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A Broader Impact

This paper aims to calculate a fairness certificate under some distributional fairness constraints on the
performance of an end-to-end ML model. We believe that the rigorous fairness certificates provided
by our framework will significantly benefit and advance social fairness in the era of deep learning.
Especially, such fairness certificate can be directly used to measure the fairness of an ML model
regardless the target domain, which means that it will measure the unique property of the model itself
with theoretical guarantees, and thus help people understand the risks of existing ML models. As a
result, the ML community may develop ML training algorithms that explicitly reduce the fairness
risks by regularizing on this fairness certificate.

A possible negative societal impact may stem from the misunderstanding or inaccurate interpretation
of our fairness certificate. As a first step towards distributional fairness certification, we define the
fairness through the lens of worst-case performance loss on a fairness constrained distribution. This
fairness definition may not explicitly imply an absoluate fairness guarantee under some other criterion.
For example, it does not imply that for any possible individual input, the ML model will give fair
prediction. We tried our best in Section 2 to define the certification goal, and the practitioners may
need to understand this goal well to avoid misinterpretation or misuse of our fairness certification.

B Omitted Background

We illustrate omitted background in this appendix.

B.1 Hellinger Distance

As illustrated in the beginning of Section 3, our framework uses Hellinger distance to bound the
distributional distance. A formal definition of Hellinger distance is as below.
Definition 3 (Hellinger Distance). Let P and Q be distributions on Z := X ⇥ Y that are absolutely
continuous with respect to a reference measure µ with P,Q ⌧ µ. The Hellinger distance between P
and Q is defined as

H(P,Q) :=

s
1

2

Z

Z

⇣p
p(z)�

p
q(z)

⌘2
dµ(z) (10)

where p = dP
dµ

and q = dQ
dµ

are the Radon-Nikodym derivatives of P and Q with respect to µ,
respectively. The Hellinger distance is independent of the choice of the reference measure µ.

Representative properties for the Hellinger distance are discussed in Section 3.

B.2 Thm. 2.2 in [47]

As mentioned in Section 3.3, we leverage Thm. 2.2 from [47] to upper bound the expected loss of
h✓(·) in each shifted subpopulation Qs,y . Here we restate Thm. 2.2 for completeness.
Theorem 4 (Thm. 2.2, [47]). Let P 0

and Q0
denote two distributions supported on X ⇥ Y , suppose

that 0  `(h✓(X), Y )  M , then

max
Q0,✓

E(X,Y )⇠Q0 [`(h✓(X), Y )] s.t. H(P 0
,Q0)  ⇢

E(X,Y )⇠P0 [`(h✓(X), Y )] + 2C⇢

q
V(X,Y )⇠P0 [`(h✓(X), Y )]+

⇢
2(2� ⇢

2)

✓
M � E(X,Y )⇠P0 [`(h✓(X), Y )]�

V(X,Y )⇠P0 [`(h✓(X), Y )]

M � E(X,Y )⇠P0 [`(h✓(X), Y )]

◆
,

(11)

where C⇢ =
p
⇢2(1� ⇢2)2(2� ⇢2), for any given distance bound ⇢ > 0 that satisfies

⇢
2  1�

✓
1 +

(M � E(X,Y )⇠P0 [`(h✓(X), Y )])2

V(X,Y )⇠P0 [`(h✓(X), Y )]

◆�1/2

. (12)
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This theorem provides a closed-form expression that upper bounds the mean loss of h✓(·) on
shifted distribution (namely EQ0 [`(h✓(X), Y )]), given bounded Hellinger distance H(P,Q) and the
mean E and variance V of loss on P under two mild conditions: (1) the function is positive and
bounded (denote the upper bound by M ); and (2) the distance H(P,Q) is not too large (specifically,
H(P,Q)2  �̄

2 := 1� (1 + (M � E)2/V )�
1
2 ). Since Thm. 4 holds for arbitrary models and loss

functions `(h✓(·), ·) as long as the function value is bounded by [0,M ], using Thm. 4 allows us to
provide a generic and succinct fairness certificate in Thm. 3 for general shifting case that holds for
generic models including DNNs without engaging complex model architectures. Indeed, we only
need to query the mean and variance under P for the given model to compute the certificate in Thm. 4,
and this benefit is also inherited by our certification framework expressed by Thm. 3. Note that there
is no tightness guarantee for this bound yet, which is also inherited by our Thm. 3.

C Proofs of Main Results

This appendix entails the complete proofs for Proposition 1, Thm. 1, Thm. 2, Lemma 3.1, and Thm. 3
in the main text. For complex proofs such as that for Thm. 3, we also provide high-level illustration
before going into the formal proof.

C.1 Proof of Proposition 1

Proof of Proposition 1. Since each term Pr(X,Y )⇠Q[h✓(X) 6= Y |Y = y,Xs = i] is within [0, ✏],
we consider two cases: y 6= 1 and y = 1. If y 6= 1, Pr(X,Y )⇠Q[h✓(X) = 1|Y = y,Xs = i] 
Pr(X,Y )⇠Q[h✓(X) 6= Y |Y = y,Xs = i]  ✏ and so will be their differences for Xs = i and Xs = j.
If y = 1, Pr(X,Y )⇠Q[h✓(X) = 1|Y = y,Xs = i] = 1 � Pr(X,Y )⇠Q[h✓(X) 6= Y |Y = y,Xs =
i] 2 [1 � ✏, 1], and also the differences for Xs = i and Xs = j are always within ✏. This proves
✏-EO.

Now consider DP. We notice that for any a,

Pr
(X,Y )⇠Q

[h✓(X) = 1|Xs = a] =
CX

y=1

Pr
(X,Y )⇠Q

[h✓(X) = 1|Y = y,Xs = a]· Pr
(X,Y )⇠Q

[Y = y|Xs = a].

(13)
Thus,

��� Pr
(X,Y )⇠Q

[h✓(X) = 1|Xs = i]� Pr
(X,Y )⇠Q

[h✓(X) = 1|Xs = j]
���

(⇤)


CX

y=1

��� Pr
(X,Y )⇠Q

[h✓(X) = 1|Y = y,Xs = i]� Pr
(X,Y )⇠Q

[h✓(X) = 1|Y = y,Xs = j]
���

· Pr
(X,Y )⇠Q

[Y = y|Xs = i]


CX

y=1

✏ Pr
(X,Y )⇠Q

[Y = y|Xs = i] = ✏

which proves ✏-DP, where (⇤) leverages the fair base rate property of Q which gives Pr(X,Y )⇠Q[Y =
y|Xs = i] = Pr(X,Y )⇠Q[Y = y|Xs = j].

C.2 Proof of Thm. 1

Proof of Thm. 1. We first prove the key eq. (3).
H(P,Q)  ⇢ () H

2(P,Q)  ⇢
2

() 1

2

Z

Z
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p(z)�

p
q(z)

⌘2
dµ(z)  ⇢

2

() 1

2
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Z
p(z)dµ(z) +

Z

Z
q(z)dµ(z)

◆
�
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2
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()
Z

Z

p
p(z)q(z)dµ(z) � 1� ⇢

2

()
NX

i=1

Z

Zi

p
piqi ·

p
pi(z)qi(z)dµ(z) � 1� ⇢

2

()
NX

i=1

p
piqi

�
1�H

2(Pi,Qi)
�
� 1� ⇢

2 (14)

where pi(·) and qi(·) are density functions of subpopulation distributions Pi and Qi respectively.

Then, we show that any feasible solution of Equation (2) satisfies the constraints in Equation (4). We
let Q? and ✓

? denote a feasible solution of Equation (2), i.e.,

H(P,Q?)  ⇢, ej(P, h✓?)  vj 8j 2 [L], gj(Q?)  uj 8j 2 [M ]. (15)

We let {q?
i
}N
i=1 denote the proportions of Q? within each support partition Zi, and {Q?

i
}N
i=1 the

Q? in each subpopulation. By Equation (14), we have 1� ⇢
2 �

P
N

i=1

p
piq

?

i
(1� ⇢

2
i
)  0 where

⇢i = H
2(Pi,Q?

i
). Note that by definition,

P
N

i=1 q
?

i
= 1 and 8i 2 [N ], q?

i
� 0, ⇢i � 0. Furthermore,

by the implication relations stated in Thm. 1, for any j 2 [L], e0
j
({Pi}Ni=1, {pi}Ni=1, h✓?)  v

0
j
; and

for any j 2 [M ], g0
j
({Q?

i
}N
i=1, {q?i }Ni=1)  u

0
j
. To this point, we have shown Q? and ✓

? satisfy all
constraints in Equation (4), i.e., Q? and ✓

? is a feasible solution of Equation (4). Since Equation (4)
expresses the optimal (maximum) solution, Equation (4) (in Thm. 1) � Equation (2).

C.3 Proof of Thm. 2

Proof of Thm. 2. The proof of Thm. 2 is composed of three parts: (1) the optimization problem
provides a fairness certificate for Problem 2; (2) the certificate is tight; and (3) the optimization
problem is convex.

(1) Suppose the maximum of Problem 2 is attained with the test distribution Q? in the sensitive
shifting setting, then we decompose both P and Q? according to both the sensitive attribute and
the label:

P =
SX

s=1

CX

y=1

ps,yPs,y, Q? =
SX

s=1

CX

y=1

q
?

s,y
Q?

s,y
. (16)

Since Q? is a fair base rate distribution, for any i, j 2 [S], b
Q?

i,y
= b

Q?

j,y
where b

Q?

s,y
=

Pr(X,Y )⇠Q? [Y = y|Xs = s]. As a result, Pr(X,Y )⇠Q? [Y = y|Xs = s] = Pr(X,Y )⇠Q? [Y = y].
Now we define

k
?

s
:= Pr

(X,Y )⇠Q?
[Xs = s], r

?

y
:= Pr

(X,Y )⇠Q?
[Y = y], (17)

and then

q
?

s,y
= Pr

(X,Y )⇠Q?
[Xs = s, Y = y] = Pr

(X,Y )⇠Q?
[Xs = s] · Pr

(X,Y )⇠Q?
[Y = y|Xs = s] = k

?

s
r
?

y
.

(18)
By the distance constraint in Problem 2 (namely H(P,Q?)  ⇢) and Equation (14), we have

SX

s=1

CX

y=1

p
ps,yq

?
s,y

�
1�H

2(Ps,y,Q?

s,y
)
�
� 1� ⇢

2
. (19)

Since there is only sensitive shifting, H2(Ps,y,Q?

s,y
) = 0, given Equation (18), we have

SX

s=1

CX

y=1

q
ps,yk

?
s
r?
y
� 1� ⇢

2
. (20)

Now, we can observe that the k
?

s
and r

?

y
induced by Q? satisfy all constraints of Problem 2. For

the objective,

Objective in Thm. 2
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=
SX

s=1

CX

y=1

k
?

s
r
?

s
E(X,Y )⇠Ps,y

[`(h✓(X), Y )]

=
SX

s=1

CX

y=1

q
?

s,y
E(X,Y )⇠Q?

s,y
[`(h✓(X), Y )] (by Equation (18) and H

2(Ps,y,Q?

s,y
) = 0)

=E(X,Y )⇠Q? [`(h✓(X), Y )]

=Optimal value of Problem 2.
Therefore, the optimal value of Thm. 2 will be larger or equal to the optimal value of Problem 2
which concludes the proof of the first part.

(2) Suppose the optimal value of Thm. 2 is attained with k
?

s
and r

?

y
. We then construct

Q? =
P

S

s=1

P
C

y=1 k
?

s
r
?

y
Ps,y. We now inspect each constraint of Problem 2. The constraint

dist(P,Q?)  ⇢ is satisfied because 1 � ⇢
2 �

P
S

s=1

P
C

y=1

p
ps,yk

?
s
r?
y
 0 is satisfied as a

constraint of Thm. 2. Apparently, Ps,y = Q?

s,y
. Then, Q? is a fair base rate distribution because

b
Q?

s,y
= Pr

(X,Y )⇠Q?
[Y = y|Xs = s] =

k
?

s
r
?

y

k?
s

= r
?

y
(21)

is a constant across all s 2 [S]. Thus, Q? satisfies all constraints of Problem 2 and
Optimal objective of Problem 2

�E(X,Y )⇠Q? [`(h✓(X), Y )]

=
SX

s=1

CX

y=1

k
?

s
r
?

y
E(X,Y )⇠Ps,y

[`(h✓(X), Y )]

=
SX

s=1

CX

y=1

k
?

s
r
?

y
Es,y = Optimal objective of Thm. 2.

(22)

Combining with the conclusion of the first part, we know optimal values of Thm. 2 and Problem 2
match, i.e., the certificate is tight.

(3) Inspecting the problem definition in Thm. 2, we find the objective and all constraints but the last
one are linear. Therefore, to prove the convexity of the optimization problem, we only need to
show that the last constraint

1� ⇢
2 �

SX

s=1

CX

y=1

p
ps,yksry  0 (23)

is convex with respect to ks and ry. Given two arbitrary feasible pairs of ks and ry satisfying
Equation (23), namely (ka

s
, r

a

y
) and (kb

s
, r

b

y
), we only need to show that (km

s
, r

m

y
) also satisfies

Equation (23), where k
m

s
= (ka

s
+ k

b

s
)/2, rm

y
= (ra

y
+ r

b

y
)/2. Indeed,

1� ⇢
2 �

SX

s=1

CX

y=1

q
ps,yk

m
s
rm
y

=1� ⇢
2 � 1

2

SX

s=1

CX

y=1

p
ps,y ·

q
ka
s
+ kb

s
·
q
ra
y
+ rb

y

1� ⇢
2 � 1

2

SX

s=1

CX

y=1

p
ps,y ·

⇣q
ka
s
ra
y
+
q
kb
s
rb
y

⌘
(Cauchy’s inequality)

=
1
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2
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CX
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q
ps,yk

a
s
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y

!
+

1
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2
SX
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CX

y=1

q
ps,yk

b
s
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!

0.
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C.4 Proof of Lemma 3.1

Proof of Lemma 3.1. The proof of Lemma 3.1 is composed of two parts: (1) the optimization problem
provides a fairness certificate for Problem 1; and (2) the certificate is tight. The high-level proof
sketch is similar to the proof of Thm. 2.

(1) Suppose that the maximum of Problem 1 is attained with the test distribution Q? under the
general shifting setting, then we decompose both P and Q? according to both the sensitive
attribute and the label:

P =
SX

s=1

CX

y=1

ps,yPs,y, Q? =
SX

s=1

CX

y=1

q
?

s,y
Q?

s,y
. (24)

Unlike sensitive shifting setting, in general shifting setting, here the subpopulation of Q? is Q?

s,y

instead of Ps,y due to the existence of distribution shifting within each subpopulation.

Following the same argument as in the first part proof of Thm. 2, since Q? is a fair base rate
distribution, we can define

k
?

s
:= Pr

(X,Y )⇠Q?
[Xs = s], r

?

y
:= Pr

(X,Y )⇠Q?
[Y = y], (25)

and write

Q? :=
SX

s=1

CX

y=1

k
?

s
r
?

y
Q?

s,y
(26)

since q
?

s,y
= k

?

s
r
?

y
. We also define ⇢

?

s,y
= H(Ps,y,Q?

s,y
). Now we show these k

?

s
, r

?

y
,Q?

s,y
, ⇢

?

s,y

along with model parameter ✓ constitute a feasible point of Equation (6), and the objectives of
Equation (6) and Problem 2 are the same given Q?.

• (Feasibility)
There are three constraints in Equation (6). By the definition of k?

s
and r

?

y
, naturally Equa-

tion (6b) is satisfied. Then, according to Equation (14) and the definifition of ⇢?
s,y

above,
Equation (6c) and Equation (6d) are satisfied.

• (Objective Equality)

Equation (6a) =
SX

s=1

CX

y=1

k
?

s
r
?

y
E(X,Y )⇠Q?

s,y
[`(h✓(X), Y )]

=
SX

s=1

CX

y=1

q
?

s,y
E(X,Y )⇠Q?

s,y
[`(h✓(X), Y )]

= E(X,Y )⇠Q? [`(h✓(X), Y )] = Optimal value of Problem 1.

(27)

As a result, the optimal value of Equation (6) is larger than or equal to the optimal value of
Problem 1, and hence the optimization problem encoded by Equation (6) provides a fairness
certificate.

(2) To prove the tightness of the certificate, we only need to show that the optimal value of the
optimization problem in Equation (6) is also attainable by the original Problem 1.

Suppose that the optimal objective of Equation (6) is achieved by optimizable parameters
k
?

s
, r

?

y
,Q?, and ⇢

?

s,y
. Then, we construct Q† =

P
S

s=1

P
C

y=1 k
?

s
r
?

y
Q?

s,y
. We first show that Q† is

a feasible point of Problem 1, and then show that the objective given Q† is equal to the optimal
objective of Equation (6).

• (Feasibility)
There are two constraints in Problem 1: the bounded distance constraint and the fair base rate
constraint. The bounded distance constraint is satisfied due to applying Equation (14) along
with Equations (6c) and (6d). The fair base rate constraint is satisfied following the same
deduction as in Equation (21).
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• (Objective Equality)

Objective Problem 1 = E(X,Y )⇠Q† [`(h✓(X), Y )] =
SX

s=1

CX

y=1

k
?

s
r
?

y
E(X,Y )⇠Q?

s,y
[`(h✓(X), Y )]

= Optimal value of Equation (6).

Thus, the optimal value of the optimization problem in Equation (6) is attainable also by the
original Problem 1 which concludes the tightness proof.

C.5 Proof of Thm. 3

High-Level Illustration. The starting point of our proof is Lemma 3.1, where we have shown a
fairness certificate for Problem 1 (general shifting setting). Then, we plug in Thm. 2.2 in [47] (stated
as Thm. 4 in Appendix B.2) to upper bound the expected loss within each sub-population. Now, we
get an optimization problem involving ks, ry, and ⇢s,y that upper bounds the optimization problem
in Lemma 3.1. In this optimization problem, we find ks and ry are bounded in [0, 1], and once these
two variables are fixed, the optimization with respect to xs,y := (1� ⇢

2
s,y

)2 becomes convex. Using
this observation, we propose to partition the feasible space of ks and ry into sub-regions and solve
the convex optimization within each region bearing some degree relaxation, which yields Thm. 3.

Proof of Thm. 3. The proof is done stage-wise: starting from Lemma 3.1, we apply relaxation and
derive a subsequent optimization problem that upper bounds the previous one stage by stage, until we
get the final expression in Thm. 3.

To demonstrate the proof, we first define the optimization problems at each stage, then prove the
relaxations between each adjacent stage, and finally show that the last optimization problem contains
a finite number of C’s values where each C is a convex optimization, so that the final optimization
problem provides a computable fairness certificate.

We define these quantities, for s 2 [S], y 2 [C]:

Es,y = E(X,Y )⇠Ps,y
[`(h✓(X), Y )], Vs,y = V(X,Y )⇠Ps,y

[`(h✓(X), Y )],

ps,y = Pr
(X,Y )⇠P

[Xs = s, Y = y], Cs,y = M � Es,y �
Vs,y

M � Es,y

,

�̄
2
s,y

= 1� (1 + (M � Es,y)
2
/Vs,y)

� 1
2 .

(28)

Given ⇢ > 0 and the above quantities, the optimization problem definitions are:

• Lemma 3.1:

max
ks,ry,Q,⇢s,y

SX

s=1

CX

y=1

ksryE(X,Y )⇠Qs,y
[`(h✓(X), Y )] (29a)

s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C], (29b)

SX

s=1

CX

y=1

p
ps,yksry(1� ⇢

2
s,y

) � 1� ⇢
2 (29c)

H(Ps,y,Qs,y)  ⇢s,y 8s 2 [S], y 2 [C]. (29d)

• After applying Thm. 4:

max
ks,ry,⇢s,y

SX

s=1

CX

y=1

ksry

⇣
Es,y + 2

q
⇢2
s,y

(1� ⇢2
s,y

)2(2� ⇢2
s,y

)
p

Vs,y + ⇢
2
s,y

(2� ⇢
2
s,y

)Cs,y

⌘

(30a)
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s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C], (30b)

SX

s=1

CX

y=1

p
ps,yksry(1� ⇢

2
s,y

) � 1� ⇢
2
, (30c)

0  ⇢s,y  �̄s,y. (30d)

• After variable transform xs,y := (1� ⇢
2
s,y

)2:

max
ks,ry,xs,y

SX

s=1

CX

y=1

ksry

✓
Es,y + 2

q
xs,y(1� xs,y)

p
Vs,y + (1� xs,y)Cs,y

◆
(31a)

s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C], (31b)

SX

s=1

CX

y=1

p
ps,yksryxs,y � 1� ⇢

2
, (31c)

(1� �̄
2
s,y

)2  xs,y  1 8s 2 [S], y 2 [C]. (31d)

• After feasible region partitioning on ks and ry:

max
{is2[T ]:s2[S]},{jy2[T ]:y2[C]}

C0

 ⇢
is � 1

T
,
is

T

��S

s=1

,

⇢
jy � 1

T
,
jy

T

��C

y=1

!
, where

(32a)

C0
⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
= (32b)

max
ksksks,ryryry,xs,y

SX

s=1

CX

y=1

ksry

✓
Es,y + 2

q
xs,y(1� xs,y)

p
Vs,y + (1� xs,y)Cs,y

◆

s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, (32c)

SX

s=1

CX

y=1

p
ps,yksryxs,y � 1� ⇢

2
, (32d)

(1� �̄
2
s,y

)2  xs,y  1 8s 2 [S], y 2 [C]. (32e)

• Final quantity in Thm. 3:

max
{is2[T ]:s2[S]},{jy2[T ]:y2[C]}

C

 ⇢
is � 1

T
,
is

T

��S

s=1

,

⇢
jy � 1

T
,
jy

T

��C

y=1

!
, where

(33a)

C
⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
= max

xs,y

SX

s=1

CX

y=1

⇣
ksry (Es,y + Cs,y)+ + (33b)

ksry (Es,y + Cs,y)� + 2ksry

q
xs,y(1� xs,y)

p
Vs,y � ksryxs,y(Cs,y)+ � ksryxs,y(Cs,y)�

◆

s.t.
SX

s=1

ks  1,
SX

s=1

ks � 1,
CX

y=1

ry  1,
CX

y=1

ry � 1, (33c)

SX

s=1

CX

y=1

q
ps,yksryxs,y � 1� ⇢

2
, (33d)
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(1� �̄
2
s,y

)2  xs,y  1 8s 2 [S], y 2 [C]. (33e)

We have this relation:

Problem 1 |{z}
Lemma 3.1

(29)

(when `(h✓(X), Y ) 2 [0,M ]
and H(Ps,y,Qs,y)  �̄s,y)

| {z }
(A)

(30) =|{z}
(B)

(31) =|{z}
(C)

(32) |{z}
(D)

(33). (34)

Thus, when H(Ps,y,Qs,y)  �̄s,y and sup(X,Y )2X⇥Y `(h✓(X), Y )  M , given that ` is a non-
negative loss by Section 2, we can see Equation (33), i.e., the expression in Thm. 3’s statement,
upper bounds Problem 1, i.e., provides a fairness certificate for Problem 1. The proofs of these
equalities/inequalities are in the following parts labeled by (A), (B), (C), and (D) respectively.

Now we show that each C queried by Equation (7) (or equally Equation (33a)) is a convex
optimization. Inspecting C’s objective, with respect to the optimizable variable xs,y, we find
that the only non-linear term in the objective is

P
S

s=1

P
C

y=1 2ksry
p

Vs,y

p
xs,y(1� xs,y). Con-

sider the function f(x) =
p
x(1� x). Define g(y) =

p
y and h(x) = x(1 � x), and then

f(x) = g(h(x)). Thus, f 0(x) = g
0(h(x))h0(x) and f

00(x) = g
00(h(x))h0(x)2 + g

0(h(x))h00(x).
Notice that g00(h(x))  0, g0(h(x)) > 0, and h

00(x) < 0 for x 2 (0, 1]. Thus, f 00(x)  0.
Since f is twice differentiable in (0, 1], we can conclude that f is concave and so does the ob-
jective of Equation (7). Inspecting C’s constraints, we observe that the only non-linear constraint

is
P

S

s=1

P
C

y=1

q
ps,yksryxs,y � 1 � ⇢

2. Due to the concavity of function x 7!
p
x, we have

q
ps,yksry(xa

s,y
+ xb

s,y
)/2 � 1

2

⇣q
ps,yksryx

a
s,y

+
q
ps,yksryx

b
s,y

⌘
for any two feasible points

x
a

s,y
and x

b

s,y
. Thus, this non-linear constraint defines a convex region. To this point, we have shown

that C’s objective is concave and C’s constraints are convex, given that C is a maximization problem,
C is a convex optimization.

Under the assumptions that `(h✓(X), Y ) 2 [0,M ] and H(Ps,y,Qs,y)  �̄s,y:

(A) Proof of Equation (29)  Equation (30).
Given Equation (29d), for each Qs,y , applying Thm. 4, we get

E(X,Y )⇠Qs,y
[`(h✓(X), Y )]  Es,y+2

q
⇢2
s,y

(1� ⇢2
s,y

)2(2� ⇢2
s,y

)
p

Vs,y+⇢
2
s,y

(2�⇢
2
s,y

)Cs,y.

(35)
Plugging this inequality into all E(X,Y )⇠Qs,y

[`(h✓(X), Y )] in Equation (29a), we obtain Equa-
tion (30).

(B) Proof of Equation (30) = Equation (31).
By Equation (30d), ⇢s,y 2 [0, 1]. Therefore, xs,y := (1� ⇢

2
s,y

)2 is a one-to-one mapping, and
we can use xs,y to parameterize ⇢s,y , which yields Equation (31).

(C) Proof of Equation (31) = Equation (32).
From Equation (31b), we notice that the feasible range of ks and ry is subsumed by [0, 1]. We
now partition this region [0, 1] for each variable to T sub-regions: [(i� 1)/T, i/T ], i 2 [T ], and
then consider the maximum value across all the combinations of each sub-region for variables
ks and ry, when feasible. As a result, Equation (31) can be written as the maximum over all
such sub-problems where ks’s and ry’s enumerate all possible sub-region combinations, which
is exactly encoded by Equation (32).

(D) Proof of Equation (32)  Equation (33).
We only need to show that when C0

⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
is feasible,

C0
⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
 C

⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
. (36)

Since both C0 and C are maximization problem, we only need to show that the objective of C
upper bounds that of C0, and the constraints of C0 are equal or relaxations of those of C.
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For the objective, given that ks  ks  ks and ry  ry  ry , for any xs,y , We observe that

ksry(Es,y + Cs,y)  ksry (Es,y + Cs,y)+ + ksry (Es,y + Cs,y)� ,

ksry ·
✓
2
q
xs,y(1� xs,y)

p
Vs,y

◆
 ksry ·

✓
2
q
xs,y(1� xs,y)

p
Vs,y

◆
,

�ksryCs,yxs,y  �ksryxs,y(Cs,y)+ � ksryxs,y(Cs,y)�,

(37)

and by summing up all these terms for all s 2 [S] and y 2 [C], the LHS would be the objective
of C0 and the RHS would be the objective of C. Hence, C’s objective upper bounds that of C0.
For the constraints, similarly, given that ks  ks  ks and ry  ry  ry , we have

(32c)
SX

s=1

ks = 1,
CX

y=1

ry = 1 =)
SX

s=1

ks  1,
SX

s=1

ks � 1,
CX

y=1

ry  1,
CX

y=1

ry � 1(33c),

(32d)
SX

s=1

CX

y=1

p
ps,yksryxs,y � 1� ⇢

2 =)
SX

s=1

CX

y=1

q
ps,yksryxs,y � 1� ⇢

2(33d),

(32e) is as same as (33e),

which implies that all feasible solutions of C0 are also feasible for C. Combining with the fact
that for any solution of C0, its objective value C is greater than or equal to that of C0 as shown
above, we have Equation (36) which concludes the proof.

D Omitted Theorem Statements and Proofs for Finite Sampling Error

D.1 Finite Sampling Confidence Intervals

Lemma D.1. Let P̂ be set of i.i.d. finite samples from P , and let P̂s,y := {(Xi, Yi) 2 P̂ : (Xi)s =

s, Yi = y} for any s 2 [S], y 2 [C]. Let ` : (ŷ, y) ! [0,M ] be a loss function. We define L̂n =
1

|P̂s,y|

P
(Xi,Yi)2P̂s,y

`(h✓(Xi), Yi), s2n = 1
n(n�1)

P
n

1i<jn
(`(h✓(Xi), Y )� `(h✓(Xj), Y ))2, and

P̂s,y := {(Xi, Yi) 2 P̂ : (Xi)s = s, Yi = y}. Then for � > 0, with respect to the random draw of P̂

from P , we have

Pr

 
L̂n �M

s
ln(2/�)

2|P̂s,y|
 E

(X,Y )⇠Ps,y

[` (h✓(X), Y )]  L̂n +M

s
ln(2/�)

2|P̂s,y|

!
� 1� �, (38)

Pr

 
p
s2
n
�M

s
2 ln(2/�)

|P̂s,y|� 1

r

V
(X,Y )⇠Ps,y

[` (h✓(X), Y )] 
p

s2
n
+M

s
2 ln(2/�)

|P̂s,y|� 1

!
� 1� �,

(39)

Pr

 
|P̂s,y|
|P̂ |

�

s
ln(2/�)

2|P̂ |
 Pr

(X,Y )⇠P
[Xs = s, Y = y]  |P̂s,y|

|P̂ |
+

s
ln(2/�)

2|P̂ |

!
� 1� �. (40)

Proof of Lemma D.1. We can get Equation (39) according to Theorem 10 in [32]. Here, we will pro-
vide proofs for Equation (38) and Equation (40), respectively. The general idea is to use Hoeffding’s
inequality to get the high-confidence interval.

We will prove Equation (38) first. From Hoeffding’s inequality, for all t > 0, we have:

Pr

✓����L̂n � E
(X,Y )⇠Ps,y

[` (h✓(X), Y )]

���� � t

◆
 2 exp

 
�2|P̂s,y|2t2

|P̂s,y|M2

!
(41)

Since we want to get an interval with confidence 1 � �, we let 2 exp

 
�2|P̂s,y|2t2

|P̂s,y|M2

!
= �, from

which we can derive that

t = M

s
ln(2/�)

2|P̂s,y|
(42)
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Plugging Equation (42) into Equation (41), we can get:

Pr

 
L̂n �M

s
ln(2/�)

2|P̂s,y|
 E

(X,Y )⇠Ps,y

[` (h✓(X), Y )]  L̂n +M

s
ln(2/�)

2|P̂s,y|

!
� 1� � (43)

Then we will prove Equation (40). From Hoeffding’s inequality, for all t > 0, we have:

Pr

 �����
|P̂s,y|
|P̂ |

� Pr
(X,Y )⇠P

[Xs = s, Y = y]

����� � t

!
 2 exp

 
�2|P̂ |2t2

|P̂ |

!
(44)

Since we want to get an interval with confidence 1� �, we let 2 exp

 
�2|P̂ |2t2

|P̂ |

!
= �, from which

we can derive that

t =

s
ln(2/�)

2|P̂ |
(45)

Plugging Equation (45) into Equation (44), we can get:

Pr

 
|P̂s,y|
|P̂ |

�

s
ln(2/�)

2|P̂ |
 Pr

(X,Y )⇠P
[Xs = s, Y = y]  |P̂s,y|

|P̂ |
+

s
ln(2/�)

2|P̂ |

!
� 1� � (46)

D.2 Fairness Certification Statements with Finite Sampling

Theorem 5 (Thm. 2 with finite sampling). Given a distance bound ⇢ > 0 and any � > 0, the

following constrained optimization, which is convex, when feasible, provides a fairness certificate for

Problem 2 with probability at least 1� 2SC�:

max
ks,ry,ps,y

SX

s=1

CX

y=1

ksryEs,y (47a)

s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C], (47b)

1� ⇢
2 �

SX

s=1

CX

y=1

p
ps,yksry  0, (47c)

ps,y  ps,y  ps,y, 8s 2 [S], 8y 2 [C] (47d)
SX

s=1

CX

y=1

ps,y = 1 (47e)

where Es,y := L̂n + M

r
ln(2/�)/

⇣
2|P̂s,y|

⌘
, ps,y := |P̂s,y|/|P̂ | �

r
ln(2/�)/

⇣
2|P̂ |

⌘
, ps,y :=

|P̂s,y|/|P̂ |+
r
ln(2/�)/

⇣
2|P̂ |

⌘
are constants computed with Lemma D.1.

Theorem 6. If for any s 2 [S] and y 2 [Y ], H(Ps,y,Qs,y)  �̄s,y and 0 
sup(X,Y )2X⇥Y `(h✓(X), Y )  M , given a distance bound ⇢ > 0 and any � > 0, for any re-

gion granularity T 2 N+, the following expression provides a fairness certificate for Problem 1 with

probability at least 1� 3SC�:

¯̀= max
{is2[T ]:s2[S]},{jy2[T ]:y2[C]}

C

 ⇢
is � 1

T
,
is

T

��S

s=1

,

⇢
jy � 1

T
,
jy

T

��C

y=1

!
, where (48)

C
⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
= max

xs,y,ps,y

SX

s=1

CX

y=1

⇣
ksry

�
Es,y + Cs,y

�
+
+ ksry

�
Es,y + Cs,y

�
�
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+2ksry

q
xs,y(1� xs,y)

q
Vs,y � ksryxs,y(Cs,y)+ � ksryxs,y(Cs,y)�

◆
(49a)

s.t.
SX

s=1

ks  1,
SX

s=1

ks � 1,
CX

y=1

ry  1,
CX

y=1

ry � 1, (49b)

SX

s=1

CX

y=1

q
ps,yksryxs,y � 1� ⇢

2
,

⇣
1� �̄2

s,y

⌘2
 xs,y  1, (49c)

ps,y  ps,y  ps,y,

SX

s=1

CX

y=1

ps,y = 1 (49d)

where (·)+ = max{·, 0}, (·)� = min{·, 0}; Es,y := L̂n � M

r
ln(2/�)/

⇣
2|P̂s,y|

⌘
,

Es,y := L̂n +M

r
ln(2/�)/

⇣
2|P̂s,y|

⌘
, Vs,y =

✓p
s2
n
�M

r
2 ln(2/�)/

⇣
|P̂s,y|� 1

⌘◆2

, Vs,y =

✓p
s2
n
+M

r
2 ln(2/�)/

⇣
|P̂s,y|� 1

⌘◆2

, ps,y := |P̂s,y|/|P̂ | �
r
ln(2/�)/

⇣
2|P̂ |

⌘
, ps,y :=

|P̂s,y|/|P̂ |+
r
ln(2/�)/

⇣
2|P̂ |

⌘
computed with Lemma D.1, and Cs,y = M�Es,y�Vs,y/(M�Es,y),

Cs,y = M �Es,y � Vs,y/(M �Es,y), �̄2
s,y

= 1� (1 + (M �Es,y)2/Vs,y)�
1
2 . Equation (48) only

takes C’s value when it is feasible, and each C queried by Equation (48) is a convex optimization.

D.3 Proofs of Fairness Certification with Finite Sampling

High-Level Illustration. We use Hoeffding’s inequality to bound the finite sampling error of
statistics and add the high confidence box constraints to the optimization problems, which can still be
proved to be convex.

Proof of Thm. 5. The proof of Thm. 5 is composed of two parts: (1) the optimization problem
provides a fairness certificate for Problem 2; (2) the optimization problem is convex.

(1) We prove that Thm. 5 provides a fairness certificate for Problem 2 in this part. Since Thm. 2
provides a fairness certificate for Problem 2, we only need to prove: (a) the feasible region of the
optimization problem in Thm. 2 is a subset of the feasible region of the optimization problem in
Thm. 5, and (b) the optimization objective in Thm. 2 can be upper bounded by that in Thm. 5.

To prove (a), we first equivalently transform the optimization problem in Thm. 2 into the following
optimization problem by adding psy to the decision variables:

max
ks,ry,ps,y

SX

s=1

CX

y=1

ksryEs,y (50a)

s.t.
SX

s=1

ks = 1,
CX

y=1

ry = 1, ks � 0 8s 2 [S], ry � 0 8y 2 [C], (50b)

1� ⇢
2 �

SX

s=1

CX

y=1

p
ps,yksry  0, (50c)

ps,y = |P̂s,y|/|P̂ |, 8s 2 [S], 8y 2 [C] (50d)
SX

s=1

CX

y=1

ps,y = 1 (50e)

For decision variables ks,y and rs,y, optimization 47 and 50 has the same constraints (Equa-
tion (47b) and Equation (50b)). For decision variables ps,y, the feasible region of ps,y in
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optimization 47 (decided by Equations (47d) and (47e)) is a subset of the feasible region of
ps,y in optimization 50 (decided by Equations (50d) and (50e)), since ps,y  |P̂s,y|/|P̂ |  ps,y .
Therefore, the feasible region with respect to ks,y , rs,y , and ps,y of the optimization problem in
Thm. 2 is a subset of that in Thm. 5.

To prove (b), we only need to show that the objective in Equation (47a) can be upper bounded by
the objective in Equation (50a). The statement

P
S

s=1

P
C

y=1 ksryEs,y 
P

S

s=1

P
C

y=1 ksryEs,y

consistently holds because Es,y  Es,y and ks, ry � 0.

Combining the proofs of (a) and (b), we prove that Thm. 5 provides a fairness certificate for
Problem 2.

(2) Inspecting that the objective and all the constraints in optimization problem in Equation (47) are
linear with respect to ks, ry , ps,y but the one in Equation (47c). Therefore, we only need to prove
that the following constraint is convex with respect to ks, ry , ps,y:

1� ⇢
2 �

SX

s=1

CX

y=1

p
ps,yksry  0 (51)

We define a function f with respect to vector p := [ps,y]s2[S],y2[C]: f(p) = 1 � ⇢
2 �

P
S

s=1

P
C

y=1

p
ps,yksry . Then we can derive that:

@
2
f

@p2
=

SX

s=1

CX

y=1

p
ksry

4
ps,y

� 3
2 � 0 (52)

Therefore, the function f is convex with respect to ps,y. Similarly, we can prove the convexity
with respect to ks and ry . Finally, we can conclude that the constraint in Equation (51) is convex
with respect to ks, ry , ps,y and the optimization problem defined in Thm. 5 is convex.

Since we use the union bound to bound Es,y and ps,y for all s 2 [S], y 2 [C] simultaneously, the
confidence is 1� 2SC�.

Proof of Thm. 6. The proof of Thm. 6 includes two parts: (1) the optimization problem provides a
fairness certificate for Problem 1; (2) each C queried by Equation (48) is a convex optimization.

(1) Since Thm. 3 provides a fairness certificate for Problem 1, we only need to prove: (a) the
feasible region of the optimization problem in Thm. 3 is a subset of that in Thm. 6, and (b) the
optimization objective in Thm. 3 can be upper bounded by that in Thm. 6.

To prove (a), we first equivalently transform the optimization problem in Thm. 3 into the following
optimization problem by adding psy to the decision variables:

C
⇣
{[ks, ks]}Ss=1, {[ry, ry]}Cy=1

⌘
= max

xs,y,ps,y

SX

s=1

CX

y=1

⇣
ksry (Es,y + Cs,y)+ + ksry (Es,y + Cs,y)�

+2ksry

q
xs,y(1� xs,y)

p
Vs,y � ksryxs,y(Cs,y)+ � ksryxs,y(Cs,y)�

◆
(53a)

s.t.
SX

s=1

ks  1,
SX

s=1

ks � 1,
CX

y=1

ry  1,
CX

y=1

ry � 1, (53b)

SX

s=1

CX

y=1

q
ps,yksryxs,y � 1� ⇢

2
,
�
1� �̄

2
s,y

�2  xs,y  1, (53c)

ps,y = |P̂s,y|/|P̂ |, 8s 2 [S], 8y 2 [C] (53d)
SX

s=1

CX

y=1

ps,y = 1 (53e)
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For decision varibales xs,y, since
q
ps,yksryxs,y 

q
ps,yksryxs,y and

�
1� �̄

2
s,y

�2 �
⇣
1� �̄2

s,y

⌘2
, the feasible region of xs,y in Equation (53) is a subset of that in Equation (49).

For decision variables ps,y, since ps,y  |P̂s,y|/|P̂ |  ps,y, the feasible region of ps,y in
Equation (53) is also a subset of that in Equation (49). Therefore, the feasible region of the
optimization problem in Thm. 3 is a subset of that in Thm. 6.
To prove (b), we only need to show that the objective in Equation (53a) can be upper bounded by
the objective in Equation (49a). Since ks, ks, ry, ry � 0 and 0  xs,y  1 hold, we can observe
that 8s 2 [S], 8y 2 [C],

ksry (Es,y + Cs,y)+ + ksry (Es,y + Cs,y)� + 2ksry
p

xs,y(1� xs,y)
p

Vs,y � ksryxs,y(Cs,y)+�

ksryxs,y(Cs,y)�  ksry

�
Es,y + Cs,y

�
+
+ ksry

�
Es,y + Cs,y

�
� + 2ksry

p
xs,y(1� xs,y)

q
Vs,y

� ksryxs,y(Cs,y)+ � ksryxs,y(Cs,y)�

Therefore, we prove that the optimization in Thm. 6 provides a fairness certificate for Problem 1.

(2) We will prove that each C queried by Equation (48) is a convex optimization with respect to
decision variables xs,y and ps,y in this part. In the proof of Thm. 3, we provide the proof of
convexity with respect to xs,y , so we only need to prove that the optimization problem is convex
with respect to ps,y. We can observe that the constraints of ps,y in Equation (49d) is linear,

and thus we only need to prove that
P

S

s=1

P
C

y=1

q
ps,yksryxs,y � 1 � ⇢

2 (the constraint in
Equation (49c)) is convex with respect to ps,y . Here, we define a function f with respect to vector

p := [ps,y]s2[S],y2[C]: f(p) = 1� ⇢
2 �

P
S

s=1

P
C

y=1

q
ps,yksry . Then we can derive that:

✓
@
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f

@p2

◆

sy,s0y0
=

SX

s=1

CX

y=1

q
ksry

4
ps,y

� 3
2 · I[s = s

0
, y = y

0] � 0 (55)

Thus, the function f is convex and f(p)  0 defines a convex set with respect to ps,y . Then, we

prove that the constraint
P

S

s=1

P
C

y=1

q
ps,yksryxs,y � 1� ⇢

2 is convex with respect to ps,y .

Since we use the union bound to bound Es,y, Vs,y and ps,y for all s 2 [S], y 2 [C] simultaneously,
the confidence is 1� 3SC�.

E Experiments

E.1 Datasets

We validate our certified fairness on six real-world datasets: Adult [3], Compas [2], Health [19],
Lawschool [48], Crime [3], and German [3]. All the used datasets contain categorical data.

In Adult dataset, we have 14 attributes of a person as input and try to predict whether the income of
the person is over 50k $/year. The sensitive attribute in Adult is selected as the sex.

In Compas dataset, given the attributes of a criminal defendent, the task is to predict whether he/she
will re-offend in two years. The sensitive attribute in Compas is selected as the race.

In Health dataset, given the physician records and and insurance claims of the patients, we try to
predict ten-year mortality by binarizing the Charlson Index, taking the median value as a cutoff. The
sensitive attribute in Health is selected as the age.

In Lawschool dataset, we try to predict whether a student passes the exam according to the appication
records of different law schools. The sensitive attribute in Lawschool is the race.

In Crime dataset, we try to predict whether a specific community is above or below the median
number of violent crimes per population. The sensitive attribute in Crime is selected as the race.
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In German dataset, each person is classified as good or bad credit risks according to the set of
attributes. The sensitive attribute in German is selected as the sex.

Following [39], we consider the scenario where sensitive attributes and labels take binary values,
and we also follow their standard data processing steps: (1) normalize the numerical values of all
attributes with the mean value 0 and variance 1, (2) use one-hot encodings to represent categorical
attributes, (3) drop instances and attributes with missing values, and (4) split the datasets into training
set, validation set, and test set.

Training Details. We directly train a ReLU network composed of two hidden layers on the training
set of six datasets respectively following the setting in [39]. Concretely, we train the models for 100
epochs with a batch size of 256. We adopt the binary cross-entropy loss and use the Adam optimizer
with weight decay 0.01 and dynamic learning rate scheduling (ReduceLROnPlateau in [35]) based on
the loss on the validation set starting at 0.01 with the patience of 5 epochs.

E.2 Fair Base Rate Distribution Generation Protocol

To evaluate how well our certificates capture the fairness risk in practice, we compare our certifi-
cation bound with the empirical loss evaluated on randomly generated 30, 000 fairness constrained
distributions Q shifted from P . Now, we introduce the protocols to generate fairness distributions Q
for sensitive shifting and general shifting, respectively. Note that the protocols are only valid when
the sensitive attributes and labels take binary values.

Fair base rate distributions generation steps in the sensitive shifting scenario:

(1) Sample the proportions of subpopulations of the generated distribution q0,0, q0,1, q1,0, q1,1:
uniformly sample two real values in the interval [0, 1], and do the assignment: q0,0 := kr,
q0,1 := k(1� r), q1,0 := (1� k)r, q1,1 := (1� k)(1� r).

(2) Determine the sample size of every subpopulation: first determine the subpopulation which
requires the largest sample size, use all the samples in that subpopulation, and then calculate the
sample size in other subpopulations according to the proportions.

(3) Uniformly sample in each subpopulation based on the sample size.

(4) Calculate the Hellinger distance H(P,Q) =
q

1�
P1

s=0

P1
y=0

p
ps,y

p
qs,y. Suppose that

the support of P and Q is X ⇥ Y and the densities of P and Q with respect to a suitable
measure are fP and fQ, respectively. Since we consider sensitive shifting here, we have
fQs,y = �s,yfPs,y , s, y 2 {0, 1} where �s,y is a scalor. The derivation of the distance
calculation formula is shown as follows,

H
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Fair base rate distribution generation steps in the general shifting scenario:

(1) Construct a data distribution Q0 that is disjoint with the training data distribution P by changing
the distribution of non-sensitive values given the sensitive attributes and labels.
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(2) Sample mixing parameters ↵s,y and ↵
0
s,y

in the interval [0, 1] satisfying p00↵00+q00↵
0
00

p01↵01+q01↵
0
01

=
p10↵10+q10↵

0
10

p11↵11+q11↵
0
11

(base rate parity) and p00↵00 + q00↵
0
00 + p01↵01 + q01↵

0
01 + p10↵10 + q10↵

0
10 +

p11↵11 + q11↵
0
11 = 1.

(3) Determine the proportion of every subpopulation in distribution Q: qs,y := ↵s,yps,y +
↵
0
s,y

q
0
s,y

, s, y 2 {0, 1}.
(4) Determine the sample size of every subpopulation in P and Q0: first determine the subpopulation

which requires the largest sample size, use all the samples in that subpopulation, and then
calculate the sample size in other subpopulations according to the proportions.

(5) Calculate the Hellinger distance between distribution P and Q: H(P,Q) =q
1�

P1
s=0

P1
y=0

p
↵s,yps,y . Suppose that the support of P and Q is X ⇥ Y and the densities

of P and Q with respect to a suitable measure are fP and fQ, respectively. The derivation of the
distance calculation formula is shown as follows,
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E.3 Implementation Details of Our Fairness Certification

We conduct vanilla training and then calculate our certified fairness according to our certification
framework. Concretely, in the training step, we train a ReLU network composed of 2 hidden layers of
size 20 for 100 epochs with binary cross entropy loss (BCE loss) using an Adam optimizer. The initial
learning rate is 0.05 for Crime and German datasets, while for other datasets, the initial learning rate
is set 0.001. We reduce the learning rate with a factor of 0.5 on the plateau measured by the loss
on the validation set with patience of 5 epochs. In the fairness certification step, we set the region
granularity to be 0.005 for certification in the general shifting scenario. We use 90% confidence
interval when considering finite sampling error. The codes we used follow the MIT license. All
experiments are conducted on a 1080 Ti GPU with 11,178 MB memory.

E.4 Implementation Details of WRM

The optimization problem of tackling distributional robustness is formulated as:
max
Q

E(X,Y )⇠Q[`(h✓(X), Y )] s.t. dist(P,Q)  ⇢ (58)

where dist(·, ·) is a predetermined distribution distance metric. Note that the optimization is the same
as our certified fairness optimization in Problem 1 except for the fairness constraint.

WRM [43] proposes to use the dual reformulation of the Wasserstein worst-case risk to provide the
distributional robustness certificate, which is formulated in the following proposition.
Proposition 2 ([43], Proposition 1). Let ` : ⇥⇥ Z ! R and c : ⇥⇥ Z ! R+ be continuous and

let ��(✓; z0) := sup
z2Z{`(z; ✓)� �c(z; ✓)}. Then, for any distribution P and any ⇢ > 0,

sup
Q:Wc(P,Q)⇢

EQ[`(✓;Z)] = inf
��0

{�⇢+ EP [��(✓;Z)]} (59)
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where Wc(P,Q) := inf⇡2⇧(P,Q)

R
Z c(z, z0)d⇡(z, z0) is the 1-Wasserstein distance between P and

Q.

One requirement for the certificate to be tractable is that the surrogate function �� is concave with
respect to Z, which holds when � is larger than the Lipschitz constant L of the gradient of ` with
respect to Z. Since we use the ELU network with JSD loss, we can efficiently calculate � iteratively
as shown in Appendix D of [47].

We select Gaussian mixture data for fair comparison. The Gaussian mixture data can be formulated
as P (x|✓) =

P
K

k=1 ↵k�(x|✓k) where K is the number of Gaussian data, ↵k is the proportion
of the k-th Gaussian, and ✓k = (µk,�

2
k
). In our evaluation, we use 2-dimension Gaussian and

mixture data composed of 2 Gaussian (K = 2) labeled 0 and 1, respectively. Concretely, we
let µ1 = (�2,�0.5),�1 = 1.0,↵1 = 0.5 and µ2 = (2, 0.5),�2 = 1.0,↵2 = 0.5. The second
dimension of input vector is selected as the sensitive attribute Xs, and the base rate constraint
becomes: Pr(Y = 0|Xs < 0) = Pr(Y = 1|Xs > 0). Given the perturbation � 2 R2 that induces
X 7! X + �, the Wasserstein distance and Hellinger distance can be formulated as follows:

W2(P,Q) = k�k2, H(P,Q) =
p
1� e�k�k2

2/8. (60)

E.5 More Results of Certified Fairness with Sensitive Shifting and General shifting
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Figure 4: Certified fairness with sensitive shifting on Crime and German.

31



C
la

ss
ifi

ca
tio

n
Er

ro
r

CRIME GERMAN

JS
D

Lo
ss

Hellinger Distance Hellinger Distance

Figure 5: Certified fairness with general shifting on Crime and German.
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Figure 6: Certified fairness with general shifting using JSD loss on Adult, Compas, Health, and
Lawschool.
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E.6 More Results of Certified Fairness with Additional Non-Skewness Constraints

Figure 7: Certified fairness upper bounds with additional non-skewness constraints of labels on Adult.
(|Pr(X,Y )⇠P [Y = 0]� Pr(X,Y )⇠P [Y = 1]|  �L)

Figure 8: Certified fairness upper bounds with additional non-skewness constraints of sensitive
attributes on Compas. (|Pr(X,Y )⇠P [Xs = 0]� Pr(X,Y )⇠P [Xs = 1]|  �s)

Figure 9: Certified fairness upper bounds with additional non-skewness constraints of labels on
Compas. (|Pr(X,Y )⇠P [Y = 0]� Pr(X,Y )⇠P [Y = 1]|  �L)
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Figure 10: Certified fairness upper bounds with additional non-skewness constraints of sensitive
attributes on Health. (|Pr(X,Y )⇠P [Xs = 0]� Pr(X,Y )⇠P [Xs = 1]|  �s)

Figure 11: Certified fairness upper bounds with additional non-skewness constraints of labels on
Health. (|Pr(X,Y )⇠P [Y = 0]� Pr(X,Y )⇠P [Y = 1]|  �L)

Figure 12: Certified fairness upper bounds with additional non-skewness constraints of sensitive
attributes on Lawschool. (|Pr(X,Y )⇠P [Xs = 0]� Pr(X,Y )⇠P [Xs = 1]|  �s)
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Figure 13: Certified fairness upper bounds with additional non-skewness constraints of labels on
Lawschool. (|Pr(X,Y )⇠P [Y = 0]� Pr(X,Y )⇠P [Y = 1]|  �L)
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E.7 Fair Classifier Achieves High Certified Fairness

We compare the fairness certificate of the vanilla model and the perfectly fair model on Adult dataset
to demonstrate that our defined certified fairness in Problem 1 and Problem 2 can indicate the fairness
in realistic scenarios. In Adult dataset, we have 14 attributes of a person as input and try to predict
whether the income of the person is over 50k $/year. The sensitive attribute in Adult is selected as the
sex. We consider four subpopulations in the scenario: 1) male with salary below 50k, 2) male with
salary above 50k, 3) female with salary below 50k, and 4) female with salary above 50k. We take the
overall 0-1 error as the loss. The vanilla model is real, and trained with standard training loss on the
Adault dataset. The perfectly fair model is hypothetical and simulated by enforcing the loss within
each subpopulation to be the same as the vanilla trained classifier’s overall expected loss for fair
comparison with the vanilla model. From the experiment results in Table 1 and Table 2, we observe
that our fairness certificates correlate with the actual fairness level of the model and verify that our
certificates can be used as model’s fairness indicator: the certified fairness of perfectly fair models
are consistently higher than those for the unfair model, for both the general shifting scenario and the
sensitive shifting scenario. These findings demonstrate the practicality of our fairness certification.

Table 1: Comparison of the fairness certificate of the vanilla model (an “unfair” model) and the
perfectly fair model (a “fair” model) for sensitive shifting. 0-1 error is selected as the loss in the
evaluation.

Hellinger Distance ⇢ 0.1 0.2 0.3 0.4 0.5

Vanilla Model Fairness Certificate 0.182 0.243 0.297 0.349 0.397
Fair Model Fairness Certificate 0.148 0.148 0.148 0.148 0.148

Table 2: Comparison of the fairness certificate of the vanilla model (an “unfair” model) and the
perfectly fair model (a “fair” model) for general shifting. 0-1 error is selected as the loss in the
evaluation.

Hellinger Distance ⇢ 0.1 0.2 0.3 0.4 0.5

Vanilla Model Fairness Certificate 0.274 0.414 0.559 0.701 0.828
Fair Model Fairness Certificate 0.266 0.407 0.553 0.695 0.824
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