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ABSTRACT

Dataset ownership verification, the process of determining if a dataset is used in
a model’s training data, is necessary for detecting unauthorized data usage and
data contamination. Existing approaches, such as backdoor watermarking, rely on
inducing a detectable behavior into the trained model on a part of the data distri-
bution. However, these approaches have limitations, as they can be harmful to the
model’s performances or require unpractical access to the model’s internals. Most
importantly, previous approaches lack guarantee against false positives.
This paper introduces data taggants, a novel non-backdoor dataset ownership ver-
ification technique. Our method uses pairs of out-of-distribution samples and ran-
dom labels as secret keys, and leverages clean-label targeted data poisoning to
subtly alter a dataset, so that models trained on it respond to the key samples with
the corresponding key labels. The keys are built as to allow for statistical certifi-
cates with black-box access only to the model.
We validate our approach through comprehensive and realistic experiments on
ImageNet1k using ViT and ResNet models with state-of-the-art training recipes.
Our findings demonstrate that data taggants can reliably detect models trained on
the protected dataset with high confidence, without compromising validation ac-
curacy, and show their superiority over backdoor watermarking. We demonstrate
the stealthiness and robustness of our method against various defense mechanisms.

1 INTRODUCTION

An increasing number of machine learning models are deployed or published with limited trans-
parency regarding their training data, raising concerns about their sources. This lack of transparency
hinders the traceability of training data, which is crucial for assessing data contamination and the
misuse of open datasets beyond their intended purpose.

Dataset ownership verification (DOV) approaches aim to equip dataset owners with the ability to
track the usage of their data in specific trained models. Current methods perturb the dataset to
mark models trained on it and the main challenge lies in crafting this dataset perturbation to balance
two competing objectives. On the one hand, the perturbation should not significantly degrade
performance, preserving the value of training on the data for authorized parties. On the other hand,
the modification should sufficiently alter models’ behaviors to enable high-confidence detection.
These objectives are complemented by the following technical requirements. First, the detection
should be effective with strong guarantees against false positives (i.e. models wrongfully detected),
making it challenging for dishonest model owners to claim false detection. Second, the perturbation
should be stealthy to prevent easy removal by dishonest users. Third, it should be robust across
different model architectures and training recipes, as to allow for usage in the wild, and adapt to the
diversity of models and learning algorithms. Finally, for our method to be practical, the detection
should be possible with black-box access to the model. Ideally it should work with top-k predictions
for small k, to be applicable to models available only through restricted APIs.
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Previous works either did not provide strong theoretical guarantees (Maini, 2021; Li et al., 2022;
Wenger et al., 2022), did not yield stealthy enough watermarks (Li et al., 2020b), did not demon-
strate robustness of the watermark (Li et al., 2020a; Maini, 2021) or only partially allowed for
black-box detection (Sablayrolles et al., 2020). Backdoor watermarking, predominantly studied in
DOV literature, perturbs the dataset to predictably alter model predictions f when a trigger pattern
x(trigger) is added to a legitimate image x. This trigger should steer the prediction on the triggered
sample away from the ground truth class y and towards a target class y(trigger). The detection of
suspicious models is done by running a statistical test to measure a difference between the benign
prediction f(x)y and the triggered prediction f(x+x(trigger))y . This approach not only contradicts
adversarial robustness (a desirable property for deep learning models), but is also harmful to the
model as it introduces errors (Guo et al., 2023). More importantly, without proper characterization
of a benign model’s predictions, previous detection scheme lack theoretical grounding.

In this paper, we introduce a novel dataset ownership verification approach that enables black-box
detection of dishonest models with rigorous theoretical guarantees. We call this method data tag-
gants by analogy to taggants, physical or chemical markers added to materials to trace their usage
or manipulation. We introduce a new detection approach: keys, an out-of-distribution (pattern, la-
bel) pair (x(key), y(key)). When a model f is trained on the protected dataset, it should predict
f(x(key)) = y(key) for every key. By targeting out-of-distribution key patterns x(key), for which
a natural behavior is undefined, we limit the possibilities of inducing errors in the model contrary
to backdoor watermarking. This behavior is induced through gradient matching, a clean-label tar-
geted data poisoning technique introduced in Geiping et al. (2020). We perform experiments on
ImageNet1k with vision transformers and ResNet architectures of different sizes, together with
state-of-the-art training recipes (Wightman et al., 2021) including the 3-Augment data augmentation
techniques (Touvron et al., 2022). Primarily designed for image classification datasets, similarly to
prior works (Sablayrolles et al., 2020; Li et al., 2022), our main contributions are the following:

• We introduce a new detection approach: keys, out-of-distribution (pattern, label) pairs
(x(key), y(key)) on which we measure the top-k accuracy, with y(key) randomly chosen.

• This randomness enables independence in the use of a theoretically more grounded Bino-
mial significance tests, compared to previous work’s use of pair-wise t-test.

• We demonstrate the effectiveness and practicality of data taggants through extensive exper-
iments on ImageNet1k with state of the art training procedures. We show the robustness
of data taggants when transferred on various model architectures and training recipes. We
also bring evidence of the stealthiness of data taggants through PSNR, out-of-distribution
(OOD) detection tests, and data poisoning defense approaches. All of this is achieved by
modifying only 0.1% of the data and without degradation of performance.

• We introduce the use of a perceptual loss in the crafting of data poisons to enhance stealth-
iness and show it allows for visually imperceptible data taggants.
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Figure 1: Application scenario of data taggants. 1 Signing: Alice signs her dataset (adds the
taggants corresponding to the keys) before publishing it. 2 Detection: Alice determines if Bob
used her dataset by running a statistical test based on Bob’s model’s predictions on the keys.
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2 RELATED WORK

Steganography and Watermarking. Steganography is the practice of concealing a message
within content, while watermarking is the process of marking data with a message related to that
data (often as a proof of ownership) (Cox et al., 2007). They intersect in the contexts where water-
marks strive to be imperceptible to avoid content degradation (Kahng et al., 1998). Recent works
have shown that deep learning can improve watermarking technology (Vukotić et al., 2018; Zhu
et al., 2018; Fernandez et al., 2022) and conversely, AI models can be watermarked (Adi et al.,
2018). Watermarks are designed to be detected in data and their radioactivity on models (Sablay-
rolles et al., 2020; Sander et al., 2024) is only a byproduct. In contrast, data taggants are designed
not to be detected, but to leave a mark on models that can later be detected with high confidence.

Dataset ownership verification. Our work, similarly to most works on dataset ownership verifica-
tion (DOV), focuses on image classification datasets as their main use case. Therefore, we focus the
discussion on this case. An early approach to DOV involved the modification of certain images in
the dataset to align the last activation layer of a classifier with a random direction (Sablayrolles et al.,
2020). This method demonstrated success in terms of stealthiness and provided robust theoretical
guarantees in a white-box scenario, where access to the weights of the suspicious model is available.
However, in the more realistic black-box scenario, the authors only proposed an indirect approach in-
volving distillating the suspicious model, which requires a high number of queries 1. More recently,
attention has shifted towards backdoor watermarking for DOV (Li et al., 2020a; 2022; Wenger et al.,
2022; Tang et al., 2023; Guo et al., 2023). These methods are closer to our black-box approach,
although they require more information from the model and rely on confidence scores (Li et al.,
2020a; 2022) rather than top-k predictions. The data is manipulated such that models trained on it
alter their confidence scores when a trigger pattern is added to an input image. From a theoretical
perspective, these approaches currently lack theoretical grounding. They all rely on the assumption
that an honest model satisfies their null hypothesis – i.e. that a model not trained on the data should
not change its confidence scores or predictions more than a predetermined threshold. The validity
of the test is thus questionable, especially since they do not provide theoretical or empirical support
for the choice of the threshold on confidence scores. In contrast, our approach precisely characterize
the behavior of a benign model which enables the application of standard and sound statistical tests.
Table 5 in Section A.1 in Appendix compares our work with prior approaches.

Data poisoning. Our research, akin to prior backdoor watermarking studies, repurposes data poi-
soning techniques for DOV. Data poisoning originally investigates how subtle changes to training
data can compromise a model by malicious actors. Two main types of data poisoning attacks exist:
backdoor attacks, which modify the model’s behavior when a specific trigger is applied to a class
of data (Li et al., 2019; Souri et al., 2021), and targeted attacks, which induce errors on a specific
set of inputs (Shafahi et al., 2018; Geiping et al., 2020). These, in turn, may add incorrectly la-
beled data Li et al. (2020a; 2022) to the dataset, which impedes the stealthiness of the approach.
Previous studies on backdoor watermarking were mostly based on backdoor attacks, attempting to
predictably degrade performance when a trigger is introduced to the data. In contrast, we build
on top of a clean-label targeted data poisoning approach (Geiping et al., 2020). We aim to design
models that predict specific key labels in response to key inputs. The difference with a poisoning
attack being that we alter the behavior on randomly generated patterns rather than legitimate data as
to not induce malicious errors. We refer to that approach as data signing. Our algorithmic approach
leverages gradient matching techniques developed in the clean-label data poisoning literature, for
both targeted and backdoor attacks (Geiping et al., 2020; Souri et al., 2021). This technique allows
to reproduce, via data poisoning, the effects of a particular gradient direction, which has been shown
to be possible even for arbitrary gradient attacks Bouaziz et al. (2024).

Membership inference attacks. The goal of membership inference attacks is to reveal confi-
dential information by inferring which data points were in the training set, usually recognized by
low-loss inputs (Shokri et al., 2017; Watson et al., 2021). These methods do not offer any theoretical
membership certificate, since a model might have low loss on a sample for different reasons than
this sample simply being in the training set. MIAs are not applicable to DOV (Zhang et al., 2024).

1Black-box without distillation version of radioactive data amounts to a membership inference attack which
hence lack the strong theoretical guarantees of the approach.
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3 DATA TAGGANTS

In the application scenario we consider, Alice wants to publish online a dataset DA. Alice suspects
Bob will try to train a model MB on DA. Given black-box access (top-k predictions) to Bob’s
model MB , Alice wants to mark her dataset in order to determine if MB was trained on DA.
We propose a solution to Alice’s problem called data taggants, which alters the dataset to mark
models trained on it. Data taggants uses data poisoning to induce a certain behavior on Bob’s model,
and statistical tests to detect if Bob’s model displays said behavior. To ensure stealthiness, we take
inspiration from clean-label data poisoning, which leaves labels untouched (Geiping et al., 2020).
Since the goal of our approach is to harmlessly influence the model, we designate our approach as
data signing instead of data poisoning.

3.1 OVERVIEW AND TECHNICAL BACKGROUND

Let us denote Alice’s original dataset by DA = {(xi, yi)
N
i=1} ∈ (X ×Y)N , where N is the number

of samples, X is the input space and Y is the set of possible labels. The process of adding data
taggants is the following (Figure 1):

1. Alice generates a set of K secret keys: D(key) = {(x(key)
i , y

(key)
i )Ki=1} ∈ (X × Y)K ;

2. Alice signs (i.e. harmlessly poisons) her dataset by perturbating the images in a small
subset DS = {(x(sign)

i , y
(sign)
i )Ki=1} ⊆ DA of size S called the signing set. The perturba-

tions ∆ = {δi, i ∈ [S]} added on top of images in DS are called signatures, while data
taggants refer to the modified signing set x(taggant)

i = x
(sign)
i + δi,∀i ∈ [S].

3. Alice shares D̃A, a modified version of DA with the crafted data taggants replacing the
elements in the signing set DS . The keys are kept secret and never shared with Bob.

The goal of the data taggants is to have models trained on D̃A predict y(key)i in response to x
(key)
i ,

while being stealthy so that Bob cannot easily remove it, and robust to different settings (model
architecture, training algorithm) Bob could use. Let us denote by LB

θ the loss of Bob’s model with
parameter θ. We use t to denote a data augmentation sampled according to Bob’s recipe and Et[·]
the expectation over this random sampling. Alice defines a constrained set of image perturbations
C = {δ ∈ Rd/∥δ∥∞ ≤ ε}, where ε > 0 is kept small to ensure stealthiness. The space of possible
signatures is then CS = {∆ = (δj)

N
j=1 ∈ CN |∀j /∈ DS , δj = 0}. Alice aims to find the signature ∆

which minimizes the loss of Bob’s model on the keys after training on D̃A. This corresponds to the
following bilevel optimization problem:

min
∆∈CS

K∑
i=1

LB
θ∗(∆)(x

(key)
i , y

(key)
i ) s.t. θ∗(∆) ∈ argmin

θ

1

N

N∑
j=1

Et

[
LB
θ (t(xj + δj), yj)

]
. (1)

Since solving the bilevel optimization problem above is intractable, we use a variant of gradient
matching (Geiping et al., 2020), where the goal is to find ∆ such that, when θ ≈ θ∗(∆),

1

K

K∑
i=1

∇θLB
θ (x

(key)
i , y

(key)
i ) ≈ 1

S

S∑
j=1

Et

[
∇θLB

θ (t(x
(sign)
j + δj), y

(sign)
j )

]
.

So that an optimization step on the data taggants also improves the model’s loss on the keys. In
reality, Alice does not know in advance Bob’s training algorithm. There may also be multiple
“Bobs” using different model architecture or training recipes. Alice thus cannot anticipate which
architecture or training recipe to use to craft data taggants. Our approach involves a model and a set
of data augmentation that Alice uses as a surrogate to Bob’s training pipeline. We later study, in our
experiments, the robustness of our approach when Alice and Bob use different model architectures
or sets of data augmentations.

3.2 SIGNING THE DATA IN PRACTICE

The starting point of our approach is that Alice trains a model on her original dataset. We denote by
θ∗ the parameters of Alice’s model, and LA

θ∗ its loss function. We now give the details of the various
steps to craft the taggants.
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Figure 2: Illustration of our method: Alice optimizes image-wise signatures for images in the signing
set by maximizing the alignment between the gradients of the signed images ∇(signed)

θ , and the
gradient of the key ∇(key)

θ . The resulting images and their labels are the data taggants.

Generating the secret keys. To prevent from negatively impacting model performance, we choose
key images x(key)

i to be out-of-distribution data points. More precisely, we generate key images by
sampling each pixel value uniformly and sample key labels y(key)i uniformly at random in Y . Since
no natural behavior is expected from the model on these keys, enforcing a specific behavior on them
should not induce particular errors, as opposed to backdoor watermarking approaches.

Parallelized and clean-label perturbations. We evenly split the signing set into K parts
(DSi

)Ki=1, where DSi
is associated to key i. Following clean-label data poisoning (Geiping et al.,

2020), each sample (xj , yj) in DSi
satisfies yj = y

(key)
i . While Witches’ Brew in the multi-targets

case performs gradient matching to align the poisonous gradients with the averaged targeted gra-
dients, we instead suggest to solve K gradient matching problems between each part DSi

and the
associated key (x

(key)
i , y

(key)
i ). The taggants optimization problem, described below, is thus decom-

posable into one problem for each key, which blue can be solved independently in parallel.

Taggant objective function with differentiable data augmentations. We use differentiable ver-
sions of data augmentations to optimize through them, similarly to Witches’ Brew but increasing
the set of considered data augmentations (see Table 13 in Appendix). At each gradient matching
optimization step, we approximate Et

[
∇θLA

θ∗(t(x
(sign)
j + δj), y

(sign)
j )

]
by resampling and apply-

ing R randomly sampled data augmentations tr, r ∈ {1, . . . , R} (while R = 1 in Witches’ Brew),
and averaging the resulting gradients. The taggant objective function T (∆), illustrated in Figure 2,
computes the alignment of perturbed images’ gradients with the keys’ gradients. More precisely,
T (∆) =

∑K
i=1 Ti/K with:

Ti(∆) = − cos
(
∇θLA

θ (x
(key)
i , y

(key)
i )

key gradient

,
∑

j∈DSi

1

R

R∑
r=1

∇θLA
θ (tr(x

(sign)
j + δj), y

(sign)
j )

signed data gradients

)
(2)

Perceptual loss. To improve the stealthiness of our approach, we introduce the use of a differ-
entiable perceptual loss term Lperc to the taggant function, using the LPIPS metric (Zhang et al.,
2018), which relies on the visual features extracted by a VGG model. Given a weight λ for Lperc,
the final optimization problem for taggants is min

∆∈CS

1
K

∑K
i=1 Ti(∆) + λLperc(∆).

Random restarts. Since the problem to solve is non-convex, the algorithm may be trapped in
local minima. In practice, and similarly to Witches’ Brew, we observed that using multiple random
restarts of initial signatures for each key improved performance. We chose, for each key, the best
crafted taggants among all restarts according to the taggant objective function.
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3.3 DETECTION

The detection phase ( 2 in Figure 1) relies on checking a suspicious model’s predictions on the
secret keys. We consider the detection to be successful when a model displays a top-k accuracy
on the set of keys to be at least a threshold 0 ≤ τ ≤ 1. In order to control for false positives, we
determine the top-k accuracy of an honest model on the set of keys and set τ to be higher. The
choice of k and τ balances between the false positive rate (FPR, wrongfully detecting a benign
model) and the true positive rate (TPR, correctly detecting a model trained on D̃A, i.e. detection
rate). Given Bob’s model’s top-k accuracy on the set of keys, Alice can derive a corresponding
p-value for observing similar accuracy on a benign model. If that p-value is deemed low enough, it
can be concluded that Bob’s model was trained on Alice’s dataset.

Null hypothesis. Our null hypothesis is H0: “model h was not trained on the signed dataset”.

Proposition 1. Under H0, model h has, in expectation, a top-k accuracy of k
|Y| on the set of keys

DK , where |Y| is the number of possible labels.

Proof. Under H0, for a given key, correctly predicting the random label y(key) based on a top-k
prediction given x(key) can be modeled by a random variable following a Bernoulli distribution of
parameter k/|Y|. Since all the labels are independently drawn, the number of correct predictions
on the set of keys follows a binomial distribution with parameters (K, k/|Y|) and an expectation of
K × k/|Y|. Hence the expected accuracy over K keys is k/|Y|.

Statistical test. Let us denote by top-k(h,DK) the number of keys for which the label y(key)i is
in the top-k predictions h(x(key)

i ) for x(key)
i ∈ DK . Under the null hypothesis, Proposition 1 gives

that top-k(h,DK) follows a binomial distribution with parameters (K, k/|Y|) and can be subject to
a binomial test. The p-value of the binomial test is then given by the tail of a random variable Zk

following a binomial distribution Bin(K, k
|Y| ):

p = P(Zk ≥ top-k(h,DK)) =

K∑
z=top-k(h,DK)

(
K

z

)( k

|Y|

)z( |Y| − k

|Y|

)K−z

This test only requires top-k predictions, which are often available in black-box scenarios (e.g.,
restricted API access to the model).

Previous works on DOV have proposed to use a pair-wise t-test (Maini, 2021; Li et al., 2022; Wenger
et al., 2022; Li et al., 2023; Tang et al., 2023; Guo et al., 2023) or a Wilcoxon signed-rank test (Li
et al., 2023; Tang et al., 2023) on the model’s predictions. However, the hypotheses these works test
for rely (without any theoretical grounding) on the assumption that a benign model must display,
on average, similar predictions on clean images and verification images, may they be watermarked
images (Li et al., 2022; Wenger et al., 2022; Li et al., 2023; Tang et al., 2023) or particular private
images (Maini, 2021; Guo et al., 2023). Our detection scheme, on the other hand, do not need any
assumption as it allows us to exactly characterize the behavior of a benign model on the keys.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness, stealthiness, and robustness of data tag-
gants. Experiments are run on a realistic setting to assess the practicality of our approach.

Experimental setup. We use ImageNet1k (Deng et al., 2009) with Vision Transformers (DeIT)
and Residual Networks (ResNet) models with different sizes and state-of-the-art training recipes
from Wightman et al. (2021) and Touvron et al. (2022) (see Appendix A.3 for details). When
generating taggants, the signing sets’ sizes use a budget B of the total dataset size, S = B×N , with
B = 10−3 unless stated otherwise. We generate 20 secret keys, using 8 random restart per key and
keep the K = 10 keys reaching the best taggant objective value. The weight of the perceptual loss
is fixed to λ = 0.01. These parameters were chosen to produce visually imperceptible data taggants.
ε in the constraint set C is fixed to 16/255, a common value in the data poisoning literature.
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Table 1: Comparison of data taggants with DOV baselines when Alice and Bob train a DeIT-small
on ImageNet1k with the Three Augment recipe with a budget of 0.1%. Aggregated over 4 runs, bold
numbers indicate validation accuracy on par with clean training or better, and effective detection.

Method Validation accuracy TPR FPR log10 p

Clean training 64.2± 0.4 - - -

BW – Sleeper Agent 64.4± 0.3 0.0± 0.0 0.0± 0.0 (0.0)
BW – BadNets 63.7± 0.5 0.0± 0.0 0.0± 0.0 (0.0)

Data isotopes 63.0± 0.8 0.53± 0.09 0.20± 0.08 -

Data taggants
(Our method) 64.2± 0.6 1.0± 0.0 0.0± 0.0 (−59.6)

Table 2: Validation accuracy and detection performance when both Alice and Bob use DeIT-small
models with the three-augment data augmentation with a budget of 0.1%.

Method Validation
accuracy

Top-k keys accuracy PSNR
k = 1 log10 p k = 10 log10 p

Naive Canary 63.8± 1.1 85.0± 19.1 (-91.7) 100.0± 0.0 (-74.0) -

Transparency 63.6± 0.6 10.0± 0.0 (-4.9) 55.0± 5.8 (-29.7) 20.0

Data taggants
(Our method) 64.2± 0.6 10.0± 0.0 (-4.9) 87.5± 5.0 (-59.6) 27.9

In each experiment, we train one model for Alice, craft data taggants, and train Bob’s model on
the now protected dataset. We run the detection test with k = 10 and τ = 0.1 (for an associated
theoretical FPR of 0.4%) and repeat each experiment 4 times with random initializations to compute
standard deviations. Similarly to Sablayrolles et al. (2020), we combine the p-values of the 4 tests
with Fisher’s method (Fisher, 1970). The result is denoted log10 p and is commensurable to the
base-10 logarithm of a p-value. Given the large number of experiments, we train all models for
100 epochs only, while a complete DeIT training is performed on 800 epochs. As sanity check, we
confirm with a run of 800 epochs in Table 11 in Appendix A.2 the effectiveness of our method.

4.1 EFFECTIVENESS

We first compare the effectiveness of data taggants to three baselines (Section A.1 in Appendix
explain this choice) for dataset ownership verification. First, Backdoor watermarking (BW) (Li
et al., 2023), rely on a backdoor attack to embed a backdoor behavior in the model. To perform the
backdoor attack, we leverage Sleeper Agent (Souri et al., 2021), an effective clean-label backdoor
attack, and BadNets Gu et al. (2019), which applies a trigger on images from a source class and flips
their labels to a target class. Finally, Data isotopes (Wenger et al., 2022), unlike BW, do not try to
induce a backdoor behavior f(x) = y ̸= f(x+ x(trigger)), but only to induce a slight change in the
predicted logits. In this comparison, we use DeIT-small models with the Three Augment (3A) data
augmentation and associated training recipe (Touvron et al., 2022) for Alice and Bob. We report the
validation accuracies, the measured TPR and FPR (∈ [0, 1]), and the log10 p-value in Table 1.
Our experiments reveal that in a practical setting, BW is ineffective and yields a 0.0 detection rate,
and data isotopes offer a low detection rate of 0.53 with a prohibitively high FPR of 0.20 with a high
toll on the validation accuracy. In contrast, data taggants achieve a perfect detection with a 1.0 TPR
and 0.0 FPR, and a very high confidence of p < 10−59, without loss of performance.

To measure the effectiveness of gradient matching to craft data taggants and force Bob’s model to
learn the keys, we compare it with two baselines to achieve the same goal. First, “naive canary”,
where copies of the private keys are added into the training set. This serves as a topline in terms of
detection performance, but is not viable as DOV mechanism due to its lack of stealthiness. Second,
“transparency”, where we linearly interpolate between the keys and images of the signing set with
a weight γ = 0.2, x′ = γx(key) + (1− γ)x. This value for γ was chosen by visual inspection, as a
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Table 3: Comparison of keys sources (test data vs random) when both Alice and Bob use DeIT-small
models with the three-augment data augmentation and various budgets.

Key
source

Budget
B

Validation
accuracy

Top-k keys accuracy PSNR
k = 1 log10 p k = 10 log10 p

None 0.0% 64.2± 0.4 - - - - -

Test images
0.001% 63.7± 0.4 0.0± 0.0 (0.0) 7.5± 5.0 (-1.1) 27.5
0.01% 63.4± 1.0 0.0± 0.0 (0.0) 0.0± 0.0 ( 0.0) 27.9
0.1% 63.9± 0.6 0.0± 0.0 (0.0) 27.5± 5.0 (-10.4) 28.4

Random
(Our method)

0.001% 63.7± 0.9 0.0± 0.0 (0.0) 0.0± 0.0 ( 0.0) 26.6
0.01% 63.6± 0.9 0.0± 0.0 (0.0) 5.0± 5.8 (-0.5) 27.3
0.1% 64.2± 0.6 10.0± 0.0 (-4.9) 87.5± 5.0 (-59.6) 27.9

small value for which the key is still visible. In this comparison, we use DeIT-small models with the
three-augment (3A) data augmentation (Touvron et al., 2022) for Alice and Bob, with three different
budgets B, 0.1%, 0.01% and 0.001%.

The results are given in Table 2 (more results in Table 7 in Appendix). First, we observe that all
methods have roughly the same validation accuracy as a model trained on clean data (differences
within error). In particular, this suggests that data taggants do not negatively impact model per-
formances at these budget levels. In terms of detection, Naive canary works best as expected, with
perfect key top-10 accuracy for B ≥ 0.01%. While Transparency works better than data taggants for
smaller budgets, data taggants has much higher top-10 accuracy for B = 0.1% (87.5% vs 55.0%). In
addition, the PSNR (signal to noise ratio) is lower for transparency, which suggests that with a bud-
get as small as 0.1%, data taggants already dominate the transparency baseline in this experimental
setting, and can detect dishonest models with very high confidence (log10 p = −59.6).

We perform an additional comparison with another baseline where test data points are used as keys
rather than random patterns, which is similar to repurposing a data poisoning attack for DOV. Ta-
ble 3 shows the results. With comparable PSNR, using random keys leads to much better detection
accuracy and confidence for B = 0.1% than using test data, justifying our design choice.

4.2 STEALTHINESS

The stealthiness of data taggants is essential but difficult to measure beyond PSNR. As a best effort,
we address the scenario where Bob tries to locate the signed data using either visual inspection,
defense mechanisms against data poisoning, or, following (Tang et al., 2023), using anomaly detec-
tion algorithms. Similarly to the previous section, we use taggants crafted by DeIT-small using 3A
augmentation, with a budget B = 0.1%.

Visual inspection. We provide examples of taggants crafted with and without perceptual loss in
Figure 3 (more examples are given in Figure 6, 7 and 9 in Appendix A.2). We observe that while
most of them appear unaltered, some data taggants display visible patterns of weak intensity that
could as well come from natural film grain or compression artifacts. Although with PSNR < 30 dB
(see Table 2) which is considered low according to image processing standards (lower than e.g.
Sablayrolles et al. (2020)), we believe that the data taggants are hardly detectable via visual inspec-
tion, particularly when Bob has to find them among a whole dataset.

Defense against data poisoning. Since our method relies on a data poisoning mechanism, we
suggest to use data poisoning detection methods to detect data taggants. We consider three data
poisoning detection methods relying on filtering samples: Deep k-NN (Peri et al., 2020), Activation
Clustering (Chen et al., 2018) and Spectral Clustering (Tran et al., 2018). Over a wide range of
parameters, the Receiver Operating Characteristic (ROC) curves in Figure 4 shows that data taggants
cannot be detected by these methods with much better performances than random guess, suggesting
strong stealthiness of data taggants.
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vanilla with perceptual loss vanilla with perceptual loss

Figure 3: Pairs of data taggants crafted without perceptual loss (left) vs with perceptual loss (right).
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Figure 4: ROC curves for defense against
data poisoning methods in the detection of
data taggants.
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Figure 5: ROC curve for DBSCAN anomaly
detection method.

Anomaly detection. Most methods for out-of-distribution (OOD) detection (Chen et al., 2020)
rely on training a model on a set of in-lier data to then be able to detect outliers. In reality Bob does
not have access to the original clean data nor to a benign model, hence cannot tell the outliers apart.

We consider the DBSCAN clustering method (Schubert et al., 2017) from the scikit-learn project2
and run it with a wide range of thresholds (∈ [10, 35]) to cluster the features of a model h trained on
D̃A. The resulting ROC curves are given in Figure 5 as a scatter plot after the experiment 4 times.
Interestingly, when computing DBSCAN for different detection thresholds, we observe that it exhibit
performances that are significantly worse than random. Our explanation is that DBSCAN computes
clusters and select outliers as isolated points or clusters. By manually analyzing the clusters, we
observe that some of them contain a lot of data taggants, most likely because their embeddings are
lumped together and do not appear as anomalies.

On the one hand, these results suggest that OOD detection based on clustering is not a proper ap-
proach to detect the taggants. It suggests however that if Bob has sufficient resources, he may try to
manually locate clusters of signed images by visual inspection, which is less costly than inspecting
individual images. We leave this direction as an open question for future work.

4.3 ROBUSTNESS

For a fixed model and training algorithm, Table 2 and 3 already show the robustness of our method
to a complete model retraining. But for our method to be practical, we need to ensure it will be
robust when Bob’s model or training algorithm is different from Alice’s.

2https://scikit-learn.org/stable/index.html
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Table 4: Robustness to data augmentation change. Alice does not know Bob’s data augmentations
and use either the Simple Augment or the Three Augment recipe.

Bob’s
data aug.

Alice’s
data aug.

Validation
accuracy

Top-k keys accuracy
k = 1 log10 p k = 10 log10 p

SA SA 58.1± 0.3 57.5± 9.6 (-54.2) 100.0± 0.0 (-74.0)
3A 56.1± 0.3 1.7± 4.1 ( 0.0) 15.0± 8.4 ( -1.8)

3A SA 64.1± 0.6 2.5± 5.0 (-0.5) 32.5± 12.6 (-13.8)
3A 64.0± 0.5 10.0± 0.0 (-4.9) 87.5± 5.0 (-59.6)

Different data augmentations. Table 4 (and Table 8 in Appendix A.2) shows how even when
Alice does not know Bob’s data augmentations, she can still successfully detect Bob’s model, even
though we gain much higher confidence when the same data augmentation is used by both Alice and
Bob. Also, since the 3A data augmentation uses mixup (Zhang, 2017) and cutmix (Yun et al., 2019),
these results also demonstrate the robustness of our approach to Borgnia et al. (2021) which showed
that mixup and cutmix can be used to defend against data poisoning attacks.

“Stress test”: different model architectures and data augmentation. We finally explore the
robustness of data taggants in the most difficult setting, where Alice and Bob use different data
augmentations as well as model architecture or sizes (see Table 12 in Appendix). We consider two
families of models (DeIT and ResNet) of various sizes. We measure intra-family transferability by
validating the protected dataset generated from each model onto each other model of the same family
(DeIT and ResNet). We also measure inter-family transferability by crafting a protected dataset with
ResNet-18 and DeIT-tiny models and validating it on all the models of the other family (resp. DeIT
and ResNet). The results are shown in Table 9 in Appendix. Overall, we see good intra-family
transferability, with larger DeIT models being more sensitive to taggants than smaller DeIT models.
Interestingly, the trend is reversed for ResNets, with smaller ResNets being more sensitive. Across
architectures, DeIT-tiny to ResNets or ResNets to DeIT-tiny, the results are less conclusive even
though the top-10 accuracy is still > 0. All in all, these results suggest that the taggants are robust
even in this worst-case scenario.

Dataset change. We explore the case where Bob trains his model on a modified version of Alice’s
dataset. We consider two cases: (1) Bob trains on multiple datasets (a superset of Alice’s dataset),
and (2) Bob trains on a subset of Alice’s dataset. We present the results in Table 10 in Appendix and
show data taggants are still effective in these cases.

5 LIMITATIONS AND FUTURE WORK

While our non-backdoor dataset ownership verification approach shows good properties in terms of
effectiveness, harmlessness, stealthiness, and robustness, limitations are to be observed. Current re-
sults show a negligible degradation in validation accuracy compared to training on the clean dataset,
which future works should try to further reduce. While we show the robustness of our method
through different transfer experiments against different model architectures and training recipe, by
modifying by modifying them, Bob can still hurt the detection performances. Obtaining higher
confidence when Alice and Bob use different architectures and data augmentations is an interesting
avenue for future work.

6 CONCLUSION

We introduced data taggants, a new approach for dataset ownership verification and designed mostly
for image classification datasets. Data taggants are hidden in a dataset through gradient matching,
in order to mark models trained on them. Our approach shows promising results, with very high
detection rate and confidence, and low false positive rate, without affecting models’ performance.
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7 ETHICS STATEMENT

Our work is motivated by the need to ensure the integrity of machine learning models and the
datasets they are trained on. While our approach to Dataset Ownership Verification (DOV) displays
strong results, it is important to consider that such method can also fail. False positives can lead to
misconceptions, particularly in such contexts.

8 REPRODUCIBILITY STATEMENT

The code implementing our method should be released upon publication. We provide all the neces-
sary details to reproduce our experiments in the Section 4 and in the Appendix A.3.
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A APPENDIX

A.1 COMPARISON WITH PRIOR WORK

To visually clarify the position of our work w.r.t. prior work, we represent them in Table 5 to
highlight the main dimensions of comparison: (i) what are the means of detection, (ii) whether the
method relies on black-box access to the model, (iii) whether it is clean-label, (iv) imperceptibility,
and (v) what are the theoretical guarantees. A yellow cross ✗ indicates slight disagreement (e.g. for
the ‘black-box’ axis of analysis, for method that use logits as mean of detection, since it represents
significatively more information than just sharing the predictions). Please note that this table is
coarse and represent the best case scenario for cases where a variety of methods can be used (e.g.
Backdoor watermarking).

Among the prior work, we chose to discard several of them from our pool of baselines. Domain
watermark (Guo et al., 2023) has yet to share the implementation and complete details for generating
their “hardly-generalized domains” which limits us in reproducing their method. It is comparable
to Data taggants but targets “hard” samples from their hardly-generalized domains that are deemed
unlikely to be well classified if not trained on the protected data. On the other hand, we provide
theoretical guarantees that the keys are indeed unlikely to be well classified by a benign model.
Dataset inference (Maini, 2021) in black-box requires a very large amount of queries (a few hundred
per data point to verify), which makes it impractical. Radioactive data (Sablayrolles et al., 2020)
in black-box can only be done via distillation of the model to evaluate, which also require a large
number of queries to the model. Data taggants, on the other hand, only requires K queries (K =
10 in our experiments). We thus kept as baselines and compared against Backdoor watermarking
and Data isotopes (Wenger et al., 2022). For Backdoor watermarking, we decided to leverage two
approaches: a poisoned-label approach, BadNets (Gu et al., 2019), for its simplicity, and a clean-
label approach, Sleeper Agent (Souri et al., 2021). The choice for this methods comes from the
Domain Watermark (Guo et al., 2023) paper showing in Table 1 that Sleeper Agent performs better
than the other tested clean-label backdoor watermarking approaches on Tiny-ImageNet.
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mean of
detection black-box clean-label imperceptible theoretical

guarantees

Radioactive data
(Sablayrolles et al., 2020)

weights/
logits ✗ ✓ ✓ on FPR

Dataset inference
(Maini, 2021)

logits/
pred. ✓ ✓ N/A on linear

models

Backdoor watermarking
(Li et al., 2022; 2023)

(Tang et al., 2023)

logits/
pred. ✓

not
always ✗ ✗

Data Isotopes
(Wenger et al., 2022)

logits/
top-k pred. ✓ ✓ ✗ ✗

Domain Watermark
Guo et al. (2023) logits ✗ ✓ ✗ on risk

Data taggants (Ours) top-k pred. ✓ ✓ ✓ on FPR

Table 5: Comparison of DOV methods along dimensions representing different desirable properties.

A.2 ABLATIONS

Visual inspections. We show, in Figure 6, randomly chosen samples of data taggants generated
with and without perceptual loss. The perceptual loss improves the stealthiness of the data taggants
by making the perturbations less noticeable to the human eye. Some artifacts are still visible but
could easily be overlooked by a human observer or misjudged as compression artifact or image
grain.

Comparison of the perceptual loss with weight decay. We ensure that the gain in PSNR offered
by the perceptual loss is not simply due to it reducing the perturbation amplitudes. Figure 7 compare
data taggants generated with perceptual loss, with weight decay on the perturbation (replacing the
perceptual loss term by the norm 2 of the perturbation ∥δi∥22), and with their vanilla counterpart. It
shows that for a similar PSNR, the weight decay version is much more noticeable than its perceptual
loss counterpart. The perceptual loss hence plays an important role in hiding the signature.

Clean performances. We report clean performances in Table 6. This shows that the loss of accu-
racy is minimal when we train the model on data taggants.

Table 6: Validation accuracies for clean training of the different models and data augmentations
used.

Data aug. Model Validation accuracy

SA DeIT-small 56.1± 0.5

3A

DeIT-medium 67.3± 1.1
DeIT-small 64.2± 0.4
DeIT-tiny 53.6± 0.4

ResNet-50 77.9± 0.0
ResNet-34 74.1± 0.0
ResNet-18 69.6± 0.0

Baselines. Similarly to our experiments, we report in Table 7, the validation accuracies and keys
accuracies for our method and different baselines for keys uniformly sampled in the pixel space or
from the test set. Figure 8 shows how Backdoor Watermarking-based detection (Li et al., 2023)
performs with two backdoor attacks: Sleeper Agent (Souri et al., 2021) and BadNets (Gu et al.,
2019). As Sleeper Agent displays a high p-value for both the watermarked model and the benign
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Figure 6: Comparison of data taggants generated without (top) and with perceptual loss (bottom).
The images were sampled randomly.

model, any relevant level of significance (below 0.05) yield low detection rate (True Positive Rate)
and low false detection rate (False Positive Rate). On the other hand, as we lower the hyperparameter
of the tested hypothesis, the p-value for associated with the benign model is lower than that of the
watermarked model, which should lead to false detection rate higher than the detection rate. For

15



Published as a conference paper at ICLR 2025

(a) vanilla
PSNR = 27.6dB.

(b) with perceptual loss
PSNR = 30.6dB.

(c) with weight decay
PSNR = 30.7dB.

Figure 7: Comparison of signatures (top – amplified ×10) and data taggants (bottom) generated
without discretion mechanism (left), with perceptual loss (center) and with weight decay (right).

BadNets, the p-value obtained from the t-test is lower for benign model than watermarked models
as the threshold decreases, leading to a potentially high false detection rate.

(a) Sleeper Agent (b) BadNets

Figure 8: p-values computed for the Backdoor Watermarking-based detection (Li et al., 2023) as a
function of the margin, the threshold of their null hypothesis.

(a) Key image x(key) (b) Transparency (c) Data taggant (d) Naive canary

Figure 9: Comparison of data taggants with baselines “transparency” and “naive canaries” for a
given key.
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Table 7: Comparison of our data taggants for 10 keys against baselines for a ViT-small trained on
ImageNet1k with the 3A recipe with various budgets. Averaged over 4 validation training runs each
with different validation model’s initialization. Errors represent the standard deviation.

Key
source Method Budget

B
Validation
accuracy

Top-k keys accuracy PSNR
k = 1 log10 p k = 10 log10 p

None Clean training 0.0% 64.2± 0.4 - - - - -

Test
data

Naive Canary
(Label Flipping)

0.001% 63.8± 0.5 0.0± 0.0 (0.0) 0.0± 0.0 (0.0) -
0.01% 64.2± 0.7 57.5± 5.0 (-54.0) 97.5± 5.0 (-71.0) -
0.1% 63.6± 1.0 100.0± 0.0 (-113.4) 100.0± 0.0 (-74.0) -

Transparency
0.001% 64.2± 1.1 0.0± 0.0 (0.0) 0.0± 0.0 (0.0) 20.0
0.01% 63.2± 0.5 0.0± 0.0 (0.0) 0.0± 0.0 (0.0) 20.0
0.1% 63.7± 0.6 0.0± 0.0 (0.0) 0.0± 0.0 (0.0) 20.0

Data taggants
0.001% 63.7± 0.4 0.0± 0.0 (0.0) 7.5± 5.0 (-1.1) 27.5
0.01% 63.4± 1.0 0.0± 0.0 (0.0) 0.0± 0.0 (0.0) 27.9
0.1% 63.9± 0.6 0.0± 0.0 (0.0) 27.5± 5.0 (-10.4) 28.4

Random
data

Naive Canary
0.001% 63.4± 0.7 7.5± 5.0 (-3.3) 10.0± 0.0 ( -1.8) -
0.01% 64.2± 0.3 15.0± 10.0 (-9.2) 100.0± 0.0 (-74.0) -
0.1% 63.8± 1.1 85.0± 19.1 (-91.7) 100.0± 0.0 (-74.0) -

Transparency
0.001% 63.5± 1.0 7.5± 5.0 (-3.3) 10.0± 0.0 ( -1.8) 20.0
0.01% 63.4± 0.7 7.5± 5.0 (-3.3) 10.0± 0.0 ( -1.8) 20.0
0.1% 63.6± 0.6 10.0± 0.0 (-4.9) 55.0± 5.8 (-29.7) 20.0

Data taggants
(Our method)

0.001% 63.7± 0.9 0.0± 0.0 (0.0) 0.0± 0.0 (0.0) 26.6
0.01% 63.6± 0.9 0.0± 0.0 (0.0) 5.0± 5.8 (-0.5) 27.3
0.1% 64.2± 0.6 10.0± 0.0 (-4.9) 87.5± 5.0 (-59.6) 27.9

Robustness to data augmentation changes. We show in Table 8 that our method is robust to
data augmentation changes. We also confirm that uniformly sampling keys in the pixel space to be
out-of-distribution is a better strategy than using test data as keys.

Table 8: Robustness to data augmentation change. Alice does not know Bob’s data augmentations
and use either the Simple Augment or the Three Augment recipe. We compare our method with
keys chosen from test data. B = 10−3.

Alice’s
data aug.

Bob’s
data aug.

Key
source

Validation
accuracy

Top-k keys accuracy
k = 1 log10 p k = 10 log10 p

SA SA Random 58.1± 0.3 57.5± 9.6 (-54.2) 100.0± 0.0 (-74.0)
Test data 56.2± 0.6 15.0± 17.3 (-9.9) 60.0± 14.1 (-34.2)

SA 3A Random 64.1± 0.6 2.5± 5.0 (-0.5) 32.5± 12.6 (-13.8)
Test data 63.9± 1.1 0.0± 0.0 ( 0.0) 2.5± 5.0 ( -0.1)

3A SA Random 56.1± 0.3 1.7± 4.1 ( 0.0) 15.0± 8.4 ( -1.8)
Test data 56.1± 0.4 0.0± 0.0 ( 0.0) 16.0± 5.5 ( -3.9)

3A 3A Random 64.0± 0.5 10.0± 0.0 (-4.9) 87.5± 5.0 (-59.6)
Test data 63.9± 0.6 0.0± 0.0 ( 0.0) 27.5± 5.0 (-10.4)

Robustness to stress test. On top of the data augmentation changes, we show in Table 9 that our
method displays some robustness to changes in the model architecture too.

Dataset change. We consider two cases:
(1) Bob trains on a superset of Alice’s dataset. In our experiments, we make Alice use only half the
classes of ImageNet1k and Bob trains on the whole dataset.
(2) Bob subsamples Alice’s dataset. We make Alice use only half the classes of ImageNet1k. Bob
will then remove 20% of Alice’s samples from each class and add in the classes that do not belong
to Alice.
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Table 9: Stress test: Results of our method when Alice and Bob train two different architectures and
different data augmentations. Alice uses SA data augmentations and Bob uses 3A.

Bob’s
model

Alice’s
model

Validation
accuracy

Top-k keys accuracy
k = 1 log10 p k = 10 log10 p

DeIT-medium

DeIT-medium 67.2± 1.3 2.5± 5.0 (-0.5) 47.5± 9.6 (-24.0)
DeIT-small 67.7± 1.0 5.0± 5.8 (-1.7) 60.0± 8.2 (-33.8)
DeIT-tiny 67.6± 0.7 10.0± 0.0 (-4.9) 52.5± 12.6 (-28.0)
ResNet-18 67.0± 0.8 0.0± 0.0 ( 0.0) 10.0± 0.0 ( -1.8)

DeIT-small

DeIT-medium 64.5± 0.6 0.0± 0.0 ( 0.0) 22.5± 9.6 ( -7.8)
DeIT-small 64.1± 0.6 2.5± 5.0 (-0.5) 32.5± 12.6 (-13.8)
DeIT-tiny 63.7± 1.0 7.5± 5.0 (-3.3) 37.5± 9.6 (-16.9)
ResNet-18 64.3± 0.6 0.0± 0.0 ( 0.0) 10.0± 0.0 ( -1.8)

DeIT-tiny

DeIT-medium 53.8± 0.4 2.5± 5.0 (-0.5) 10.0± 0.0 ( -1.8)
DeIT-small 53.9± 0.5 0.0± 0.0 ( 0.0) 12.5± 5.0 ( -2.8)
DeIT-tiny 54.3± 0.6 2.5± 5.0 (-0.5) 12.5± 5.0 ( -2.8)
ResNet-18 53.5± 0.5 0.0± 0.0 ( 0.0) 7.5± 5.0 ( -1.1)

ResNet-50

ResNet-18 78.0± 0.1 5.0± 5.8 (-1.7) 15.0± 5.8 ( -3.9)
ResNet-34 77.9± 0.1 7.5± 5.0 (-3.3) 12.5± 5.0 ( -2.8)
ResNet-50 77.9± 0.1 2.5± 5.0 (-0.5) 37.5± 27.5 (-18.5)
DeIT-tiny 77.8± 0.2 2.5± 5.0 (-0.5) 12.5± 5.0 ( -2.8)

ResNet-34

ResNet-18 74.2± 0.1 7.5± 5.0 (-3.3) 52.5± 20.6 (-28.6)
ResNet-34 74.1± 0.1 10.0± 0.0 (-4.9) 30.0± 8.2 (-12.0)
ResNet-50 74.1± 0.1 7.5± 9.6 (-3.5) 62.5± 31.0 (-38.2)
DeIT-tiny 74.2± 0.1 10.0± 0.0 (-4.9) 10.0± 0.0 ( -1.8)

ResNet-18

ResNet-18 69.8± 0.1 7.5± 5.0 (-3.3) 55.0± 31.1 (-32.0)
ResNet-34 69.9± 0.2 7.5± 5.0 (-3.3) 22.5± 15.0 ( -8.1)
ResNet-50 69.8± 0.1 7.5± 5.0 (-3.3) 55.0± 23.8 (-30.9)
DeIT-tiny 69.8± 0.2 5.0± 5.8 (-1.7) 10.0± 0.0 ( -1.8)

Table 10: Results of our method when Bob trains his model on a modified version of Alice’s dataset.

Case Validation accuracy Top-10 key accuracy log10 p

(1) 64.5± 0.6 62.5± 15.0 (−36.3)
(2) 58.6± 0.7 72.5± 9.6 (−44.9)

Results are showed in Table 10 and show that in both cases, our method is still able to detect Bob’s
model strong reaction to the keys.

Result for 800 epochs training. To ensure that the effects of our data taggants are still observed
even during a full training, Table 11 reports the top-k keys accuracies and associated p-values for a
complete training of 800 epochs for random keys and keys taken from the test data when Alice and
Bob both use the 3A data augmentation. Our method displays better performances of detection for
the same validation accuracy.

Table 11: Results for a complete training of a deit-small for 800 epochs and comparison with keys
chosen from test data. B = 10−3.

Key
source

Validation
accuracy

Top-k keys accuracy
k = 1 log10 p k = 10 log10 p

Random data 79.4± 0.2 10.0± 0.0 (-4.9) 85.0± 10.0 (-57.2)
Test data 79.4± 0.3 0.0± 0.0 ( 0.0) 0.0± 0.0 ( 0.0)
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A.3 EXPERIMENTAL DETAILS

Computational resources. All our experiments ran on 16GB and 32GB V100 GPUs. The differ-
ent steps took the following time:

• Initial training: 14h-16h
• Data taggants generations: 2h-8h
• Validation training: 14h-16h

Models and training recipes. We present in Table 12 the list of models used and their size and
number of parameters. Table 13 details the data augmentations used in our experiments. Finally,
Table 14 presents the training recipe used for our experiments.

Table 12: Models and sizes.

Model # params.

ViT-tiny 5.46 M
ViT-small 21.04 M
ViT-medium 37.05 M
ViT-base 82.57 M

ResNet-18 11.15 M
ResNet-34 20.79 M
ResNet-50 24.37 M
ResNet-101 42.49 M

Table 13: Data augmentations.

Data aug. SA 3A

H. flip ✓ ✓
Resize ✓ ✓
Crop ✓ ✓
Gray scale ✗ ✓
Solarize ✗ ✓
Gaussian blur ✗ ✓
Mixup alpha 0.0 0.8
Cutmix alpha 0.0 1.0
ColorJitter 0.0 0.3

Test crop ratio 1.0 1.0

Table 14: Training recipe

Family DeIT ResNet
Reference (Touvron et al., 2022) (Wightman et al., 2021)

Batch size 2048 2048
Optimizer LAMB LAMB
LR 3.10−3 8.10−3

LR decay cosine cosine
Weight decay 0.02 0.02
Warmup epochs 5 5

Dropout ✗ ✗
Stoch. Depth ✓ ✓
Repeated Aug ✓ ✗
Gradient Clip. 1.0 1.0
LayerScale ✓ ✗

Loss BCE BCE
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