
Published in Transactions on Machine Learning Research (03/2025)

A Di!erential Privacy: more details

A.1 Standard DP

We define the Standard DP or DP-Standard training process as fine-tuning the LLM directly on private data using
the Di!erentially Private Stochastic Gradient Descent (DPSGD) (Abadi et al., 2016) mechanism. DPSGD ensures
that the training process complies with the formal definition of di!erential privacy (refer to Definition 3.2) through
the following steps: (1) Gradients are computed for each individual sample within a mini-batch. (2) Gradients are
clipped to a fixed norm to bound sensitivity. (3) Gaussian noise, calibrated to the privacy parameters (ω, ε), is added
to the aggregated gradients. (4) The resulting noisy gradients are used to update the model’s parameters.

A.2 Privacy Analysis

Definition A.1 (Rényi divergence). Let P and Q be two distributions on X defined over the same probability space,
and let p and q be their respective densities. The Rényi divergence of a finite order ϑ →= 1 between P and Q is defined
as follows:

Dω(P ↑ Q) != 1
ϑ ↓ 1 ln

∫

X
q(x)

(
p(x)
q(x)

)ω

dx (7)

Rényi divergence at orders ϑ = 1, ↔ are defined by continuity.

Definition A.2 (Rényi di!erential privacy (RDP)). A randomized mechanism M : E ↗ R satisfies (ϑ, ϖ)-Rényi
di!erential privacy (RDP) if for any two adjacent inputs E, E→ ↘ E it holds that

Dω(M(E) ↑ M(E→)) ≃ ϖ (8)

In this work, we call two datasets E, E→ to be adjacent if E→ = E ⇐ {x} (or vice versa).

Definition A.3 (Sampled Gaussian Mechanism (SGM)). Let f be an arbitrary function mapping subsets of E to Rd.
We define Sampled Gaussian mechanism (SGM) parameterized with the sampling rate 0 < q ≃ 1 and the noise ϱ > 0 as

SGq,ε
!= f({x : x ↘ R is sampled with probability q}) + N (0, ϱ2Id) (9)

where each element of E is independently and randomly sampled with probability q without replacement. The sampled
Gaussian mechanism consists of adding independent and identically distributed (i.i.d) Gaussian noise with zero mean
and variance ϱ2 to each coordinate value of the true output of f . In fact, the sampled Gaussian mechanism draws
vector values from a multivariate spherical (or isotropic) Gaussian distribution which is described by random variable
N (0, ϱ2Id), where d is omitted if it unambiguous in the given context.

A.2.1 Analysis

The privacy analysis of our DP methods and other DP baselines considered in the paper follows the well-established
analysis framework used for gradient-based, record-level DP methods, known as DP-Stochastic Gradient Descent
(DP-SGD) (Abadi et al., 2016). In this framework, each update is conducted as a single SGM step (Definition A.3),
which includes selecting a random batch, clipping the per-example gradients of that batch, and then adding Gaussian
noiseto the aggregrated batch gradient. The privacy cost accumulated over multiple updates is quantified using the
revised moment accountant method (Mironov et al., 2019), which adapts the original moment accountant approach
introduced by Abadi et al. (2016) to the concept of Rényi Di!erential Privacy (RDP) (Definition A.2). Finally, to
achieve interpretable results and allow for transparent comparisons with established methods, the privacy cost is
converted from (ϑ, ϖ)-RDP to (ω, ε)-DP using the conversion theorem (Theorem A.6) provided by Balle et al. (2020).

Let µ0 denote the pdf of N (0, ϱ2) and let µ1 denote the pdf of N (1, ϱ2). Let µ be the mixture of two Gaussians
µ = (1 ↓ q)µ0 + qµ1, where q is the sampling probability of a single record in a single round.

Theorem A.4 (Mironov et al., 2019). Let SGMq,ε be the Sampled Gaussian mechanism for some function f and
under the assumption !2f ≃ 1 for any adjacent E, E→ ↘ E. Then SGMq,ε satisfies (ϑ, ϖ)-RDP if

ϖ ≃ 1
ϑ ↓ 1 log max(Aω, Bω) (10)

where Aω
!= Ez↑µ0 [(µ(z)/µ0(z))ω] and Bω

!= Ez↑µ[(µ0(z)/µ(z))ω]
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Theorem A.4 states that applying SGM to a function of sensitivity (Definition 3.3) at most 1 (which also holds for
larger values without loss of generality) satisfies (ϑ, ϖ)-RDP if ϖ ≃ 1

ω↓1 log(max{Aω, Bω}). Thus, analyzing RDP
properties of SGM is equivalent to upper bounding Aω and Bω. From Corollary 7. in (Mironov et al., 2019), Aω ⇒ Bω

for any ϑ ⇒ 1. Therefore, we can reformulate Equation 10 as

ϖ ≃ ςN (ϑ|q) := 1
ϑ ↓ 1 log Aω (11)

To compute Aω, we use the numerically stable computation approach proposed in (Mironov et al., 2019) (Sec. 3.3)
depending on whether ϑ is expressed as an integer or a real value.

Theorem A.5 (Composability (Mironov, 2017). Suppose that a mechanism M consists of a sequence of adaptive
mechanismsM1, . . . , Mk where Mi :

∏i=1
j=1 Rj ⇑ E ↗ Ri. If all the mechanisms in the sequence are (ϑ, ϖ)-RDP, then

the composition of the sequence is (ϑ, kϖ)-RDP.

In particular, Theorem A.5 holds when the mechanism themselves are chosen based on the (public) output of the
previous mechanisms. By Theorem A.5, it su"ces to compute ςN (ϑ|q) at each step and sum them up to bound the
overall RDP privacy budget of an iterative mechanism composed of single DP mechanism at each step.

Theorem A.6 (Conversion from RDP to DP (Balle et al., 2020)). If a mechanism M is (ϑ, ϖ)-RDP then it is
((ϖ + log((ϑ ↓ 1)/ϑ) ↓ (log ε + log ϑ)/(ϑ ↓ 1), ε)-DP for any 0 < ε < 1.

Theorem A.7 (Privacy of the di!erent DP methods). For any 0 < ε < 1 and ϑ ⇒ 1, the di!erent DP methods are
(ω, ε)-DP, with

ω = min
ω

(T · ςN (ϑ|q) + log((ϑ ↓ 1)/ϑ) ↓ (log ε + log ϑ)/(ϑ ↓ 1)) (12)

Here, ςN (ϑ|q) is defined in Equation 11, q = B
|D| ,T is the total number of updates, B is the batch size, and |D| denotes

the dataset size.

The proof follows from Theorems A.4, A.5, A.6 and the fact that a record is sampled in every SGDiteration if the
batch of records sampled contains the record, which has a probability of at most B

|D| . Therefore, a record is sampled
with a probability of at most q = B

|D| .

B Sampling

B.1 Imputation-based sampling

After training the model, we generate samples by conditioning on a key-value pair, i.e., w ⇓ pϑ(· | Prompt), where
Prompt denotes the tokens generated from the pair, for instance, tokens of “income is <50k”. The trained model
then generates the next token based on this prompt. The sampling process continues until it encounters a stop token
or a maximum token length of 100, which exceeds the number of tokens in each table row. Depending on the model’s
performance, they may produce incoherent outputs, such as mismatches of keys and values (e.g., generating ‘age is
>50’ and ‘relationship is Ad-serv-spouse’). To this end, we post-process the generated data and remove the values that
do not match the category of the corresponding column. Once removed, we use the correct tokens to recondition the
model, allowing it to fill in any missing tokens — essentially performing imputation based on the correctly generated
tokens. We set a threshold of 15 for imputation, meaning if the generation quality is too poor, imputation will not
proceed.

Previous method (Borisov et al., 2023) often discard incorrectly generated samples and continue generating until the
model produces a correct sample in one shot, or they exit the loop. While this approach works well with Non-DP
models, we find that in DP generation when column shu#ing is enabled, rejection sampling significantly increases the
time required to generate data. In contrast, imputation is more e"cient in this scenario.

C Metrics

C.1 Perplexity

The perplexity metric serves as a fundamental guage for assessing the performance of language models. It quantifies
the uniformity of the model’s predictions across a predefined set of tokens in a corpus. Specifically, perplexity is
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defined as the exponentiation of the average negative log-likelihood of a sequence, encapsulating the model’s ability
to predict the next token in a sequence accurately. This measurement reflect how well a model understands the
structure and patterns of the language, with lower values indicating higher predictive accuracy and a better grasp of
the language nuances.

PPL = exp

{
↓1

t

t∑

i

log p(t)

}
(13)

where t is the number of total sentences in a corpus and p(t) is defined in Equation 1.

Intuitively, perplexity is often interpreted as the “e!ective number of choices” the model is making e.g., a perplexity of
1.8 suggests that the model, on average, has narrowed down the next token to almost 2 equally likely possibilities.

• High Perplexity: Indicates that the model is uncertain about its predictions, implying that the model has not
learned well and is making a lot of mistakes.

• Low Perplexity: Suggests that the model is confident in its predictions and is performing well, predicting the
next token accurately.

C.1.1 Disentangled key-value perplexity

The Key, Value, Other perplexity are computed by masking out the relevant token perplexity and averaging across
the per-example tokens and entire dataset.

C.2 Tabular-based Metrics

The tabular-based metrics evaluates the synthetic tabular data against the real tabular data.

C.2.1 Machine Learning E"cacy

The e!ectiveness of synthetic data is typically assessed through its utility in downstream tasks, aiming to parallel the
performance achieved with real data. This evaluation process entails training machine learning models using real
data and subsequently evaluating their performance when trained on synthetic data, with comparison made against a
reserved set of test data.

C.2.2 Normalized Histogram Intersection

The normalized histogram intersection which is also referred to as total variation distance measures how aligned
the marginal distributions of each column in the generated sample is with the real test data marginal distribution.
It provides a quantitative analysis of one-dimensional data distributions by calculating the sum of the minimum
probability values across corresponding bins in the real and synthetic data columns. This sum is the averaged over all
columns in the dataset, o!ering a measure of the normalized intersection between the marginal probability distributions
of real and synthetic data.

Hist(pi, qi) =
∑

c

min(pc, qc) (14)

HI = 1
d

∑

i

Hist(pi, qi) (15)

where pc = sc
|D|!i

and qc = tc
|S|!i

. pi and qi represents the histogram probabilities of real (D) and synthetic (S)
datasets for feature i, respectively. The terms pc and qc represent the proportions of category c for feature i, with sc

and tc denoting the counts of real and synthetic samples in category c, respectively. The factor !i is introduced as a
normalization term, specifying the bin size for numerical features. The HI is an average of the histogram intersection
scores across all features, proving insight into the similarity between the real and synthetic data distributions.

C.2.3 Pairwise Correlation Similarity Accuracy (CorAcc)

We evaluate the correlation between data columns using the approach described by Tao et al. (2021) and Afonja
et al. (2023). Specifically, we use Cramer’s V with bias correction for categorical columns, the Correlation Ratio for
numerical-categorical columns, and the Pearson Correlation Coe"cient (absolute values) for numerical columns. The
ranges for these measures are as follows: Cramer’s V and Correlation Ratio are bounded between 0 and 1, while the
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Pearson Correlation Coe"cient spans -1 to 1. Following Tao et al. (2021), correlation values are discretized into four
levels: low [0, 0.1), weak [0.1, 0.3), medium [0.3, 0.5), and strong [0.5, 1). The CorAcc metric quantifies the similarity
between synthetic and original data by measuring the fraction of column pairs where the assigned correlation levels
match.

C.2.4 Pairwise Attribute Distribution Similarity (Pair)

This metric extends the Normalized Histogram Intersection (HIST) by calculating the histogram intersection for all
two-way marginals and averaging the results across all attribute pairs. For numerical columns, we discretize the values
into bins of size 20 and 50 before computing the intersections.

D Setup and Dataset

D.1 Datasets

Texas Dataset. The Texas Hospital Discharge dataset12 is a large public use data file provided by the Texas
Department of State Health Services. We used the preprocessed version which consists of 100,000 records uniformly
selected from a pre-processed file containing patient data from 201313 version from Stadler et al. (2022). We retain 18
attributes and assume a binary classification task by predicting only minor and major mortality risk following the
setup of Afonja et al. (2023). Duplicates where also removed. The final size of the dataset was therefore reduced to
75,105 which was split to non-overlapping train/test/validation. Validation size is fixed to 1000 for all dataset.

No additional preprocessing was done for Adult and Airline other than removing duplicates.

List of Column names:

1. Adult Income : Age, Work Class, FNLWGT, Education, Education Number, Marital Status, Occupation,
Relationship, Race, Sex, Capital Gain, Capital Loss, Hours per Week, Native Country, and Income

2. Airline Passenger Satisfaction: ID, Gender, Customer Type, Age, Type of Travel, Class, Flight Distance,
Inflight Wi-Fi Service, Departure/Arrival Time Convenience, Ease of Online Booking, Gate Location, Food
and Drink, Online Boarding, Seat Comfort, Inflight Entertainment, Onboard Service, Leg Room Service,
Baggage Handling, Check-in Service, Inflight Service, Cleanliness, Departure Delay (minutes), Arrival Delay
(minutes), and Satisfaction (Neutral or Dissatisfied, Satisfied).

3. Texas: Discharge, Type of Admission, Patient State, Patient Status, Sex Code, Race, Ethnicity, Admission
Weekday, Patient Age, Illness Severity, Length of Stay, Total Charges, Total Non-Covered Charges, Total
Charges for Accommodation, Total Non-Covered Charges for Accommodation, Total Charges for Ancillary
Services, Total Non-Covered Charges for Ancillary Services, and Risk of Mortality.

Table 1 provides statistics of the train-test split, as well as the number of numerical, and categorical columns in the
dataset.

E Sampling Time

We report the sampling time for generating one dataset of synthetic data. The size of the synthethic data is the same
as the training data. The result is shown in Table6.

F Additional Results

F.1 Comparison of Di!erent Privacy Budget

Table 7 shows the DP result for a higher privacy budget ω = 8. Relaxing the privacy budget shows improved
performance for DP-2Stage across both datasets. Scaling DP-GAN to higher ω values for the Airline dataset proved
challenging, requiring up to five days to run before the process was terminated.

12https://www.dshs.texas.gov/thcic/
13https://github.com/spring-epfl/synthetic_data_release/blob/master/data/texas.csv
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Dataset Shu!e DP-Standard DP-2Stage-O DP-2Stage-U

Adult ✁ 10 mins - -
ω = ↔ ✂ 10 mins - -

ω = 1 ✁ 11 mins 11 mins 10 mins
✂ 5 hrs 6 hrs 14 mins

Airline ✁ 1.1 hrs - -
ω = ↔ ✂ 1.6 hrs - -

ω = 1 ✁ 1.1 hrs 1.1 hrs 1.2 hrs
✂ 42 hrs 51 hrs 1.7 hrs

Table 6: Sampling Cost. The synthetic dataset matches the size of the training dataset. ✂ indicates settings
with shu!e enabled, while ✁ represents shu!e disabled. The reported values correspond to a single model
run and the generation of one synthetic dataset. For Adult, DP-2Stage-O uses Airline as pseudo data and
vice-versa.

Adult Airline

Method F1 AUC ACC HIST F1 AUC ACC HIST

ω = 1, Non-LLM
ε = 10↓5 DP-GAN 33.5±20 67.7±9 64.2±10 63.7±3 40.2±24 63.9±13 59.8±6 44.7±12

DP-CTGAN 42.2±20 78.0±7 75.7±3 75.7±2 67.1±8 76.7±8 68.0±6 78.7±2

DP-VAE 0.0±0 50.0±0 75.6±0 61.8±2 26.5±28 57.9±13 57.3±6 41.8±1

GPT-2
DP-Standard 27.8±15 58.5±7 65.2±9 85.7±2 60.5±7 65.3±9 62.4±7 90.3±3

DP-2Stage-U 21.2±12 48.9±6 61.9±13 86.7±1 68.5±9 77.8±10 72.1±7 90.7±1

DP-2Stage-O 30.4±17 61.6±8 66.7±8 88.5±1 55.2±18 62.5±19 60.0±16 92.5±1

ω = 8, Non-LLM
ε = 10↓5 DP-GAN 19.6±20 50.0±0 50.0±26 33.3±9 - - - -

DP-CTGAN 46.5±18 79.4±4 73.1±6 80.0±2 67.7±4 76.7±5 67.7±4 76.8±1

DP-VAE 0.0±0 50.0±0 75.6±0 62.1±1 51.9±25 72.4±10 67.2±7 40.0±1

GPT-2
DP-Standard 31.3±15 62.2±7 67.7±7 84.5±1 64.9±6 69.8±9 65.9±7 89.8±3

DP-2Stage-U 22.4±15 51.8±8 63.7±11 86.9±1 71.9±9 80.7±10 74.9±8 90.4±1

DP-2Stage-O 33.4±16 63.8±9 68.2±7 87.9±1 64.2±11 71.7±10 67.8±8 92.3±1

Table 7: DP Benchmark for ω = 8. Utility metrics (F1, AUC, and ACC) are presented as the averages of logistic
regression and XGBoost performance. HIST represents the average histogram intersection scores calculated using bins
of 20 and 50. Results are averaged across five model runs and four synthetic datasets per run with standard deviation
reported after ±. The best value per column for each ω is shown in bold while second best value is underlined.

F.2 Marginal-based DP Baseline

AIM. Proposed by (McKenna et al., 2022), AIM is a marginal-based model for generating di!erentially private
synthetic data. It is a workload-adaptive algorithm that follows a three-step process: selecting a set of queries, privately
measuring those queries, and generating synthetic data from the noisy measurements. AIM employs innovative
techniques to iteratively prioritize the most useful measurements, considering both their relevance to the workload
and their importance in approximating the input data.

MST. Proposed by (McKenna et al., 2021), MST was the winning mechanism of the 2018 NIST Di!erential Privacy
Synthetic Data Competition. It is a general approach for di!erentially private synthetic data generation that follows
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three main steps: (1) selecting a collection of low-dimensional marginals, (2) measuring these marginals using a noise
addition mechanism, and (3) generating synthetic data that accurately preserves the measured marginals.

Table 8 presents the results for DP methods, including two marginal-based approaches. The Marginal-based methods
shows better performance across most metrics, except for HIST and Pair, where their performance is subpar on the
Airline dataset. This is likely due to the higher number of numerical columns in this dataset (see Table 1).

F.3 Individual Metrics Scores

Table 9 and 10 presents the results for the machine learning models evaluated: XGBoost (XGB) and Logistic Regression
(LR). Histogram Intersection score (HIST) is reported for two bin sizes: 20 and 50. The averaged values are summarized
in Table 3.

23



Published in Transactions on Machine Learning Research (03/2025)

Dataset Method F1 AUC ACC CorAcc Pair HIST

Adult Marginal
ω = 1, AIM 59.6±6 86.8±1 80.3±2 86.4±1 77.1±9 88.4±5

ε = 10↓5 MST 39.6±19 76.8±1 72.8±2 70.0±1 74.6±10 87.0±5

Non-LLM
DP-GAN 33.5±20 67.7±9 64.2±10 39.9±3 41.2±4 63.7±3

DP-CTGAN 42.2±20 78.0±7 75.7±3 51.3±3 59.2±2 75.7±2

DP-VAE 0.0±0 50.0±0 75.6±0 48.8±1 40.3±1 61.8±2

GPT-2
DP-Standard 27.8±15 58.5±7 65.2±9 55.0±1 68.4±1 85.7±2

DP-2Stage-U 21.2±12 48.9±6 61.9±13 55.0±1 76.1±1 86.7±1

DP-2Stage-O
+airline 30.4±17 61.6±8 66.7±8 55.4±1 72.3±1 88.5±1

+texas 31.6±13 60.5±7 66.4±8 55.6±1 71.3±1 86.9±1

Airline Marginal
ω = 1, AIM 77.3±5 88.9±4 78.2±5 91.8±1 46.7±3 68.1±2

ε = 10↓5 MST 72.2±6 83.4±5 75.2±4 72.7±0 46.3±3 68.2±2

Non-LLM
DP-GAN 40.2±24 63.9±13 59.8±6 37.4±9 22.2±13 44.7±12

DP-CTGAN 67.1±8 76.7±8 68.0±6 31.7±2 62.2±2 78.7±2

DP-VAE 26.5±28 57.9±13 57.3±6 46.6±1 20.6±0 41.8±1

GPT-2
DP-Standard 60.5±7 65.3±9 62.4±7 64.0±2 77.0±2 90.3±3

DP-2Stage-U 68.5±9 77.8±10 72.1±7 65.3±1 80.8±1 90.7±1

DP-2Stage-O
+adult 55.2±18 62.5±19 60.0±16 66.8±1 80.1±1 92.5±1

+texas 52.5±13 61.0±13 58.4±10 66.1±2 78.7±2 90.4±1

Texas Marginal
ω = 1, AIM 84.5±1 98.3±0 94.2±1 81.0±2 93.0±5 98.9±0

ε = 10↓5 MST 81.7±0 94.8±0 93.2±0 77.0±0 97.5±0 99.0±0

Non-LLM
DP-GAN 13.7±16 58.3±12 78.3±8 36.1±7 34.6±5 68.3±7

DP-CTGAN 63.9±11 91.4±3 82.6±19 43.9±6 66.9±6 84.7±3

DP-VAE 0.0±0 50.0±0 82.5±0 62.1±1 43.9±1 77.9±1

GPT-2
DP-Standard 55.4±10 90.2±5 77.1±11 70.3±1 60.6±1 92.3±1

DP-2Stage-U 23.5±14 59.8±14 67.3±17 68.2±0 80.7±6 93.4±0

DP-2Stage-O
+adult 74.8±4 96.7±1 89.1±3 69.9±2 60.5±2 91.7±1

+airline 74.3±5 96.4±0 88.8±3 70.9±1 62.0±2 93.2±0

Table 8: DP Benchmark. Utility metrics (F1, AUC, and ACC) are presented as the averages of two ML Models
(XGBoost and Logistic Regression). Pair, and Hist are reported as averages of two bin sizes (Bins 20 and 50). Results
are averaged across five model runs and four synthetic datasets per run with standard deviation reported after ±. The
best value per method group for ω = 1 is shown in bold.
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Dataset Method XGB (F1) XGB (AUC) XGB (ACC) LR (F1) LR (AUC) LR (ACC) HIST (bin=50) HIST (bin=20)
Adult Marginal

ω = 1 AIM 54.0±4 86.3±1 81.8±0 65.2±0 87.3±0 78.8±1 83.5±0 93.3±1

ε = 10→5 MST 20.5±3 76.7±1 74.5±0 58.7±0 77.0±2 71.0±0 81.8±2 92.2±0

Non-LLM

DP-GAN 27.4±24 67.6±10 69.1±9 39.6±14 67.8±9 59.4±8 61.9±2 65.5±3

DP-CTGAN 38.6±21 77.2±7 76.0±3 45.8±19 78.8±7 75.3±3 75.0±2 76.4±2

DP-VAE 0.0±0 50.0±0 75.6±0 0.0±0 50.0±0 75.6±0 60.1±0 63.5±0

GPT-2

DP-Standard 13.9±7 55.5±6 73.0±1 41.6±5 61.4±7 57.4±6 85.1±2 86.2±2

DP-2Stage-U 10.3±5 48.4±4 74.5±1 32.1±6 49.3±8 49.4±4 86.3±1 87.1±1

DP-2Stage-O
+airline 15.0±7 55.9±6 73.5±1 45.9±5 67.3±6 59.8±5 88.2±1 88.8±1

+texas 9.6±7 56.7±5 73.4±1 43.6±5 64.4±5 59.4±5 86.5±1 87.3±1

Airline Marginal

ω = 1 AIM 73.0±4 85.2±3 74.3±4 81.7±0 92.7±0 82.1±0 65.9±0 70.2±0

ε = 10→5 MST 69.2±8 80.4±6 74.0±5 75.2±0 86.3±0 76.4±0 66.1±0 70.3±0

Non-LLM

DP-GAN 38.3±25 65.1±14 60.3±6 42.1±24 62.7±12 59.2±6 43.4±12 46.0±12

DP-CTGAN 64.1±10 74.0±8 65.9±6 70.1±5 79.4±7 70.1±5 78.5±2 79.0±1

DP-VAE 1.0±3 54.4±11 56.7±1 52.0±14 61.4±14 58.0±8 41.5±0 42.2±0

GPT-2

DP-Standard 55.8±3 62.1±7 60.0±6 65.1±6 68.4±10 64.9±8 89.6±4 91.1±3

DP-2Stage-U 64.5±10 73.8±9 70.0±7 72.5±6 81.8±8 74.1±6 90.1±0 91.3±1

DP-2Stage-O
+adult 53.5±16 61.8±16 59.2±13 56.9±20 63.3±22 60.8±18 92.0±1 93.0±1

+airline 48.8±12 58.0±12 57.5±9 56.2±14 64.0±13 59.2±11 89.8±1 91.0±1

Texas Marginal

ω = 1 AIM 85.4±1.0 98.3±0.0 94.9±0 83.5±1 98.4±0 93.4±0 98.7±0 99.2±0

ε = 10→5 MST 81.3±0 94.7±0 93.2±0 82.0±0 94.9±1 93.3±0 98.8±0 99.2±0

Non-LLM

DP-GAN 13.4±19 61.2±12 78.2±9 14.1±14 55.5±12 78.5±8 66.0±7 70.5±6

DP-CTGAN 60.3±15 91.2±3 76.4±25 67.5±2 91.6±2 88.7±1 83.9±3 85.5±3

DP-VAE 0.0±0 50.0±0 82.5±0 0.0±0 50.0±0 82.5±0 77.0±0 78.9±0

GPT-2

DP-Standard 58.5±12 88.8±5 86.1±2 52.2±7 91.5±5 68.2±9 92.2±1 92.4±0

DP-2Stage-U 11.3±8 51.1±10 82.5±1 36.2±6 68.5±12 52.0±10 93.2±0 93.6±0

DP-2Stage-O
+adult 77.6±2 96.5±1 91.1±1 72.0±4 96.9±1 87.0±3 91.3±1 92.1±1

+airline 78.0±2 96.3±0 91.3±1 70.6±3 96.4±0 86.3±2 93.0±0 93.4±0

Table 9: DP Benchmarks showing individual metric result. For each dataset, the best value per method
group for ω = 1 is shown in bold. Results are averaged across five model runs with varying random seeds, with four
synthetic datasets generated per run. LR refers to the Logistic Regression model, and XGB represents the XGBoost
model.

XGB (F1) XGB (AUC) XGB (ACC) LR (F1) LR (AUC) LR (ACC) HIST (bin=50) HIST (bin=20)
Dataset

ω = 8, Adult DP-Standard 17.3±6 58.6±4 73.6±1 45.2±6 65.8±8 61.8±4 84.1±1 84.9±1

ε = 10→5 DP-2Stage-U 9.7±6 49.4±4 74.4±1 35.1±8 54.1±9 52.9±5 86.4±1 87.4±1

DP-2Stage-O 19.1±9 58.5±9 74.2±1 47.6±5 69.1±7 62.3±4 87.5±1 88.3±1

Airline DP-Standard 61.4±4 66.1±7 63.4±7 68.5±6 73.6±9 68.4±7 89.1±3 90.5±3

DP-2Stage-U 69.1±11 77.8±10 73.6±8 74.7±7 83.5±10 76.2±8 89.9±1 90.9±1

DP-2Stage-O 60.2±8 67.9±6 65.2±5 68.2±11 75.5±13 70.3±10 91.9±1 92.8±1

Table 10: DP-GPT-2 Benchmarks showing individual metric result for ω = 8. For each dataset, the
best value corresponding to di!erent privacy budgets (ω) is highlighted in bold. Results are averaged across five
model runs with varying random seeds, with four synthetic datasets generated per run. LR refers to the Logistic
Regression model, and XGB represents the XGBoost model.
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