
A Appendix

In the following sections, we provide additional details about the network architecture, training, and
experiments. The source code and WBC-SPH data set are published at https://github.com/
tum-pbs/DMCF.

A.1 Implementation Details

We implement our neural network with Tensorflow (https://www.tensorflow.org), and use the
Open3D library (http://www.open3d.org) for the continuous convolutions (CConvs). They also
serve as the basis for the implementation of our antisymmetric CConv (ASCC) layer.

Axis for Mirroring As mentioned in the main text, the mirror axis for ASCC layers can be
chosen freely while fulfilling the requirements from theory. This provides a degree of freedom for
implementation. We decided to use a fixed axis, which in our case corresponds to the spatial y-axis.
While the mirroring could potentially be coupled to the spatial content of features, we found that a
single, fixed axis for mirroring simplifies the implementation of the ASCCs, and hence is preferable
in practice.

Additional Modifications In addition to the properties of our algorithm as discussed in Section 2.3
and the ablation study in Section 3, we normalize the input data depending on the given gravitational
direction in the model. We have found that this slightly improves different directions of vector
input quantities. The output is denormalized again before continuing with the time integration steps.
Moreover, to satisfy the condition of the constraint 10 from above, i.e. PD = PQ, it is important
for the antisymmetric model to process the boundary particles in addition to the fluid particles as
the input to the ASCC layer, even if only the output for the latter is used. This allows the ASCC
layer to incorporate reactions to boundary conditions in its output directly, and it ensures the pairwise
symmetry for 10. In this aspect, our method differs from previous methods such as CConvs, which
process the boundary particles only in the input part and ignore them in the rest of the network.
While it would be sufficient to add the boundary particles before the ASCC layer at the end of the
model, in practice, we include the boundary particles in all layers. This affects performance due to
the somewhat larger number of particles to be processed. However, in combination, the normalization
and boundary handling lead to slight improvements in accuracy. We measure the influence of these
two additions over the Preprocess model in our ablation study, which shows an increase from 0.94 to
the final 1.0 (Ours) in terms of averaged relative performance.

Ablation Study The main text mentions that the ablation study score is evaluated relative to the
final version LOurs/L. In cases where the values become zero, however, e.g., for the change of
momentum, the evaluation of this term is no longer well defined. In practice, we add a small constant
epsilon via: (LOurs + ✏)/(L+ ✏). We chose 10�100 as the value for ✏ to compute the relative scores
provided in the main paper.

A.2 Training Details

f(x, v)(xt, vt) f(x, v) f(x, v)

f(x, v) f(x, v) xt+N�x

Training step

L0 L1 LT�1

W �

Preprocessing

f(x, v)
T �

Figure 13: Rollout at training time: Each f(x, v)
represents one time step. After a random number
of Wmax precalculation steps (red), the network is
executed for T time steps to compute the training
loss (yellow). The gradient is evaluated only for
the last part (yellow).

For training, we use Adam as the optimizer and
train with a batch size of 2 and an initial learning
rate of 0.001. We use a scheduled learning rate
decay and halve the learning rate in intervals
of 5k iterations, starting at iteration 20k. The
training has a total duration of 50k in iterations.
For all convolutions, we use the random uni-
form initializer with range [�0.05, 0.05]. For
additional temporal coverage of the training, we
train our model with a rollout of N = 3 frames.
This value is increased to N = 5 from step 15k
onwards. Similar to GNS [37], a noise with stan-
dard distribution is added to the training input.
We use a standard deviation of size 0.1r, where
r corresponds to the particle radius of the data.

15

https://github.com/tum-pbs/DMCF
https://github.com/tum-pbs/DMCF
https://www.tensorflow.org
http://www.open3d.org


We ran our training on an NVidia 2080ti GPU (12GB) for the 2D data sets and with an NVidia A6000
GPU (48GB) for the 3D data set.

Preprocessing As discussed in Section 2.4, we use custom preprocessing steps to improve long-
time stability. We evaluate the network for a random number W 2 [0,Wmax) of time steps before
providing the final state to the training step, as illustrated in Figure 13. Wmax is continuously
increased throughout the training, as long rollouts are not meaningful in earlier stages of the training
process. We enable preprocessing starting from step 10k with a starting value of Wmax = 5. At step
20k and 30k we double the value of Wmax.

Despite this scheduled increase, we found that the preprocessed states, due to their randomized nature,
can lead to overly difficult states throughout the training. In the context of fluids, the maximum
density of the fluid is a good indicator for problematic states. Hence, we stop the preprocessing
iterations for a sample if it exceeds a chosen threshold in terms of

E = |1� (max
i

⇢(xi)/max
i

⇢(yi))|, (15)

with ⇢ being a function to compute the density of particle i. This ensures that the states at preprocess-
ing time do not deviate too much from the ground truth. At the same time, the threshold preserves
challenging situations during which it is essential to train the network such that it learns to stabilize
the state of the system.

A.2.1 Neural Network Architecture

The neural network we employ has three distinct parts, as illustrated in Fig. 3 of our main paper. The
first part Type-aware Preprocessing consists of several parallel CConv layers, one for each particle
type in the input. We use two layers to process the two types of particles (fluid and obstacle). The
feature dimension of the CConvs is 8 per particle type. As shown in previous work [48], this approach,
performs better than type-specific input labels for particles. The type-specific features generated in
this way are concatenated for further processing in the following layers. Additionally, type-aware
handling benefits using different features for the different particle types. In addition to the spatial
position, the input features are velocity and acceleration for the fluid particles and surface normals
for the obstacle particles.

In the main body of our architecture, the Multi-scale Feature Aggregation part, the preprocessed
features are passed through several layers. The number of layers in our final network is 4, each
consisting of multiple CConvs working on 4 different branches with different resolutions. The first
branch of these four retains the original scaling and is referred to as the main branch. In the first
layer L1 of the feature aggregation part, we split the features into the 4 branches with 4 different
CConvs. For each CConv we use different query points, which we generate using the voxelization
approach. The density of the selected query points determines the resolution of the output. After
this first layer, we obtain different features with different resolutions for each branch. The scaling
factor of the different branches is 1, 1

2 ,
1
4 and 1

8 , respectively, with corresponding radii of r, 2r, 4r
and 8r, where r is the particle radius of the input data. The voxel size for voxelization is given by
r

2 and is also divided by each branch’s corresponding scaling factor. The feature dimensions of the
CConvs used in the first layer are 16, 8, 4 and 4, starting with the convolution of the main branch. In
the second L2 and third L3 layer, the division into 4 branches is maintained. We use 4 CConvs per
branch, each of which processes a multi-scale feature from the previous layer. The result is merged
with an addition and corresponds to the new feature for the corresponding branch. This results in a
total of 16 CConvs per layer. The feature dimension remains the same for all 4 CConvs per branch
but varies with the respective branch. For both layers, we use 32, 16, 8, and 4 feature channels. In the
fourth layer, L4, the branches are merged back into the main branch. The 4 CConvs have a feature
dimension of 32 each.

In the final and third sections, we use the anti-symmetric ASCC as the output layer, enforcing the
desired conservation of momentum. The feature dimension of the ASCC layer is determined by the
desired spatial output dimension.

For all CConv layers we use a kernel size of 8 in all dimensions with a poly6 kernel [29] as window
function. The same applies to the ASCC layer used, with the difference that we use a peak kernel
[21]. We found this prevents clustering of the particles compared to a poly6 kernel.

16



0.00

0.03

0.05

0.08

0.10

EMD

ASCC (5 Frames) ASCC (20 Frames)

Figure 14: Accuracy compari-
son for our WaterRamps model
trained with 5 and 20 steps.

The parameterization explained above is the default for the
WBC-SPH data set. The WaterRamps data set instead contains
smaller particle neighborhoods and less complex dynamics. Hence,
for training with this data set, we use the same hyperparameters,
while the number of branches is reduced to 3 by removing the
branch with the lowest resolution. As with WBC-SPH, we use a
maximal rollout of 5 in training for the model used for the general-
ization (Section 3) and the robustness test (Section A.4). However,
for our final version for the comparison with GNS we found that
a longer rollout further improves results. Here we use a rollout
of 20 steps, which results in a EMD error of 0.06156, compared
to 0.09155 for the 5-step model. This is also shown in Figure 14.
The same applies to the network for the Liquid3d data set. Here
we have additionally removed the third layer and reduced the size
of the CConv kernel to 4 and of the ASCC kernel to 6.

PointNet PointNet can be seen as a fundamental baseline, similar to a fully-connected network
in other problem settings. The original method was initially designed for classification instead of
regression tasks. The input to PointNet is usually the complete point cloud, from which a single
scalar/vector is generated. To adapt it for our problem setup, we evaluate the PointNet for all input
particles, thus generating output for each particle. Additionally, we use only the considered particle’s
neighborhood as input.

For the PointNet [33] baseline, we used a fully-connected neural network with 5 layers that process
particles individually. In order to establish a relation amongst the neighboring particles, we addition-
ally accumulated the features of the neighboring particles after each fully-connected layer with a
poly6 kernel for each particle. The number of neurons per layer was 64, 128, 128, 128, and 3.

GNS For our tests with the GNS [37] model, we use the official implementation provided by the
authors. We trained the GNS model at first with the provided WaterRamps data set, using the code
from the original paper without modifications, for 5M iterations until the validation loss converged.

In addition, we trained a GNS model with our WBC-SPH data set. For this, we modified the hyperpa-
rameters of the network to fit our data set by halving the search radius to 0.0075, setting the batch size
to 1, and reducing the input noise to 3.3e�4. Again, we trained the network until the loss converged
after 1.25M steps. For training, we proceed as for the WaterRamps data set: the GNS receives a
sequence of 6 temporal frames as input from which velocity and acceleration are constructed. It is
worth noting that our ASCC model only receives a single frame as input, with the current acceleration
and velocity as additional features. Thus, the varying external forces of the data set can be constructed
for the GNS from the data sequence, whereas for our method, the acceleration of the particles depends
on it.

The set of six time steps used as input provides the GNS network with additional temporal information.
According to the authors, this plays a vital role in generating stable results [37]. E.g., the network can
reconstruct the acceleration acting on the particles from the provided sequence. This approach has
the limitation that the six frames must be provided, pre-computed, and processed each time. In our
case, we restrict the network to work with a single frame as input while the velocity and acceleration
of the particles are provided explicitly as input features. E.g., this allows our method to work with a
static initialization frame without the need to generate a sequence beforehand.

Another difference in terms of architecture is that the GNS does not add gravity accelerations to the
model outputs, which, according to the authors, does not influence the performance. Hence, GNS
learns the acceleration due to gravity for free-falling particles as well, unlike our method, where
the gravitational acceleration is applied independently of the network. This has the advantage that
GNS does not have to compensate for the gravitational effect in hydrostatic conditions, which we
found essential for stable simulations. On the other hand, our model directly generalizes to different
external forces than gravity. If necessary, these forces likewise would have to be provided as inputs.

CConv We likewise used the author’s implementation for the CConv [48] model. When training
the CConv model with our WBC-SPH or with the WaterRamps data set, we halved the search radius
of the CConvs compared to the original. Similar to our method, the CConv model does not receive a

17



sequence of data as input, and hence we pass the acceleration as an additional feature as input to the
network.

A.2.2 Discussion: Comparing CConv and GNS

Our method builds on CConvs as central building blocks for our neural network architecture. As
an alternative to CConvs, Graph Neural Networks (GNNs) provide an established framework for
processing unstructured data. Even if the data is not given in the form of an explicit graph structure, a
graph can be created dynamically by creating new edges based on the proximity of particles and a
distance threshold. While graphs and spatial convolutions can be seen as equivalent representations
that can be transformed into one another for a given discretization with particles, CConvs contain an
explicit inductive bias in the form of positional information of the convolution kernel. The relative
positions of query points are directly put into correlation. This is a crucial operation of classical
Lagrangian discretizations such as SPH and is supported by CConvs without having to be learned
and encoded in parameters. Consequently, CConvs yield leaner networks with correspondingly
faster evaluation and training times. Additionally, in contrast to graphs, the kernels are regularized
by construction through the discretization. This improves the generalization to different sampling
densities, as we show below.

A.3 Simulation Data Sets

The data sets for the evaluation of our method are based on particle-based fluid simulations. The data
was generated with different solvers, the properties of which we discuss in detail below. As spatial
units, we use meters.

Liquid Column For the liquid column data set, we use an iterative solver following He et al. [16]
with an error threshold of 0.01. We use a particle radius of 0.005m and a time step of 2.5ms. The
fluid viscosity was set to 1e�4, and the stiffness for the pressure computation to 10. For training data,
we use columns with a particle count from 1 to 40 over 100 time steps, where the boundary consists
of two particles. For the evaluation, we use a subset of 10 scenes from the data set and additionally
generate 5 scenes with 1 to 5 particles in free fall with a starting height of 1cm. For the explicit solver
used as a comparison in the evaluation, we use the method by Premžoe et al. [32], with the same
settings as for the iterative solver, apart from a smaller time step of 0.25ms. This was necessary as
the simulations were not stable with a larger time step.

WBC-SPH Data Set This data set is based on the WBC-SPH solver by Adami et al. [1]. We use
a particle radius of 0.005m and a time step of 2.5ms. The scenes consist of randomly generated
fluid volumes and obstacles with a static, square-shaped outer boundary. The fluid particles are
simulated over 3200 frames, with gravity having a random magnitude and direction for each scene.
The gravitational strength can be up to 1.5g. The randomization of gravity generates data with high
variance and allows for a high degree of generalizability, e.g., fluid simulation without gravity or
with other external forces than earth’s gravity. With this setup, we generate 50 scenes for training,
10 scenes for validation, and 5 scenes for the test data set. In our test data set, two simulations of a
hydrostatic tank with a liquid height of 10cm and 25cm are added for diversification, as well as two
simulations of colliding fluid drops, once with and once without gravity.

WaterRamps Data Set The WaterRamps data set is based on an MPM solver [18] and stems from
GNS [37]. The data is two-dimensional, and the particle radius is twice as large at 0.01m compared
to the WBC-SPH data set, with a time step of 2.5ms.

Liquid3d Data Set For the 3D evaluations we use the Liquid3d data set from Ummenhofer et
al. [48]. The data set is based on the DFSPH solver [4] with a particle radius of 0.025m, and a
time step of 0.02s. Hence, the data is sampled more coarsely than the other two data sets, while
the time step is 8 times as large. A large time step makes the data difficult to learn because the
discrepancy between the input to our network and the targeted reference becomes larger after a
position update based on the integration of the external forces. Thus, the network must learn a much
larger correction. In addition, the data set is three-dimensional, which introduces more degrees of
freedom and additional complexity. This makes the data set a suitable and challenging environment
to evaluate for our method.

18



In
fe

re
nc

e 
Ti

m
e 

[m
s]

0

25

50

75

100

WBC-SPH WaterRamps Liquid3d

(a) Average inference time for single frames.

M
ax

. #
 P

ar
tic

le
s 

(a
pp

ro
x)

0

5000

10000

15000

WBC-SPH WaterRamps Liquid3d

(b) Approximate maximum number of particles per
randomized initialization for each data set.

Figure 15: Runtime (a) for our method and the number of particles (b) for the used datasets.

A.4 Additional Results

0

10

20

30

Inf. Time [ms]

CConv GNS
Ours

Figure 16: Runtime
for different models.

Evaluation of Performance Figure 15a shows the average execution time
of our network for the inference of a single frame of simulation for each
data set. It is noticeable that the inference time for the 2D WBC-SPH data
set is larger than for the other 2D case. This behavior is caused by the fact
that there are significantly more particles in one frame of the high-resolution
data set WBC-SPH, as shown in Figure 15b. Hence, the performance directly
correlates with the number of particles that needs to be processed. In addition,
we evaluated the inference performance of the different approaches. As can be
seen in Figure 16, the performance correlates with the model sizes, our model
having 0.47m parameters, GNS with 1.59m, and CConv with 0.18m. The
smallest model, CConv, is the fastest with 2.57ms. Our model has the second
fastest inference time with 10.98ms and is almost three times faster than GNS
with 30.63ms. Thus, our model provides the best tradeoff between inference
time and accuracy among the three methods.

Robustness We also evaluate our method’s robustness to input noise and
sampling density. First, we measure the change in EMD for varying input
noise. The noise is normally distributed with a standard deviation based on
the particle radius. The evaluation is based on the WaterRamps data set, and
we also evaluate the GNS with noise as a comparison. We perturb the input
particles’ position with the noise and evaluate the model with these perturbed inputs. Since GNS
needs six input frames, we add the noise to all input frames. We keep the noise per particle constant
for all six frames so that the velocity and acceleration derived by GNS from the input frames are not
affected. In line with this treatment, we do not perturb the input velocity for the ASCC model. We
show the evaluation results in Fig. 17. It can be seen that both models perform equally well in the

Noise

E
M
D

0.00

0.01

0.02

0.03

0% 5% 10% 15% 20%

GNS Ours

Figure 17: Inference accuracy for varying
amounts of input noise. The standard devia-
tion of the noise is expressed as a percentage
of the particle radius.

Training Set Size

E
M

D

0.00

0.05

0.10

0.15

0.20

0% 25% 50% 75% 100%

Unconstrained Constrained

Figure 18: Accuracy of a constrained (blue)
and unconstrained (red) model for varying
training data set sizes. The first data point cor-
responds to 0.39% of the training data while
100% corresponds to the complete training
data set as described in Sec. A.3.

19



100% 75% 25%50%

Sampling ratio

G
T

O
ur
s

G
N
S

(a) Frame 160 from a sequence of the WaterRamps test
set, evaluated with different sampling ratios.

Sampling Ratio

R
el

at
iv

e 
A

cc
ur

ac
y 

(E
M

D
)

0%

25%

50%

75%

100%

100% 75% 50% 25%

GNS Ours

(b) Relative accuracy of the models with dif-
ferent sampling ratios. The accuracy is eval-
uated in relation to the accuracy with a ratio
of 100%.

Figure 19: Qualitative and quantitative results of the sample efficiency evaluation.

presence of noise. Even with a considerably strong relative noise of 20%, reasonable accuracy is still
achieved. It is important to note that we only evaluate the first 50 frames for this comparison, as this
time span is where the effects of the noise are most noticeable.

As a second test, we evaluate our model with data with a different sampling density than at training
time. For this, we subsample the test data with different sampling factors, which reduces the number
of input particles. We refer to this as the sampling ratio in the following, where a sampling ratio of
100% corresponds to the data with the original sampling density. Reducing the number of particles
reduces the number of neighbors when evaluating CConv, and correspondingly down-scales the
output of the convolutions. To counteract this behavior, we multiply the kernels of the CConv with
the subsampling factor. For comparison, we also evaluate a GNS with inputs with different sampling
ratios. Here, we multiply the accumulated value of the edge features by the subsampling factor in
the GNN to compensate for the reduced amount of neighbors. The results are given in Fig. 19. As
can be seen, our model maintains high accuracy of 85% up to a subsampling factor of 2. GNS, on
the other hand, performs worse. While our model still produces meaningful results even with a
sampling ratio of 25%, the GNS does not manage to respond correctly to particle-based boundaries.
The liquid volume falls in the wrong direction and through the obstacles. It is important to note that
GNS processes the square border as an implicit representation, which is not affected by the sampling.
Thus, the change in sampling density does not affect the fluid-border interaction, which artificially
boosts the performance of the GNS.

Sample Efficiency Incorporating inductive biases typically leads to improvements in terms of
sample efficiency. To evaluate this aspect, we train two variants of models, one with an anti-symmetric
constraint and one without the constraint, with different subsets of the training data and compare the
resulting accuracy. The results in Figure 18 show EMD as a function of the relative training data size
for the WBC-SPH data set. It is noticeable that the constrained method performs better throughout all
tests. With a training data size of ca. 6%, the constrained model achieves a performance similar to
the unconstrained approach with more than 20% of the data. This highlights the advantages of our
constraints for conservation of momentum in terms of sample efficiency.

20



Evaluation Details Below, we provide additional qualitative results as well as tables with numerical
values corresponding to the graphs shown in the main paper.

(a) Target (b) Base (c) ASCC (d) Multi Sc. (e) Voxel. (f) Prepro. (g) Ours

Figure 20: Frame 240 from a sample sequence for the ablation study. The gradual improvement in
quality is clearly visible, with a big jump from voxelization to preprocessing. From then on, the
results are much more stable.

Figure 21: A test sequence from our WBC-SPH data set.

21



Figure 22: Test sequences with methods trained on the WaterRamps data set.

22



G
T

C
C

on
v

O
ur

s
G

T
C

C
on

v
O

ur
s

Figure 23: Test sequences based on the Liquid3d data set.

23



Figure 24: A complex test sequence with a 5⇥ larger particle count than the training sequences from
Liquid3d demonstrating scalability and generalization.

24



Column Free Fall
RMSE (⇥10�3) RMSE (⇥10�3)

SPH 9.87 19.68
No Sym. 0.04315 46.36843
ASCC 0.06231 5.91239

Table 1: Quantitative evaluation based on the Liquid Column data set. Numbers correspond to Fig.
5 of the main paper.

RMSE Vel. Dist. Momentum Max. Dens. EMD Average
Base 1.227 0.619 0.000 0.510 0.072 0.486
ASCC 0.964 0.973 1.000 0.533 0.185 0.731
Multi Scale 1.125 0.929 1.000 0.546 0.408 0.802
Voxelize 1.227 0.913 1.000 0.548 0.385 0.815
Preprocess 0.964 1.002 1.000 0.834 0.922 0.945
Ours 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Quantitative evaluation for the ablation study. Numbers correspond to Fig. 6 of the main
paper.

Random Gravity Tank Two Drops Overall
RMSE EMD RMSE EMD RMSE EMD RMSE EMD

PointNet 0.11 47.3579 0.04 15.5390 0.07 1.9133 0.06 6.455210
CConv 0.16 221.5037 0.1 242.06389 0.21 9.4910 0.17 120.637445
GNS 0.1579 0.31152 0.512 0.2952 0.184 0.2628 0.1445 0.301795
Ours 0.12 0.134 0.05 0.00975 0.055 0.0117 0.07 0.041795

Table 3: Quantitative evaluation based on the WBC-SPH data set. Numbers correspond to Fig. 7 of the
main paper. RMSE was multiplied with 10�3.

RMSE (⇥10�3) EMD Params. (⇥10�6)
CConv 0.02 0.29296 0.18
GNS 0.092 0.08109 1.59
Ours 5steps 0.11 0.09155 0.47
Ours 0.11 0.06156 0.47

Table 4: Quantitative evaluation based on the WaterRamps data set. Numbers correspond to Fig. 8,
Fig. 9, and Fig. 14 of the main paper.

Two Drops Two Drops w/o Grav.
EMD EMD

GNS 0.08852 0.2012
Ours 0.05623 0.0682

Table 5: Quantitative evaluation of the Two Drops generalization test, trained with WaterRamps

data set. Numbers correspond to Fig. 10 of the main paper.

RMSE (⇥10�3) EMD
CConv 1.69 0.264
Ours 2.35 0.2143

Table 6: Quantitative evaluation based on the Liquid3d data set. Numbers correspond to Fig. 11 of
the main paper.

Inference Time [ms] Max. # Particles (approx)
WBC-SPH 67.25 15k
WaterRamps 17.62 2.3k
Liquid3d 94.86 6k
WBC-SPH (Solver) 10925 -

Table 7: Average inference time for single frames, and approximate maximum number of particles,
corresponding to Fig. 15.

25



Inference Time [ms]
CConv 2.57
GNS 30.63
Ours 10.98

Table 8: Average inference time for single frames corresponding to Fig. 16.

Noise Ratio GNS (EMD) Ours (EMD)
0% 0.01665 0.01409
1% 0.01673 0.0146
2% 0.01715 0.01573
5% 0.02104 0.01909

10% 0.02415 0.02093
20% 0.02551 0.02264

Table 9: Accuracy evaluation for varying amounts of input noise corresponding to Fig. 17.

Sampling Ratio GNS (EMD) GNS (rel.) Ours (EMD) Ours (rel.)
100% 0.09555 0.10309 100% 100%
75% 0.11544 0.12123 82.77% 85.04%
50% 0.15092 0.01573 63.31% 85.35%
25% 0.22921 0.12078 41.69% 59.85%

Table 10: Relative accuracy evaluation for different sampling densities corresponding to Fig. 19.

Train Set Size Unconstrained (EMD) Constrained (EMD)
0.39% 0.1861 0.08066
3.13% 0.0584 0.03881
9.38% 0.0424 0.02488
20.70% 0.0275 0.02028
100% 0.0280 0.02133

Table 11: Accuracy evaluation for different training set sizes corresponding to Fig. 18.

26


	Introduction
	Related Work

	Method
	Conservation of Momentum
	Antisymmetric Continuous Convolution
	Neural Network Formulation
	Training and Long-term Stability

	Results
	Conclusion
	Appendix
	Implementation Details
	Training Details
	Neural Network Architecture
	Discussion: Comparing CConv and GNS

	Simulation Data Sets
	Additional Results


