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Supplementary Material of Distribution Discrepancy
and Feature Heterogeneity for Active 3D Object
Detection

Table 1: Compare 3D mAP(%) scores for different SOTA apporch in KITTI Dataset when acquiring
approximately 1% queried bounding boxes. ' indicates the reported performance of the backbone
trained with the 100% labeled set.

AVERAGE CAR PEDESTRIAN CYCLIST
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
CRB [1] 79.06 66.49 61.76 90.81 79.06 7473 62.09 5456 4889 8428 65.85 61.66

CRB(offi.) 80.70 67.81 62.81 9098 79.02 74.04 64.17 50.82 50.82 8696 67.45 63.56
KECOR [2] 7981 67.83 6252 9143 79.63 7441 6349 5631 5020 8451 67.54 62.96
KECOR(offi.) 81.63 68.67 6342 91.71 79.56 7405 6537 5733 51.56 87.80 69.13 64.65
DDFH(Ours)  82.27 69.84 64.76 91.76 80.65 76.46 6637 59.40 5297 88.68 69.47 64.85

PV-RCNN 81.75 70.99 67.06 92.56 8436 8248 6426 56.67 5191 88.88 7195 66.78
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Figure 6: (a) report 3D mAP of various AL methods on KITTI in each active round. (b-c) represents
the impact of different density estimation methods and varying parameter settings on the perfor-
mance of DDFH.

A More Implementation Details

To ensure the fairness and reproducibility of our experiments, we implemented DDFH and re-
produced most of the baselines based on the public ACTIVE-3D-DET toolbox. We followed all
KECOR training settings, using Adam as the optimizer, and a onecycle learning scheduler with an
initial learning rate of 0.01. The batch size was set to 6, and each active round was trained for 40
epochs before proceeding to a new sampling round. We used one NVIDIA RTX A6000 to complete
all experiments. The runtime for an experiment on KITTI and Waymo is approximately 5 and 81
GPU hours, respectively. The model embeddings f¢ used in our method are extracted from the
second convolutional layer in the shared block of PV-RCNN.

B More Experimental Details

DDFH in the KITTI Dataset. In Fig. 6a, we present the performance of various AL methods
in each active round. The number of point clouds in each active round is fixed, allowing us to
compare the performance of models under conditions where they have seen the same number of
scenes. Notably, KECOR'’s performance is below expectations given the same number of frames,
indicating that KECOR does not effectively consider the diversity information of the scenes. In
contrast, DDFH considers frame-level information to avoid redundant instances in similar scenes.
The results show that DDFH has a significant advantage in each active round. We present more
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Figure 7: 3D mAP(%) of DDFH and the AL Baseline across various categories on the KITTI dataset
at the moderate difficulty with PV-RCNN.
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Figure 8: 3D mAP(%) of DDFH and AL baselines on the KITTI val split with SECOND.

comprehensive experimental results of DDFH on the KITTI Dataset in Fig. 7 and Fig. 8. The
results in Fig. 7 indicate that DDFH with PV-RCNN has a significant advantage in all categories
in KITTI, consistent with the results of Figure 4 in main text on SECOND. It is noteworthy that
in the car category, some uncertainty-based methods achieve similar performance to DDFH with
the same annotation cost. However, these methods fail to improve effectively in other categories,
demonstrating DDFH’s effectiveness in resource allocation and diversity. Fig. 8 also provides the
trend of average 3D mAP for the one-stage model SECOND in different difficulties, consistent with
PV-RCNN, outperforming SOTA methods in all difficulties. Further, in Table 1, we provide the
performance of PV-RCNN trained on 100% labeled data, showing that DDFH’s performance with
only 1% of bounding box annotation is close to fully trained performance, even outperforming fully
trained models in the pedestrian category.

Ablation Study of Density Estimation. We also test the stability and generalizability of DDFH
through different density estimation methods and parameters. In Fig. 6b, we set different numbers
of GMM components, specifically 1, 10 (DDFH Ours), 50, and 100. The results indicate that all
experiments, except for 1 component, maintain similar effectiveness. In Fig. 6c, we use Kernel
Density Estimation (KDE) to estimate the probability density and adjust different bandwidths to
test the stability and generalizability of the DDFH. Silverman [3] and Scott [4] calculate bandwidth
based on sample size. The results show that the performance of DDFH remains consistent and stable
under different density estimation models and parameters. This is due to the distribution discrepancy
focusing on distribution differences and novelty, rather than relying on highly accurate distribution
estimates, thus providing sufficient robustness to noisy instances and estimation deviations.

C Limitation

Considering that the distribution of objects in real environments is often uneven, common objects
tend to occupy the majority (e.g. cars). This leads to the underestimation of less frequent categories
when estimating informativeness. Therefore, the components DD, FH, and CB in DDFH reduce
the impact of uneven distribution at different levels, decrease redundant annotations, and effec-
tively balance minority categories. Although most real-world scenarios exhibit an uneven long-tail
distribution, if specific situations lead to a dataset where object distribution is close to a uniform
distribution, the effectiveness of DDFH might be limited due to the less apparent distribution dif-
ferences. A possible solution is to incorporate indicators of uncertainty into DDFH, such as model
instability, entropy, or the kernel coding rate combined with KECOR. This approach could address
the mentioned limitation and is left for future research.
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