONS

Although our method improves the prompt-alignment of existing text-guided inpainting approaches,
it still has a dependency on the backbone model, hence inherits some quality limitations. Particularly
it may generate extra limbs (the elephant in fig. 17 has 5 legs) or illogical appearances (the sheep
appears to have two bodies in fig. 17 after the inpainting).

I POTENTIAL NEGATIVE IMPACTS

Our research strives to enhance the accuracy of object generation within the scope of text-guided
image inpainting. However, it is crucial to acknowledge the potential negative impacts. The technol-
ogy could be exploited to create deceptive imagery or disseminate misinformation, raising ethical
concerns. While our method is training-free and does not introduce new biases, it is imperative to

20



Published as a conference paper at ICLR 2025

DreamShaper 8
Inpainting

DreamShaper 8
Inpainting

DreamShaper 8
+HD-Painter

DreamShaper 8
+HD-PainterMasked Masked

eg
g

ai
r b

al
lo

on
le

m
on

di
ce

sp
id

er
be

ll

or
an

ge
br

us
h

ap
pl

e
st

on
e

Figure 15: HD-Painter makes sure the target object is generated inside the masked area, even when
multiple copies of the object exist outside.
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Figure 16: HD-Painter has no trouble generating multiple objects in a single mask
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Figure 17: Failure examples produced by our approach.

consider the potential propagation of biases from the base models we build upon. These biases could
lead to the generation of content that inadvertently reflects societal or historical prejudices.

To counter these issues, it is essential for the broader research community to establish ethical stan-
dards and develop robust methods to detect AI-generated content. Furthermore, efforts should be
made to diversify training datasets to reduce inherent biases. While these challenges are significant,
the positive implications of our work in areas such as creative arts, design and content creation,
when used responsibly, have the potential to surpass the negative repercussions.

J MORE EXAMPLES OF OUR METHOD

We present more results of our method both for low-resolution (512 for the long side) images
(fig. 22), as well as high-resoltuion (2048 for the long side) (figs. 23 to 25).
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Figure 18: More qualitative comparison results. Zoom in to view the details.
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Figure 19: Qualitative comparison results on MSCOCO 2017.
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Figure 20: Comparison between vanilla SD 2.0 upscale and our approach. In all examples the large
side is 2048px. The cropped region is 256x256px. Best viewed when zoomed in.
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Figure 21: Comparison between vanilla SD 2.0 upscale and our approach. In all examples the large
side is 2048px. The cropped region is 256x256px. Best viewed when zoomed in.
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Figure 22: More results of our method.
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Figure 23: More high-resolution results of our method. Zoom in to view high-resolution details.
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Figure 24: More high-resolution results of our method. Zoom in to view high-resolution details.
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Figure 25: More high-resolution results of our method. Zoom in to view high-resolution details.

30


	Introduction
	Related Work
	Image Inpainting
	Inpainting-Specific Architectural Blocks
	Post-Hoc Guidance in Diffusion Process

	Method
	Stable Diffusion and Stable Inpainting
	HD-Painter: Overview
	Prompt-Aware Introverted Attention (PAIntA)
	Reweighting Attention Score Guidance (RASG)

	Experiments
	Implementation Details
	Experimental Setup
	Quantitative and Qualitative Analysis
	Ablation Study

	Conclusion
	Reproducibility Statement
	Extended Qualitative Comparison
	Discussion on PAIntA
	Discussion on RASG
	The Objective Function S(x)
	Effect of RASG Strategy
	Rescaling with Standard Deviation

	User Study
	Inpainting-Specialized Conditional Super-Resolution
	Large Quantity of Objects
	Multi-Object Masks
	Limitations
	Potential negative impacts
	More Examples of Our Method

