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1 Supplementary proofs

Theorem 3.2. Without loss of generality, let first entry of P̃A be the fraction of samples from the
majority group in the training data. Assume

1. there are only two groups and the set of risk profilesR ⊆ R2;
2. subpopulation shift: the risk profiles with respect to P̃ and P ∗ are identical;
3. (R̃1, R̃0) = R̃ , arg minR∈R〈P̃A, R〉 is the risk profile of the risk minimizer;
4. ((R̃F )1, (R̃F )0) = R̃F , arg minR∈R∩F 〈P̃A, R〉 is the risk profile of the fair risk minimizer.

Then we have:

〈P ∗A, R̃〉

{
≤ 〈P ∗A, R̃F 〉 if P ∗(A = 1) ≥ R̃0−(R̃F )0

R̃0−R̃1

≥ 〈P ∗A, R̃F 〉 otherwise .

Therefore, enforcing DP harms overall performance in the target domain in the first case, while
improves in the second.

Proof of Theorem 3.2. We start by simplifying 〈P ∗A, R̃− R̃F 〉. Note that

〈P ∗A, R̃− R̃F 〉 =P ∗(A = 0)
[
(R̃)0 − (R̃F )0

]
+ P ∗(A = 1)

[
(R̃)1 − (R̃F )1

]
=(1− P ∗(A = 1))

[
(R̃)0 − (R̃F )0

]
+ P ∗(A = 1)

[
(R̃)1 − (R̃F )1

]
=(R̃)0 − (R̃F )0 − P ∗(A = 1)

[
(R̃)0 − (R̃F )0 − (R̃)1 + (R̃F )1

]
=(R̃)0 − (R̃F )0 − P ∗(A = 1)

[
(R̃)0 − (R̃)1

]
, since (R̃F )0 = (R̃F )1.

Finally, we conclude

〈P ∗A, R̃− R̃F 〉 ≤ 0 if and only if P ∗(A = 1) ≥ (R̃)0 − (R̃F )0

(R̃)0 − (R̃)1
.
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Next we provide a proof of Theorem 4.3 under the additional assumption that A and V are finite sets.
Although less general, we feel that this proof is more instructive because it suggests the origin of
(4.5).

Theorem 4.3. Under the assumptions

1. The risk setR is convex.
2. The risk profiles with respect to P̃ and P ∗ are identical.
3. The unconstrained risk minimizer on unbiased data is algorithmically fair; i.e.

arg minR∈R〈P ∗, R〉 ⊆ FCRP.

the fair risk minimization (4.3) obtains h ∈ H such that R(h) = R∗ if and only if

ΠF (P ∗A,V − P̃A,V )− P ∗A,V ∈ NR(R∗) + F⊥CRP. (1.1)

where P ∗A,V (resp. P̃A,V ) is the marginal of P ∗ (resp. P̃ ) with respect to (A, V ), R∗ is the optimal
risk profile with respect to P ∗, NR(R∗) is the normal cone ofR at R∗ and ΠF is the projection on
the fair hyperplane.

Proof of Theorem 4.3. “if” direction: Let Z̃ = −P̃A,V . If (4.5), then it is not hard to check that
(R∗, Z̃) satisfies the optimality conditions of (4.3):

0 = P̃A,V + Z̃, (stationarity)
R∗ ∈ F , (primal feasibility)

Z̃ ∈ NR(R∗) + F⊥ (dual feasibility).

(1.2)

Indeed, we have stationarity by the definition of Z̃. We have primal feasibility because the uncon-
strained risk minimizer on unbiased data is algorithmically fair: R∗ ∈ F . We have dual feasibility
because

Z̃ = ΠFCRP(P ∗A,V − P̃A,V )− P ∗A,V + ΠF⊥
CRP

(P ∗A,V − P̃A,V )

∈ NR(R∗) + F⊥CRP + F⊥CRP

= NR(R∗) + F⊥CRP,

where we appealed to (4.5) in the second step and recalled F⊥CRP is a subspace in the third step. The
FRM problem (4.3) is convex, so (1.2) implies R∗ is an optimal point of (4.3).

“only if” direction: Assume R∗ solves (4.3). This implies there is Z̃ ∈ NR(R∗) + F⊥CRP such that
(R∗, Z̃) satisfies (1.2). By the stationary and dual feasibility conditions,

Z̃ = −P̃A,V ∈ NR(R∗) + F⊥CRP.

We write P̃A,V as ΠFCRP
(P ∗A,V − P̃A,V )− P ∗A,V + ΠF⊥

CRP
(P ∗A,V − P̃A,V ) and rearrange to obtain

ΠFCRP
(P ∗A,V − P̃A,V )− P ∗A,V ∈ ΠF⊥

CRP
(P ∗A,V − P̃A,V ) +NR(R∗) + F⊥CRP

= NR(R∗) + F⊥CRP,

where we recalled FCRP is a subspace in the second step.

Corollary 4.4. A sufficient condition for (4.5) is P̃A,V − P ∗A,V ∈ F⊥CRP.

Proof of Corollary 4.4. If P̃A,V − P ∗A,V ∈ F⊥CRP, then ΠFCRP
(P ∗A,V − P̃A,V ) = 0, so we need to

check that −P ∗A,V ∈ NR(R∗) + F⊥CRP. For any R ∈ R,

〈−P ∗A,V , R−R∗〉 = 〈P ∗A,V , R
∗ −R〉 ≤ 0

as R∗ is the minimizer of 〈P ∗A,V , R〉 overR. This shows −P ∗A,V ∈ NR(R∗) as desired.

2



2 Continuous discriminative attributes

In this section, we state and prove a more general verion of Theorem 4.3 that permits continuous
discriminative attributes. In this more general setting, risk profiles are (integrable) functions on
Z , A×V , so the fair risk minimization problem (1.2) and its unconstrained counterpart are infinite
dimensional optimization problems. We start by setting up the problem and reviewing relevant results
from optimization theory.

Let (Z,Σ) be a measurable space and S be the set of bounded measurable functions on (Z,Σ). We
equip S with the sup norm. The risk set R and the fair constraint set F are generally subsets of
S. The (topological) dual of S (denoted by S ′) is the set of finitely additive measures on equipped
with the total variation norm [3]. This result allows us to represent continuous linear functionals
on such spaces with (finitely additive) measures, so it is a generalization of the more familiar
Riesz–Markov–Kakutani representation theorem to spaces of (possibly discontinuous) measurable
functions. We observe that the more familiar set of countably additive measures is a closed subset of
Z ′.
Definition 2.1 (Complemented subspace). Let B be a Banach space and A ⊂ B be a subspace.
We say A is complemented subspace of B, if there exists another subspace AC ⊂ B such that
B = A⊕AC .

Henceforth, for if A is a complemented subset of a Banach space B, (i.e., A ⊕ Ac = B) then we
define ΠA,AC

(x) (resp. ΠAC ,A(x)) is the component of x in A (resp. AC), i.e. ΠA,AC
(x) = x1

(resp. ΠAC ,A(x) = x2) where x = x1 + x2 with x1 ∈ A, x2 ∈ AC . Recall that, we define F as the
fair hyperplane. Previously it was a subspace of the risk set, now it becomes a subspace of S. We
have the following assumption on the fair hyperplane:

Definition 2.2 (Annihilator). For anyA ⊂ B we define its annihilatorA⊥ ⊂ B′ as the set of bounded
linear functions f : B→ R such f(x) = 0 for all x ∈ A.

Lemma 2.3. Let A be a complemented subspace in B. Then A⊥ is complemented in B′.

Proof. Since, A is complemented in B, there exists a subspace G ⊂ B such that A⊕G = B. This
implies, each x ∈ B has the unique decomposition x = x1 + x2, where x1 ∈ A and x2 ∈ G. We
consider the projection ma p ΠA,G : B→ B such that ΠA,G(x) = x1. Let us define two following
subspaces in B′ :

HA,G = {f ◦ΠA,G | f ∈ B′}
H̄A,G = {f − f ◦ΠA,G | f ∈ B′} .

Note that, H̄A,G ⊂ A⊥. Also, for any f ∈ A⊥ we have f ◦ΠA,G = 0B′ =⇒ f = f − f ◦ΠA,G ∈
H̄A,G. This implies H̄A,G = A⊥. Furthermore, B′ = HA,G + H̄A,G and for any f ∈ HA,G ∩ H̄A,G

we have f(A) = f(G) = {0}.Hence, f = 0B′ . This implies B′ = HA,G⊕H̄A,G = HA,G⊕A⊥.

Finally, we review some relevant background on infinite dimensional optimization. Since we are
mostly concerned with convex optimization problems with linear cost functions, the theory simplifies
considerably.

Definition 2.4 (tangent cone). The tangent cone of a closed convex set C ⊂ B at a point x ∈ C is the
closure of the cone of feasible directions at x:

TC(x) , cl{d ∈ B | there is t̄ > 0 such that x+ td ∈ C for all t ∈ [0, t̄]}.

There are many notions of tangent cone in variational analysis (e.g. Clarke tangent cone, contingent
cone, inner tangent cone etc.), but they all coincide for closed convex sets [2]. Notably, this definition
is identical to the definition (for convex sets) in finite dimensions.

Definition 2.5 (normal cone). The normal cone of a closed convex set C ⊂ B at a point x ∈ C is the
polar cone of the tangent cone of C at x:

NC(x) , {d′ ∈ B′ | 〈d′, d〉 ≤ 0 for all d ∈ TC(x)}.
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Proposition 2.6. Let C be a closed convex subset of a Banach space B. Consider the convex
optimization problem

minx∈C〈c, x〉.
A point x∗ ∈ C is an optimal point iff

〈c, d〉 ≥ 0 for any d ∈ TC(x∗),

where 〈c, ·〉 is the linear cost function and TC(x∗) is the tangent cone of C at x∗. Equivalently, x∗ is
optimal if and only if c ∈ NC(x∗).

Recall that in a normed vector space 〈f, x〉 means the value of the linear functional f at x. In our
problem setting, points in the normed space S are integrable functions/random variables and linear
functionals on S are (finitely additive) measures, so 〈f, x〉 means expectation of the random variable
x with respect to probability measure f .)

We are ready to state the extension of our main result to continuous discriminative attributes. Assump-
tions in Theorem 4.3 from the main paper remain in effect. For continuous discriminative attributes,
we impose an additional assumption.
Assumption 2.7. The fair subspace F is complemented in S.

This assumption is usually satisfied by common algorithmic fairness constraints: when RP is consid-
ered, F is the set of all constant functions from A to R. For CPR, F ⊆ S is the set of all functions
f : A × Y → R such that f is constant on the first co-ordinate, i.e. f(x1, y) = f(x2, y) for all
x1 6= x2 ∈ A and y ∈ Y . We now argue that, in both the cases F is a complemented subset of S
under mild assumptions. For RP, we use the fact that any subspace A ⊆ S with dim(A) < ∞ or
codim(A) < ∞ is complemented. As FRP is the set of all constant functions, it has dimension 1
and hence complemented. For CRP, assume that there exists some base measure µ such that f ∈ S
is integrable with respect to µ. Then one can write: f = f1 + f2 where f1 ∈ F which is defined
as: f1(a, v) = g(v) where g(v) is the marginal of f(·, v) with respect to the base measure µ. The
function f2 is analogously defined as f − f1 ≡ f(a, v)− g(v).
Theorem 2.8. If the unconstrained risk minimizer on unbiased data is algorithmically fair (i.e. its
risk profile R∗ satisfy the fairness constraints), then fair risk minimization (4.3) learns h ∈ H such
that R(h) = R∗ under 2.7 and convexity ofR if and only if

ΠF⊥
C ,F⊥(P ∗A,V − P̃A,V )− P ∗A,V ∈ NR(R∗) + F⊥. (2.1)

where P ∗A,V (resp.P̃A,V ) is the marginal of P ∗ (resp. P̃ ) with respect to (A, V ), NR(R∗) is the
normal cone ofR at R∗ and ΠF⊥

C ,F⊥(·) is the projection as defined previously.

Proof. For notation simplicity define X , ΠF⊥
C ,F⊥(P ∗A,V − P̃A,V ) − P ∗A,V . We show that

minR∈F 〈P̃ , R〉 = 〈P̃ , R∗〉 holds if and only if X ∈ NR(R∗). Towards that end, fix R ∈ F :

〈P̃ , R〉 = 〈P̃ − P ∗, R〉+ 〈P ∗, R〉
= 〈ΠF⊥

C ,F⊥(P̃ − P ∗), R〉+ 〈P ∗, R〉
= 〈−P ∗ −X,R〉+ 〈P ∗, R〉
= 〈−X,R〉 (2.2)
= 〈−X,R∗〉+ 〈−X,R−R∗〉
= 〈P̃ , R∗〉+ 〈−X,R−R∗〉 [From equation (2.2)]

Hence we have: minR∈F 〈P̃ , R〉 = 〈P̃ , R∗〉 if and only if 〈−X,R−R∗〉 ≥ 0 for all R ∈ F which
holds if and only if X ∈ NR∩F (R∗) = NR(R∗) + F⊥. This completes the proof.

3 Experimental details

We provide additional details to help reproduce our results. Please also see the code provided
with the submission. Code for the Reductions classifier [1] is available here: https://github.
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com/fairlearn/fairlearn. We modified the source code to prevent it from early stopping, so
the baseline classifier runs for same number of iterations as the fair classifier. The idea behind
the Reductions approach is to translate the problem of learning a fair classifier into a constraint
optimization problem, where constraints depend on the fairness definition of choice. Reductions
method requires a base classifier: it learns an ensemble of the base classifiers to optimize performance
subject to the fairness constraints. We used logistic regression as the base classifier in all experiments.
The other important parameter is the tolerance ε that controls the amount of permissible constraint
violation. Smaller tolerance implies tighter fairness constraints. In the Figure 1 experiment we used
Demographic Parity fairness constraint, and in all other experiments we used Equalized Odds fairness
constraint [4] with ε = 10 for the baseline classifier (i.e. fairness can be arbitrarily violated) and
ε = 0.1 (for the Adult experiment ε = 0.02) for the fair classifier.1

Simulations Simulated data is generated from X|A = a, Y = y ∼ N (µay,Σay) in 2-dimensions
with prescribed A, Y joint distribution. We fixed Y marginals p·0 = p·1 = 0.5 and varied joint
PA,Y (in Figure 1 for the test data, setting train data values p0· = 0.4 and p1· = 0.1; and in Figures
4 and 5 for the train data, setting test data values p·· = 0.25) to study different degrees of label
bias. Reductions was trained for 25 iterations for both baseline and fair classifiers. We provide code
reproducing Figure 5 of the main text in simulations.py. Please also refer to the code for concrete
values of {µay,Σay} and other minor details.

COMPAS experiment Reductions was trained for 50 iterations for both baseline and fair classifiers.
We provide code reproducing one run of the experiment for Table 1 of the main text (results in the
table summarize 100 runs) in compas.py. Please also refer to the code for data pre-processing and
other minor details.

Adult experiment We ran experiment on the Adult dataset with the same setup as in the COMPAS
experiment. We summarize results over 100 runs in Table 1.

Table 1: Accuracy on Adult data

P ∗ P̃

Fair 0.852±0.004 0.843±0.003
Base 0.848±0.005 0.847±0.003
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