443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

461
462

464

465
466

467

A Numerical example of the EF problem

1 0 0 0 [0.591]
0O 1 0 0 0.749
0 0 1 0 0.412
0O 0 0 1 0.545
10 0 0 0.
0 -1 0 0 0.
A=10 o0 -1 olB=] o
0 0 0 -1 0.
1 -1 -1 -1 —0.81
11 1 1 1.
1 1 0 0 0.74
0 0 1 1] | 058 |

C = 10,0, 1,1]; Guax = [0.74,0.58]
Xuax = [0.5910.749, 0.412,0.545)
XMIN = [0, 0, 0, O]
ayy = 0.81, apax = 1

E ¢ R**1L7] s built by stacking Q” and [0, - -

Then, eq. [2] can be reformulated as follow:

¢ := minimize — R'x subject to A < B and E < F.

We provide a numerical example of the EF
problem in the case of a 4-asset problem
with 2 classes and ayn < 1 (see Eq.
Only the constraints are presented here. It
is important to note that the matrices A
and B representing all w constraints grow
in size by (2n+24m) as n increases, where
m is the number of distinct asset classes. If
Xuax 18 not defined, then all entries of X 4x
can be set to ayx. Solving Eqm is achieved
by directly considering A and B and the
covariance matrix Q = diag(V)Pdiag(V)
obtained from the other inputs. If Vg, =
" Qx, then we solve a second-order cone
program (SOCP) to increase the portfolio’s
volatility without exceeding Viarger and get
better returns.

We obtain the volatility constraint
through the Cholesky decomposition of
the covariance matrix Q' = L(Q)L(Q)T
where L is the lower-triangular operator.

-0] such that F € R*+L1] = [/ Vearget: 0, -+ .

(13)

The complete optimal allocation of eq. [3| can be summarized by the following python script:

NINER eyaluation """
import copy

import logging
import os

import cvxopt
import numpy as np

scalar = 10000

def cvxopt_solve_qp(P, q, G=None, h=None, *xkwargs):

P=0.5% (P + P.T) # make sure P is symmetric
args = [cvxopt.matrix(P), cvxopt.matrix(q)]
if G is not None:

args.extend([cvxopt.matrix(G), cvxopt.matrix(h)])

sol = cvxopt.solvers.qp(*args, **kwargs)
if sol["status"] != "optimal":

raise ValueError("QP SOLVER: sol.status != 'optimal'")
return np.array(sol["x"]).reshape((P.shape[1],)), num_iterations

def cvxopt_solve_socp(c, Gl, hl, Gq, hq, **kwargs):

args = [cvxopt.matrix(c), cvxopt.matrix(Gl), cvxopt.matrix(hl), [cvxopt.matrix(Gq)],

— [cvxopt.matrix(hq)]]

sol = cvxopt.solvers.socp(*args, **kwargs)
num_iterations = sol["iterations"]

if sol["status"] != "optimal":

raise ValueError("SOCP SOLVER: sol.status != 'optimal'")
return np.array(sol["x"]).reshape((Gl.shape[1],)), num_iterations

def efficient_frontier(max_weights, vol_target, conditions, condition_max, vol, ret, correl):

n_assets = len(max_weights)
min_weights = [0] * n_assets
v_t = vol_target * vol_target * scalar

G = np.vstack([np.eye(n_assets), -np.eye(n_assets), conditions])
H = np.hstack([max_weights, min_weights, condition_max])
cov = scalar * np.matmul(np.matmul (np.diag(vol), correl), np.diag(vol))

5

t = cvxopt_solve_gp(cov, np.zeros_like(ret), G, H) #eq 1

wt = np.minimum(list(np.maximum(list(wt), min_weights)), max_weights)

wtld = wt.reshape([n_assets, 1])

468

469
470
471
472

473
474
475
476

477
478
479
480
481
482
483

484

485

486

488
489
490

491

492
493
494
495
496
497

variance = np.matmul(np.matmul(wt1d.T, cov), wtid) [0, 0]
if variance < v_t:

ret = np.array(ret)

chol = np.linalg.cholesky(cov).T

Gq = np.vstack([np.zeros(n_assets), choll)

hq = np.zeros(n_assets + 1)

hq[0] = np.sqrt(v_t)

wt = cvxopt_solve_socp(-ret, Gl=G, hl=H, Gq=Gq, hq=hq) #eq 2

wt = np.minimum(list(np.maximum(list(wt), min_weights)), max_weights)
return wt

B Preprocessing

We encounter ambiguity in optimization problems due to various combinations of inputs
representing the same problem. To address this, we provide three examples where we discuss
the ambiguity and propose a standardized solution for processing inputs in an optimized
manner prior to token projection.

When the i-th asset belongs to the j-th asset class and z}"** > (., the constraint z}"** is

overridden by (.;. This means that there is no combination of assets where the allocation of
the i-th asset can be higher than (.;. To address this constraint, we clip }"** to (., by using
the formula: 2}"** = min(max(x}"**, .,),0) for all i-th assets belonging to the j-th class.

K3
The remaining two cases are additional edge cases related to the previous condition. If only
one asset is assigned to the j-th class, (., and x;"“ should be equal because it is equivalent
to having no class constraint for that class. Also, if a class constraint is set but no assets
belong to that class, it is equivalent to setting ., = 0. By processing the optimization inputs
in this manner, we ensure that any ambiguity on the class constraints are standardized,
allowing for equivalent linear projections into token before the transformer encoder part of
the network.

C Experimental Section

C.1 Dataset

Dataset name Size Description
Dirain 1.2B samples Sampled at random over the domain in table.
Drest 990K samples Sampled at random over the domain in table.
Dood 990K samples Sampled following the indication of sec.

Table 5: Description of the dataset used

The size and description of the dataset we used are presented in table. [f] We used an
asymmetric weighting scheme to generate all datasets, favoring more complex optimizations
(see Table @ As the number of assets increases, the number of unstable regions also increases,
where allocation can significantly change. To ensure training and evaluation encompass these
unstable regions, we generated a higher proportion of optimization inputs with more assets.

C.2 Accuracy with half-precision floating-point format

The results obtained using single-precision floating-point (FP32) and the model quantized to
half-precision floating-point (FP16) are on the same order of accuracy as shown in table
and fig. [I0] The quantization process to FP16 maintains the necessary precision for the
calculations, resulting in equivalent outcomes as the FP32 counterpart. While a degradation
in the ability to rank assetsﬂ and respect the volatility and class constraint occurs, we
observe that this does not impact the overall distributional properties and the downstream

5The ranking of the results has been computed with a tolerance of 1e —4, where a slight deviations
are permissible and don’t hurt the accuracy. This was made such that negligible allocation made by
NeuralEF which can be disregarded for practical purpose are neglected.

14

Asset case | Proportion (%)

2.517
2.551
2.559
2.603
6.834
6.879
10.346
10.377
13.826
13.850
12 27.658

==
e =R RS IOt IN)

Table 6: Proportion of asset in each datasets.

408 application that would benefit from it. As such, there is no discrepancy in the results between
490 the two representations, demonstrating the viability of using the lower-precision FP16 for
so0 computational efficiency.

1.0 = 1.0 = 1.0 7 -
number of asset number of asset number of asset

2

08 0.8 0.8 3

4

5

c06 c06 c06 ©

& § § —

g g g —

2 2 3 —s
& 0.4 0.4 £ 0.4

= i

= il

— 12
0.2 0.2 0.2
0.0 0.0 0.0

107 1074 1072 100 10716 107** 1071° 107 107* 107! 107 10™° 1077 107> 1073 107!
Sum of allocation error Portfolio error Volatility error

Figure 10: Cumulative distributions of the sum of absolute allocation error of allocations
and portfolio returns per assets for the FP16 quantized NeuralEF.

Asset case | Portfolio weights MSE Portfolio weights MAE 95 i 99.865 i 99.997 il Ranking precision
2 9.54e-07 Se- 3 02 e-01 93.012 %
3 98.394 %
4 1.65e-02 97.231 %
5 1.48e-02 94.064 %
6 1.51e-02 89.798 %
7 1.67e-02 85.224 %
8 1.61e-02 81.598 %
9 1.99e-02 77217 %
10 1.16e-05 2.21e-03 2.00e-02 5.25e-02 74.899 %
11 1.11e-05 1.72e-03 2.22e-02 5.85e-02 71.646 %
12 3.48e-08 1.30e-04 1.98e-02 5.31e-02 2.11e-01 68.804 %

| Portfolio return MSE 95 quantile 99.865 quantile 99.997 quantile Cuax precision

2 7.87e-03 2.26e-02 97.555 %
3 1.24e-02 3.19e-02 90.949 %
4 1.48¢e-02 87.576 %
5 1.49e-02 86.583 %
6 1.52e-02 85.592 %
7 4.63e-05 1.68e-02 82.323 %
8 2.40e-03 1.72e-02 84.808 %
9 1.45e-03 2.13e-02 83.589 %
10 4.88¢e-05 2.31e-02 83.707 %
11 3.62e-04 e-02 1.75e-01 83.190 %
12 1.13e-03 2.49¢-02 1.84e-01 83.197 %
Volatility return MAE 95 i 99.865 99.997 i Viarget Precision

2 2.69e-06 1.64e-03 7.87e-03 6.98¢-02 87.649 %
3 9.48¢e-06 3.08e-03 1.24e-02 1.12e-01 81.729 %
4 3.58e-06 1.89e-03 1.48¢-02 83.229 %
5 2.96e-03 1.49¢-02 79.704 %
6 3.99e-07 1.52e-02 80.056 %
7 2.15e-09 4.63e-05 1.68e-02 80.270 %
8 5.74e-06 2.40e-03 1.72e-02 76.472 %
9 2.11e-06 1.45e-03 2.13e-02 77.205 %
10 2.38e-09 4.88¢-05 2.31e-02 79.268 %
11 1.3 7 3.62e-04 2.49e-02 81.682 %
12 1.28e-06 1.13e-03 2.49e-02 1.84e-01 79.517 %

Table 7: Accuracy of portfolio weights, implied return and resulting volatility for the FP16
quantized NeuralEF.

15

