
Under review as submission to TMLR

Generative Feature Training of Thin 2-Layer Networks

Anonymous authors
Paper under double-blind review

Abstract

We consider the approximation of functions by 2-layer neural networks with only a few
hidden weights based on the squared loss and small datasets. Due to the highly non-convex
energy landscape, gradient-based training often suffers from local minima. As a remedy, we
initialize the hidden weights with samples from a learned proposal distribution, which we
parameterize as a deep generative model. To train this model, we exploit the fact that with
fixed hidden weights, the optimal output weights solve a linear equation. After learning the
generative model, we refine a set of sampled weights with a gradient-based feature refinement
in the latent space. Here, we also include a regularization scheme to counteract potential
noise. Finally, we demonstrate the effectiveness of our approach by numerical examples.

1 Introduction

We investigate the approximation of real-valued functions f : [0, 1]d → R based on samples (xk, yk)M
k=1,

where xk ∈ [0, 1]d are independently drawn from some distribution νdata and yk ≈ f(xk) are possibly noisy
observations of f(xk). To achieve this, we study parametric architectures fw,b : [0, 1]d → R of the form

fw,b(x) = Re

(N∑
l=1

blΦ(⟨wl, x⟩)
)

, (1)

where Re denotes the real part, Φ: R → C is a nonlinear function, and w1, ..., wN ∈ Rd are the features with
corresponding weights b1, ..., bN ∈ C. If the function Φ is real-valued, the model (1) simplifies to a standard
2-layer neural network architecture without Re and with b1, ..., bN ∈ R. The more general model (1) also
covers other frameworks such as random Fourier features (Rahimi & Recht, 2007). Since the Pareto principle
suggests that most real-world systems are driven by a few low-complexity interactions, we are interested in
representations (1) with only a few features wl. Such an explicit restriction of N also mitigates overfitting,
as seen in sparse neural networks, compressed sensing and feature selection.

For fixed Φ and N , we aim to find (w, b) ∈ Rd,N ×CN such that the fw,b from (1) approximates f well. From
a theoretical perspective, we can obtain such (ŵ, b̂) by minimizing the mean squared error (MSE), namely(

ŵ, b̂
)

∈ arg min
w,b

∥f − fw,b∥2
L2(νdata). (2)

In practice, we do not have access to νdata and f , but only to data points (xk, yk)M
k=1, where xk are iid samples

from νdata and yk are noisy versions of f(xk). Hence, we replace (2) by the empirical risk minimization

(
ŵ, b̂

)
∈ arg min

w,b

M∑
k=1

|yk − fw,b(xk)|2. (3)

However, if M is small, minimizing (3) can lead to overfitting towards the training samples (xk, yk)M
k=1 and

poor generalization. To address this issue, we investigate the following principles.

• We use fw,b of the form (1) with small N . This amounts to the implicit assumption that f can be
sparsely represented using (1). Unfortunately, under-parameterized networks (N ≪ M) are difficult

1

Under review as submission to TMLR

to train with conventional gradient-based algorithms (Boob et al., 2022; Holzmüller & Steinwart,
2022), see also Table 1. Hence, we require an alternative training strategy.

• Often, we have prior information about the regularity of f , i.e., that f is in some Banach space B
with a norm of the form

∥f∥p
B =

∫
[0,1]d

∥Df(x)∥p
qdx, (4)

where D is some differential operator and p, q ≥ 1. A common example within this framework is
the space of bounded variation (Ambrosio et al., 2000), which informally corresponds to the choice
D = ∇, q = 2 and p = 1. In practice, the integral in (4) is often approximated using Monte Carlo
methods with uniformly distributed samples (x̃m)S

m=1 ⊂ [0, 1]d. If we use (4) as regularizer for fw,b,
the generalization error can be analyzed in Barron spaces (Li et al., 2022).

Contribution We propose a generative modeling approach to solve (3). To this end, we first observe that
the minimization with respect to b is a linear least squares problem. Hence, we can analytically express
the optimal b̂ in terms of w, which leads to a reduced problem. Using the implicit function theorem, we
compute ∇w b̂(w) and hence the gradient of the reduced objective. To facilitate its optimization, we replace
the deterministic features w with stochastic ones, and optimize over their underlying distribution pw instead.
We parameterize this distribution as pw = Gθ#N (0, Id) with a deep network Gθ : Rd → Rd. Hence, we coin
our approach as generative feature training. Further, we propose to add a Monte Carlo approximation of the
norm (4) to the reduced objective. With this regularization, we aim to prevent overfitting.

2 Related Work

Random Features Random feature models (RFM) first appeared in the context of kernel approximation
(Rahimi & Recht, 2007; Liu et al., 2021), which enables the fast computation of large kernel sums with
certain error bounds, see also Rahimi & Recht (2008); Cortes et al. (2010); Rudi & Rosasco (2017). A
similar strategy is pursued by Huang et al. (2006) under the name extreme learning machines. Sparse RFMs
(Yen et al., 2014) of the form (1) with only a few active features can be computed based on ℓ1 basis pursuit
(Hashemi et al., 2023). Since this often leads to suboptimal approximation accuracy, later works by Xie
et al. (2022); Saha et al. (2023); Bai et al. (2024) instead proposed to apply pruning or hard-thresholding
algorithms to reduce the size of w. Commonly, the features w are sampled from Gaussian mixtures with
diagonal covariances. Unlike our approach, all these methods begin with a large feature set that has to contain
sufficiently many relevant ones. Towards this strong implicit assumption, Potts & Schmischke (2021); Potts &
Weidensager (2024) propose to identify the relevant subspaces for the feature proposal based on the ANOVA
decomposition. Unfortunately, this only works if the features w itself are sparse (few non-zero entries), see
Figure 1. Sparse features also enable the fast evaluation of the fw,b from (1) via the non-equispaced fast
Fourier transform (Dutt & Rokhlin, 1993; Potts et al., 2001). For kernel approximations, this can be also
achieved with slicing methods (Hertrich, 2024; Hertrich et al., 2025), which are again closely related to RFMs
(Rux et al., 2025).

Adaptive Features Besides our work, there are several attempts to design data-adapted proposal dis-
tributions pw for random features (Li et al., 2019c; Dunbar et al., 2025). Recently, Bolager et al. (2023)
proposed to sample the features w in regions where it matters, i.e., based on the available gradient infor-
mation. While this allows some adaption, the w still remain fixed after sampling them (a so-called greedy
approach). Towards fully adaptive (Fourier) features w, Li et al. (2019b) propose to alternately solve for the
optimal b, and to then perform a gradient update for the w. Kammonen et al. (2020) propose to instead
update the w based on a Markov Chain Monte Carlo method. Unlike our approach, both methods do not
incorporate the gradient information of b into the update process of pw. It is well known that the surrogate
alternating updates may perform poorly in certain cases. Note that learnable features have been also used
in the context of positional encoding (Li et al., 2021) and implicit kernel learning (Li et al., 2019a).

2-Layer ReLU Networks We can interpret 2-layer neural networks as adaptive kernel methods (E et al.,
2019). Moreover, they have essentially the same generalization error as the RFM. Several works investigate

2

Under review as submission to TMLR

the learning of the architecture (1) with Φ = ReLU based on a (modified) version of the empirical risk
minimization (3). Based on convex duality, Pilanci & Ergen (2020) derive a semi-definite program to find a
global minimizer of (3). A huge drawback is that this method scales exponentially in the dimension d. Later,
several accelerations based on convex optimization algorithms have been proposed (Mishkin et al., 2022; Bai
et al., 2023). Following a different approach, Barbu (2023) proposed to use an alternating minimization over
the parameters w and b that keeps the activation pattern fixed throughout the training. While this has
an improved complexity of O(d3) in d, the approach is still restricted to ReLU-like functions Φ. Moreover,
gradient-based optimization of the parameters for a generative (proposal) network such as ours is empirically
known to scale very well with d. A discussion of the rich literature on global minimization guarantees in the
over-parameterized regime (N ≫ M) is not within the scope of a sparse architecture (1).

Bayesian Networks Another approach that samples neural network weights is Bayesian neural networks
(BNNs) (Neal, 2012; Jospin et al., 2022). This allows to capture the uncertainty on the weights in over-
parameterized architectures. A fundamental difference to our approach and RFMs is that we sample the
features (wl)N

l=1 independently from the same distribution, while BNNs usually learn a separate one for each
wl. Further, BNNs are usually trained by minimizing an evidence lower bound instead of (8), see for example
(Graves, 2011; Blundell et al., 2015), which is required to prevent collapsing distributions.

3 Generative Feature Learning

Given data points (xk, yk)M
k=1 with yk ≈ f(xk) for some underlying f : [0, 1]d → R, we aim to find the optimal

features w = (wl)N
l=1 ⊂ Rd and weights b ∈ CN such that fw,b ≈ f , where fw,b is defined in (1). Before we

give our approach, we discuss two important instances of the nonlinearity Φ: R → C from the literature.

• Fourier Features: The choice Φ(x) = e2πix is reasonable if the ground-truth function f can be
represented by few Fourier features, e.g., if it is smooth. As discussed in Section 2, the deployed
features w are commonly selected by randomized pruning algorithms.

• 2-Layer Neural Network: For Φ: R → R, we can restrict ourselves to b ∈ RN . Common examples
are the ReLU Φ(x) = max(x, 0) and the sigmoid Φ(x) = ex

1+ex . Then, fw,b corresponds to a 2-layer
neural network (i.e., with one hidden layer). Using the so-called bias trick, we can include a bias
into (1). That is, we use padded data-points (xk, 1) ∈ Rd+1 such that the last entry of the feature
vectors wl ∈ Rd+1 can act as bias. Similarly, an output bias can be included.

In the following, we outline our procedure for optimizing the parameters w and b for a general fw,b of the
form (1). First, we derive an analytic formula for the optimal weights b in the empirical risk minimization
(3) with fixed features w. Then, in the spirit of random Fourier features, we propose to sample the w from
a proposal distribution pw, which we learn based on the generative modeling ansatz pw = Gθ#N (0, Id). As
last step, we fine-tune the sampled features w = Gθ(z) by updating a set of sampled latent features z with
the Adam optimizer. In order to be able to deal with noisy function values yk ≈ f(xk), we can regularize
the approximation fw,b during training. Our complete approach is summarized in Algorithm 1.

3.1 Computing the Optimal Weights

For fixed w = (wl)M
l=1, any optimal weights b(w) ∈ CN for (3) solve the linear system

AT
wAwb(w) = AT

wy, (5)

where y = (yk)N
k=1 and Aw = (Φ(⟨xk, wl⟩))N,M

k,l=1. In order to stabilize the numerical solution of (5), we deploy
Tikhonov regularization with small regularization strength ε > 0. This resolves the potential rank deficiency
of AT

wAw and we compute b(w) as the unique solution of

(AT
wAw + εI)b(w) = AT

wy. (6)

For ϵ → 0, the solution of (6) converges to the minimal norm solution of (5). A key aspect of our approach is
that we can compute ∇wb(w) using the implicit function theorem. This requires solving a linear equation of

3

Under review as submission to TMLR

Algorithm 1 GFT and GFT-r training procedures.
1: Given: data (xk, yk)M

k=1, architecture fw,b as in (1), generator Gθ, latent distribution η
2: while training Gθ do
3: sample N latent zl ∼ η and set w = Gθ(z)
4: compute optimal b(w) and ∇wb(w) based on (6)
5: compute ∇θL(θ) or ∇θLreg(θ) with automatic differentiation
6: perform Adam update for θ

7: if GFT-r then
8: while refining w do
9: set w = Gθ(z)

10: compute optimal b(w) and ∇wb(w) based on (6)
11: compute ∇zF (z) or ∇zFreg(z) with automatic differentiation
12: perform Adam update for z

13: Output: features w and optimal weights b(w)

the form (6) with a different right hand side. For small N , the most efficient approach for solving (6) is to use
a LU decomposition, and to reuse the decomposition for the backward pass. This procedure is implemented
in many automatic differentiation packages such as PyTorch, and no additional coding is required.

By inserting the solution b(w) of (6) into the empirical loss (3), we obtain the reduced loss

L(w) =
M∑

k=1
|f(xk) − fw,b(w)(xk)|2. (7)

Naively, we can try to minimize (7) directly via a gradient-based method (such as Adam with its default
parameters) starting at some random initialization w0 = (w0

l)N
l=1 ⊂ Rd. We refer to this as feature op-

timization (F-Opt). However, L(w) is non-convex, and our comparisons in Section 4 reveal that feature
optimization frequently gets stuck in local minima. Consequently, a good initialization w0 is crucial if we
want to minimize (7) with a gradient-based method. In the spirit of random Fourier features, we propose to
initialize the w as independent identically distributed (iid) samples from a proposal distribution pw. To the
best of our knowledge, current random Fourier feature methods all rely on a handcrafted pw.

3.2 Learning the Proposal Distribution

Since the optimal pw is in general not expressible without knowledge of f , we aim to learn it from the
available data (xk, yk)M

k=1 based on a generative model. That is, we take a simple latent distribution η (such
as the normal distribution N (0, Id)) and make the parametric ansatz pw = Gθ#η. Here, Gθ : Rd → Rd is
a fully connected neural network with parameters θ and # denotes the push-forward of η under Gθ. To
optimize the parameters θ of the distribution pw = Gθ#η, we minimize the expectation of the reduced loss
(7) with iid features sampled from Gθ#η, namely the loss

L(θ) = Ew∼(Gθ#η)⊗N [L(w)] = Ez∼η⊗N [L(Gθ(z))] = Ez∼η⊗N

[
M∑

k=1
|f(xk) − fGθ(z),b(Gθ(z))(xk)|2

]
, (8)

where the notation µ⊗N denotes N -times the product measure of µ. We minimize the loss (8) by a stochastic
gradient-based algorithm. That is, in each step, we sample one realization z ∼ η⊗N of the latent features to
get an estimate for the expectation in (8). Then, we compute the gradient of the integrand with respect to θ
for this specific z, and update θ with our chosen optimizer. In the following, we provide some intuition why
this outperforms standard training approaches. In the early training phase, most of the sampled features w
do not fit to the data. Hence, they suffer from vanishing gradients and are updated only slowly. On the other
hand, since the stochastic generator Gθ#η leads to an evaluation of the objective L(w) at many different
locations, we quickly gather gradient information for a large variety of features. In particular, always taking
fresh samples from the iteratively updated proposal distribution pw helps to get rid of useless features.

4

Under review as submission to TMLR

3.3 Feature Refinement: Adam in the Latent Space

Once the feature distribution pw = Gθ#η is learned, we sample a collection z0 = (z0
l)N

l=1 of iid latent features
z0

l ∼ η. By design, the associated features w0 = Gθ(z0) (with Gθ being applied elementwise to z0
1 , ..., z0

N)
serve as an estimate for a minimizer of (7). Since these w0 are only an estimate, we refine them similarly as
described for the plain feature optimization approach from Section 3.1. More precisely, starting in z0 instead
of a random initialization, we minimize the function

F (z) = L(Gθ(z)) =
M∑

k=1
|f(xk) − fGθ(z),b(Gθ(z))(xk)|2, (9)

where L is the loss function from (7). By noting that ∇F (z) = ∇Gθ(z)T∇L(Gθ(z)), this corresponds to
initializing the Adam optimizer for the function L(w) with w0 = Gθ(z0), and to additionally precondition it
by the Jacobian matrix of the generator Gθ. If the step size is chosen appropriately, we expect that the value
of F (z) decreases with the iterations. Conceptually, our refinement approach is similar to many second-order
optimization routines, which also require a good initialization for convergence.

3.4 Regularization for Noisy Data

If the number of training points M is small or if the noise on the yk ≈ f(xk) is strong, minimizing the
empirical risk (3) can suffer from overfitting (i.e., the usage of high-frequency features). To prevent this, we
deploy a regularizer of the form (4). Choosing p = q = 1 and D = ∇ in (4) leads to the following training
problem with (anisotropic) total variation regularization (Acar & Vogel, 1994; Chan & Esedoglu, 2005)

ŵ ∈ arg min
w

M∑
k=1

|yk − fw,b(w)(xk)|2 + λR(w), R(w) :=
∫

[amin,amax]
∥∇fw,b(w)(x)∥1dx, (10)

where λ > 0, and amin = min{xk : k = 1, ..., M} and amax = max{xk : k = 1, ..., M} are the entry-wise
minimum and maximum of the training data. For our generative training loss (8), adding the regularizer
from (10) leads to

Lreg(θ) = Ew∼(Gθ#η)⊗N [L(w) + λR(w)] . (11)

Similarly, we replace the F from (9) for the feature refinement in the latent space by

Freg(z) = F (z) + λR(Gθ(z)). (12)

If we have specific knowledge about the function f that we intend to approximate, then we can apply more
restrictive regularizers of the form (10). As discussed in Section 2, several RFMs instead regularize the
feature selection by enforcing that the features wl ∈ Rd only have a few non-zero entries (sparse features).
Remark 1. Given the nature of our numerical examples, we only discussed f : [0, 1]d → R with data points
yk ∈ R. The extension of our method to multivariate f : [0, 1]d → Rn is straight forward.

4 Experiments

We demonstrate the effectiveness of our method with three numerical examples. First, we visually inspect
the obtained features. Here, we also check if they recover the correct subspaces. Secondly, we benchmark
our methods on common test functions from approximation theory, i.e., with a known groundtruth. Lastly,
we target regression on some datasets from the UCI database (Kelly et al., 2023).

4.1 Setup and Comparisons

For all our experiments, we set up the architecture fw, b in (1) with N = 100 features (wl)N
l=1 and one of the

nonlinearities Φ introduced in Section 3:

5

Under review as submission to TMLR

• We deploy Φ(x) = e2πix without the bias trick. This corresponds to the approximation of the
underlying ground truth function by Fourier features.

• We deploy Φ(x) = ex

1+ex , which corresponds to a 2-layer network with sigmoid activation functions.
To improve the expressiveness of the model, we apply the bias trick for both layers.

An ablation for different choices of N is given in Appendix A. Further, we choose the generator Gθ for the
proposal distribution pw = Gθ#N (0, Id) as ReLU network with 3 hidden layers and 512 neurons per hidden
layer. To pick the regularization strength λ, we divide the original training data into a training (90%) and
a validation (10%) set. Then, we train Gθ for each λ ∈ {0} ∪ {1 × 10k : k = −4, ..., 0} and choose the λ
with the best validation error. To minimize the regularized loss functions Lreg (GFT, see also (11)) and
Freg (GFT-r, see also (12)), we run 40000 steps of the Adam optimizer. The remaining hyperparameters are
given in Appendix B. We benchmark all our methods from Section 3.

• F-Opt: In the feature optimization, we minimize the L(w) from (7) with a gradient-based optimizer
starting with features w drawn from a standard normal distribution. As explained in Section 3.1, we
expect that the optimization gets stuck in a local minimum. We verify this claim in our experiments.

• GFT: For the generative feature training as proposed in Section 3.2, we minimize the loss L(θ) from
(8) and draw iid features w from the generator Gθ during evaluation.

• GFT-r: For the refined generative feature training, we generate features using GFT and refine them
with the procedure from Section 3.3. This requires to minimize the loss F (z) in (9).

For each method, we specify the choice of Φ as “Fourier” and “sigmoid” activation in the corresponding
tables. We compare the obtained results with algorithms from the random Fourier feature literature, and
with standard training of neural networks. More precisely, we consider the following comparisons:

• Sparse Fourier Features: We compare with the random Fourier feature based methods SHRIMP
(Xie et al., 2022), HARFE (Saha et al., 2023), SALSA (Kandasamy & Yu, 2016) and ANOVA-
boosted random Fourier features (ANOVA-RFF; Potts & Weidensager, 2024). We do not rerun the
methods and take the results reported by Xie et al. (2022); Potts & Weidensager (2024).

• 2-Layer Neural Networks: We train the parameters of the 2-layer neural networks fw, b with the
Adam optimizer. Here, we use exactly the same architecture, loss function and activation function
as for GFT. Additionally, we include results for the ReLU activation function Φ(x) = max(x, 0).

• Kernel Ridge Regression: We perform a kernel ridge regression (Cristianini & Shawe-Taylor,
2000) with the Gaussian kernel, where the kernel parameter is chosen by the median rule.

Our PyTorch implementation is available online1. We run all experiments on a NVIDIA RTX 4090 GPU.
Depending on the specific model, the training takes between 30 seconds and 2 minutes.

4.2 Visualization of Generated Features

First, we inspect the learned features w in a simple setting. To this end, we consider the function g : R2 → R
with g(x) = sin(4πx2

1 +1)+cos(4π(x4
2 +x2). Since each summand of g depends either on x1 or x2, its Fourier

transform is supported on the coordinate axes. To make the task more challenging, we slightly adapt the
problem by concatenating g with two linear transforms Ai, which leads to the three test functions

gi(x) = g(Aix), with A1 =
(

1 0
0 1

)
, A2 =

(
cos(π

4) − sin(π
4)

sin(π
4) cos(π

4)

)
, A3 =

(
1 0.3

0.3 1

)
. (13)

In all cases, the Fourier transform is supported on a union of two subspaces. Now, we learn the features w
with our GFT and GFT-r method based on 2000 samples that are drawn uniformly from [0, 1]2, and plot

1The code is available as supplementary material.

6

Under review as submission to TMLR

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
ANOVA-RFF for g1, test MSE: 6.45E-05

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
ANOVA-RFF for g2, test MSE: 9.66E-01

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
ANOVA-RFF for g3, test MSE: 8.88E-01

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Neural net for g1, test MSE: 3.50E-02

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Neural net for g2, test MSE: 6.95E-03

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Neural net for g3, test MSE: 4.94E-02

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT for g1, test MSE: 1.23E-04

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT for g2, test MSE: 3.84E-05

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT for g3, test MSE: 2.49E-03

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT-r for g1, test MSE: 6.17E-07

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT-r for g2, test MSE: 1.03E-06

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT-r for g3, test MSE: 1.63E-04

Figure 1: Location of the generated features for the gi from (13), where the marker size reflects the magnitude
of the associated weights bl. The gray lines indicate the support of the Fourier transform of gi. Since ANOVA-
RFF constrains the features to be on the axes, it only works for g1. For the standard neural network training,
the features are not pushed to the axis. This indicates that the optimization got stuck in a local minimum.

7

Under review as submission to TMLR

them in Figure 1. The gray lines indicate the support of the Fourier transforms of gi, and the size of the
markers indicates the magnitude of the associated bl. For all functions gi, the features w sampled with GFT
are mostly located in the support of the Fourier transform. The very few features that are located outside
of it can be explained by numerical errors and are mostly removed by the refinement procedure GFT-r. In
contrast, for ANOVA-RFF, the w are restricted to be located on the axes. Consequently, it cannot work
for g2 and g3, and the error obtained is large. For gradient-based neural network training, the w are not
pushed to the axis, indicating that the optimization got stuck at a local minimum. For functions where the
subspaces are orthogonal, such as g2, this issue was recently addressed in Ba et al. (2024) by learning the
associated transform in the feature space.

4.3 Function Approximation

We use the same experimental setup as in (Potts & Weidensager, 2024, Table 7.1), that is, the test functions

• Polynomial: f1(x) = x2
4 + x2x3 + x1x2 + x4;

• Isigami: f2(x) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1);

• Friedmann-1: f3(x) = 10 sin(πx1x2) + 20(x3 − 1
2)2 + 10x4 + 5x5.

The input dimension d is set to 5 or 10 for each fk. In particular, the fk might not depend on all entries of
the input x. For their approximation, we are given samples xk ∼ U[0,1]d , k = 1, ..., M , and the corresponding
noise-less function values fk(xk). The number of samples M and the dimension d are specified for each
setting. As test set we draw M additional samples from U[0,1]d . We deploy our methods as well as standard
neural network training to the architecture fw,b. The MSEs on the test set are given in Table 1. There,
we also include ANOVA-random Fourier features, SHRIMP and HARFE for comparison. We always report
the MSE for the best choice of ρ from Potts & Weidensager, 2024, Table 7.1. The GFT-r with Fourier
activation functions outperforms the other approaches significantly. In particular, both the GFT and GFT-r
consistently improve over the gradient-based training of the architecture fw,b. This is in line with the analysis
of gradient-based training in recent works (Boob et al., 2022; Holzmüller & Steinwart, 2022). As expected,
Fourier activation functions are best suited for this task.

So far, we considered functions fi that can be represented as sums, where each summand only depends
on a small number of inputs xi. While this assumption is crucial for the sparse Fourier feature methods
from Table 1, it is not required for our methods. Therefore, we also benchmark them on the following
non-decomposable functions and compare the results with standard gradient-based neural network training:

• h1(x) = sin(
∑d

i=1 xi) + ∥x∥2
2

• h2(x) =
√

∥x − 1
2 e∥1, where e is the vector with all entries equal to one

• h3(x) =
√

f3(x) =
√

10 sin(πx1x2) + 20(x3 − 1
2)2 + 10x4 + 5x5.

The results are given in Table 2. As in the previous case, we can see a clear advantage of GFT and GFT-r.

4.4 Regression on UCI Datasets

Next, we apply our method for regression on several UCI datasets Kelly et al. (2023). For this, we do not
have an underlying ground truth function f . Here, we compare our methods with standard gradient-based
neural network training, SHRIMP and SALSA. To this end, we use the numerical setup of SHRIMP. For
each dataset, the MSE on the test split is given in Table 3. Compared to the other methods, SHRIMP
and SALSA appear a bit more robust to noise and outliers, which frequently occur in the UCI datasets.
This behavior is not surprising, since the enforced sparsity of the features wl for those methods is a strong
implicit regularization. Incorporating similar sparsity constraints into our generative training is left for future
research. Even without such a regularization, GFT-r achieves the best performance on most datasets. Again,
both GFT and GFT-r achieve significantly better results than standard training with the Adam optimizer.

8

Under review as submission to TMLR

Table 1: Comparison with sparse feature methods for function approximation: We report the MSE over the
test set averaged over 5 runs. The values for ANOVA-RFF, SHRIMP and HARFE are taken from Potts &
Weidensager (2024). The deployed λ is indicated below each result. The best performance is highlighted.

Method Function f1 Function f2 Function f3

Method Activation (d, M) = (5, 300) (d, M) = (10, 500) (d, M) = (5, 500) (d, M) = (10, 1000) (d, M) = (5, 500) (d, M) = (10, 200)
ANOVA-RFF Fourier 1.40 × 10−6 1.46 × 10−6 2.65 × 10−5 2.62 × 10−5 1.00 × 10−4 9.80 × 10−3

SHRIMP Fourier 1.83 × 10−6 5.00 × 10−4 8.20 × 10−3 5.50 × 10−3 2.00 × 10−4 3.81 × 10−1

HARFE Fourier 5.82 × 10−1 2.38 × 100 1.38 × 10−1 6.65 × 10−1 3.64 × 100 3.98 × 100

kernel ridge reg 5.90 × 10−5 4.40 × 10−4 7.1 × 10−5 5.10 × 10−4 1.15 × 10−2 1.69 × 100

neural net

Fourier 2.36 × 10−4 1.03 × 10−3 5.28 × 10−5 2.23 × 10−4 3.14 × 10−3 2.96 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 3.84 × 10−5 5.34 × 10−5 2.25 × 10−5 3.71 × 10−5 2.56 × 10−3 2.15 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−3)

ReLU 4.57 × 10−4 1.25 × 10−3 1.21 × 10−4 1.65 × 10−4 6.77 × 10−2 1.55 × 100

(λ = 1 × 10−4) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−3)

F-Opt
Fourier 2.50 × 10−3 1.08 × 100 2.36 × 10−6 1.31 × 100 5.93 × 10−2 1.68 × 10+1

(λ = 1 × 10−4) (λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−1) (λ = 0) (λ = 1 × 10−4)

sigmoid 1.15 × 10−6 2.77 × 10−4 1.43 × 10−6 9.54 × 10−6 5.45 × 10−4 2.91 × 100

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0)

GFT
Fourier 2.72 × 10−7 5.00 × 10−7 1.03 × 10−7 4.09 × 10−7 5.87 × 10−5 4.47 × 10−3

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 3.18 × 10−6 1.81 × 10−6 4.09 × 10−7 6.01 × 10−7 6.40 × 10−4 1.18 × 10−2

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4)

GFT-r
Fourier 6.05 × 10−8 5.46 × 10−8 2.02 × 10−8 8.15 × 10−8 6.26 × 10−6 1.89 × 10−4

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0)

sigmoid 1.05 × 10−6 5.60 × 10−7 4.97 × 10−8 1.12 × 10−7 1.50 × 10−5 9.94 × 10−3

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4)

Table 2: Function approximation: We report the MSE over the test set averaged over 5 runs. The deployed
λ is indicated below each result. The best performance is highlighted.

Method Function h1 Function h2 Function h3

Method Activation (d, M) = (10, 1000) (d, M) = (20, 1000) (d, M) = (5, 500)
kernel ridge reg 8.91 × 10−2 3.74 × 10−3 5.55 × 10−3

neural net

Fourier 6.03 × 10−2 1.34 × 10−2 2.68 × 10−4

(λ = 1 × 10−3) (λ = 0) (λ = 0)

sigmoid 4.17 × 10−2 5.94 × 10−3 4.42 × 10−4

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4)

ReLU 5.64 × 10−1 6.89 × 10−3 5.56 × 10−3

(λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−3)

F-Opt
Fourier 4.27 × 10+1 5.06 × 100 7.24 × 10−3

(λ = 1 × 100) (λ = 1 × 10−4) (λ = 1 × 10−3)

sigmoid 6.43 × 10−2 7.08 × 10−3 2.35 × 10−4

(λ = 0) (λ = 0) (λ = 0)

GFT
Fourier 2.62 × 10−2 3.54 × 10−3 2.34 × 10−4

(λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 9.36 × 10−2 1.10 × 10−2 4.70 × 10−4

(λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4)

GFT-r
Fourier 8.96 × 10−3 2.57 × 10−3 1.04 × 10−4

(λ = 0) (λ = 1 × 10−4) (λ = 0)

sigmoid 6.06 × 10−2 1.00 × 10−2 2.84 × 10−4

(λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−4)

5 Discussion

Summary We proposed a training procedure for fw,b as in (1) with only a few hidden neurons w. In our
procedure, we sample the w from a generative model and compute the optimal b by solving a linear system.
To enhance the results, we apply a feature refinement scheme in the latent space of the generative model and
regularize the loss function. Numerical examples have shown that the proposed generative feature training
significantly outperforms standard training procedures.

9

Under review as submission to TMLR

Table 3: Regression on UCI datasets: We report the MSE on the test datasets averaged over 5 runs. The
values for SHRIMP and SALSA are taken from Xie et al. (2022). The deployed λ is indicated below each
result. The best performance is highlighted.

Method Dataset

Method Activation Propulsion Galaxy Airfoil CCPP Telemonit Skillkraft
(d, M) = (15, 200) (d, M) = (20, 2000) (d, M) = (41, 750) (d, M) = (59, 2000) (d, M) = (19, 1000) (d, M) = (18, 1700)

SHRIMP Fourier 1.02 × 10−6 5.41 × 10−6 2.65 × 10−1 6.55 × 10−2 6.00 × 10−2 5.81 × 10−1

SALSA Fourier 8.81 × 10−3 1.35 × 10−4 5.18 × 10−1 6.78 × 10−2 3.47 × 10−2 5.47 × 10−1

kernel ridge reg 8.60 × 10−3 2.38 × 10−3 8.10 × 10−1 1.24 × 10−1 1.06 × 10−1 6.30 × 100

neural net

Fourier 9.07 × 10−3 4.46 × 10−4 3.41 × 10−1 6.97 × 10−2 2.51 × 10−2 6.01 × 10−1

(λ = 1 × 10−2) (λ = 1 × 10−4) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−3) (λ = 1 × 10−1)

sigmoid 9.21 × 10−3 1.67 × 10−4 3.31 × 10−1 8.01 × 10−2 7.86 × 10−2 1.57 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−3) (λ = 1 × 10−3)

ReLU 5.92 × 10−4 4.72 × 10−4 3.66 × 10−1 6.73 × 10−2 2.71 × 10−2 2.23 × 100

(λ = 1 × 10−3) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−2) (λ = 1 × 100)

F-Opt
Fourier 6.96 × 10−1 3.51 × 100 1.05 × 100 9.97 × 10−1 1.01 × 100 1.01 × 100

(λ = 1 × 10−3) (λ = 1 × 10−1) (λ = 1 × 10−4) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 100)

sigmoid 1.57 × 10−2 1.91 × 10−4 5.92 × 10−1 7.35 × 10−2 7.38 × 10−2 5.79 × 10−1

(λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−3) (λ = 1 × 10−1) (λ = 1 × 10−3) (λ = 1 × 100)

GFT
Fourier 8.31 × 10−7 3.31 × 10−5 2.34 × 10−1 8.06 × 10−2 1.05 × 10−2 5.66 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−2) (λ = 1 × 10−2) (λ = 1 × 100)

sigmoid 1.22 × 10−5 7.42 × 10−5 2.90 × 10−1 6.86 × 10−2 1.35 × 10−2 9.68 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−4) (λ = 1 × 10−1)

GFT-r
Fourier 6.97 × 10−7 5.36 × 10−6 2.34 × 10−1 8.04 × 10−2 6.48 × 10−3 5.65 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−2) (λ = 0 × 100) (λ = 1 × 100)

sigmoid 1.67 × 10−5 1.85 × 10−5 2.89 × 10−1 6.84 × 10−2 9.39 × 10−3 9.88 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 0) (λ = 1 × 10−1)

Outlook Our approach can be extended in several directions. First, we want to train deeper networks in
a greedy way similar to (Belilovsky et al., 2019). Recently, a similar approach was considered in the context
of sampled networks by Bolager et al. (2023). Moreover, we can encode a sparse structure on the features by
replacing the latent distribution N(0, Id) with a lower-dimensional latent model or by considering mixtures
of generative models. From a theoretical side, we want to characterize the global minimizers of the functional
in (8) and their relations to the Fourier transform of the target function.

Limitations If N in (1) gets large, solving the linear system (6) becomes expensive. However, this corre-
sponds to the overparameterized regime where gradient-based methods work well. Moreover, the computation
of the optimal b depends on all data points. Consequently, if we do minibatching, the output weights b are
batch-dependent, and both the theoretical and practical implications remain open. Instead, we emphasize
that one motivation for our method is the treatment of small data sets, where no minibatching is required.
This is actually also one of the main use cases for 2-layer neural networks. Finally, note that GFT is currently
restricted to the L2-loss function, which limits the applicability of GFT to non-regression tasks. For other
loss functions, bilevel learning methods could be used to compute and differentiate the optimal output layer.
This is beyond the scope of this paper, and we leave this point for future work.

References
Robert Acar and Curtis R Vogel. Analysis of bounded variation penalty methods for ill-posed problems.

Inverse Problems, 10(6):1217–1229, 1994.

Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of Bounded Variation and Free Discontinuity
Problems. Oxford Mathematical Monographs. Oxford University Press, New York, 2000.

Fatima Antarou Ba, Oleh Melnyk, Christian Wald, and Gabriele Steidl. Sparse additive function decompo-
sitions facing basis transforms. Foundations of Data Science, 6(4):514–552, 2024.

Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Efficient global optimization of two-layer ReLU net-
works: Quadratic-time algorithms and adversarial training. SIAM Journal on Mathematics of Data Sci-
ence, 5(2):446–474, 2023.

10

Under review as submission to TMLR

Yaxuan Bai, Xiaofan Lu, and Linan Zhang. Function approximations via ℓ1-ℓ2 optimization. Journal of
Applied & Numerical Optimization, 6(3):371–389, 2024.

Adrian Barbu. Training a two-layer ReLU network analytically. Sensors, 23(8):4072, 2023.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale to Ima-
genet. In International Conference on Machine Learning, pp. 583–593. PMLR, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International Conference on Machine Learning, pp. 1613–1622. PMLR, 2015.

Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of deep
neural networks. In Advances in Neural Information Processing Systems, volume 37, 2023.

Digvijay Boob, Santanu S Dey, and Guanghui Lan. Complexity of training ReLU neural network. Discrete
Optimization, 44:100620, 2022.

Tony F Chan and Selim Esedoglu. Aspects of total variation regularized l1 function approximation. SIAM
Journal on Applied Mathematics, 65(5):1817–1837, 2005.

Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact of kernel approximation on learning
accuracy. In International Conference on Artificial Intelligence and Statistics, pp. 113–120, 2010.

Nello Cristianini and John Shawe-Taylor. An introduction to support vector machines and other kernel-based
learning methods. Cambridge University Press, 2000.

Oliver RA Dunbar, Nicholas H Nelsen, and Maya Mutic. Hyperparameter optimization for randomized
algorithms: a case study on random features. Statistics and Computing, 35(3):1–28, 2025.

Alok Dutt and Vladimir Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM Journal on
Scientific Computing, 14(6):1368–1393, 1993.

Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural networks.
Communications in Mathematical Sciences, 17(5):1407–1425, 2019.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information Pro-
cessing Systems, volume 24, 2011.

Abolfazl Hashemi, Hayden Schaeffer, Robert Shi, Ufuk Topcu, Giang Tran, and Rachel Ward. Generalization
bounds for sparse random feature expansions. Applied and Computational Harmonic Analysis, 62:310–330,
2023.

Johannes Hertrich. Fast kernel summation in high dimensions via slicing and Fourier transforms. SIAM
Journal on Mathematics of Data Science, 6:1109–1137, 2024.

Johannes Hertrich, Tim Jahn, and Michael Quellmalz. Fast summation of radial kernels via QMC slicing.
International Conference on Learning Representations, 2025.

David Holzmüller and Ingo Steinwart. Training two-layer ReLU networks with gradient descent is inconsis-
tent. Journal of Machine Learning Research, 23(181):1–82, 2022.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and applications.
Neurocomputing, 70(1-3):489–501, 2006.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. Hands-
on Bayesian neural networks—a tutorial for deep learning users. IEEE Computational Intelligence Maga-
zine, 17(2):29–48, 2022.

Aku Kammonen, Jonas Kiessling, Petr Plecháč, Mattias Sandberg, and Anders Szepessy. Adaptive random
Fourier features with Metropolis sampling. Foundations of Data Science, 2(3):309–332, 2020.

11

Under review as submission to TMLR

Kirthevasan Kandasamy and Yaoliang Yu. Additive approximations in high dimensional nonparametric
regression via the SALSA. In International Conference on Machine Learning, pp. 69–78. PMLR, 2016.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning repository, 2023. URL
https://archive.ics.uci.edu.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, and Barnabas Poczos. Implicit kernel
learning. In International Conference on Artificial Intelligence and Statistics, pp. 2007–2016. PMLR,
2019a.

Lingfeng Li, Xue-Cheng Tai, and Jiang Yang. Generalization error analysis of neural networks with gradient
based regularization. Communications in Computational Physics, 32(4):1007–1038, 2022.

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable Fourier features for multi-dimensional
spatial positional encoding. Advances in Neural Information Processing Systems, 34:15816–15829, 2021.

Yanjun Li, Kai Zhang, Jun Wang, and Sanjiv Kumar. Learning adaptive random features. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4229–4236, 2019b.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of random Fourier
features. In International Conference on Machine Learning, pp. 3905–3914. PMLR, 2019c.

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens. Random features for kernel approxima-
tion: A survey on algorithms, theory, and beyond. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):7128–7148, 2021.

Aaron Mishkin, Arda Sahiner, and Mert Pilanci. Fast convex optimization for two-layer ReLU networks:
Equivalent model classes and cone decompositions. In International Conference on Machine Learning, pp.
15770–15816. PMLR, 2022.

Radford M Neal. Bayesian Learning for Neural Networks. Springer Science & Business Media, 2012.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time convex
optimization formulations for two-layer networks. In International Conference on Machine Learning, pp.
7695–7705. PMLR, 2020.

Daniel Potts and Michael Schmischke. Interpretable approximation of high-dimensional data. SIAM Journal
on Mathematics of Data Science, 3(4):1301–1323, 2021.

Daniel Potts and Laura Weidensager. ANOVA-boosting for random Fourier features. arXiv preprint
2404.03050, 2024.

Daniel Potts, Gabriele Steidl, and Manfred Tasche. Fast Fourier transforms for nonequispaced data: A
tutorial. Modern Sampling Theory: Mathematics and Applications, pp. 247–270, 2001.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems, volume 20, 2007.

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In 46th Annual
Allerton Conference on Communication, Control, and Computing, pp. 555–561. IEEE, 2008.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features. In
Advances in Neural Information Processing Systems, volume 30, 2017.

Nicolaj Rux, Michael Quellmalz, and Gabriele Steidl. Slicing of radial functions: a dimension walk in the
Fourier space. Sampling Theory, Signal Processing, and Data Analysis, 23(1):1–40, 2025.

Esha Saha, Hayden Schaeffer, and Giang Tran. HARFE: Hard-ridge random feature expansion. Sampling
Theory, Signal Processing, and Data Analysis, 21(2):27, 2023.

12

https://archive.ics.uci.edu

Under review as submission to TMLR

Table 4: Comparison for function approximation with: We report the MSE over the test set averaged over 5
runs. The table contains the same experiments as Table 1 with N = 50 features. The deployed λ is indicated
below each result. The best performance is highlighted.

Method Function f1 Function f2 Function f3

Method Activation (d, M) = (5, 300) (d, M) = (10, 500) (d, M) = (5, 500) (d, M) = (10, 1000) (d, M) = (5, 500) (d, M) = (10, 200)

neural net

Fourier 3.35 × 10−5 9.22 × 10−5 6.97 × 10−6 8.15 × 10−6 2.45 × 10−3 4.65 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−3)

sigmoid 1.03 × 10−5 1.52 × 10−5 1.19 × 10−5 1.45 × 10−5 2.14 × 10−3 2.27 × 100

(λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−4)

ReLU 4.71 × 10−4 1.40 × 10−3 3.00 × 10−4 1.12 × 10−4 2.08 × 10−1 1.89 × 100

(λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−4)

F-Opt
Fourier 1.60 × 10−5 2.52 × 100 5.01 × 10−6 7.45 × 100 5.13 × 10−3 2.60 × 10+2

(λ = 1 × 10−4) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 2.44 × 10−4 8.05 × 10−5 3.58 × 10−3 1.69 × 10−6 1.08 × 100 3.94 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4)

GFT
Fourier 9.49 × 10−5 4.19 × 10−5 5.71 × 10−5 1.98 × 10−5 9.17 × 10−2 8.72 × 10−3

(λ = 0) (λ = 1 × 10−3) (λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−3) (λ = 1 × 10−4)

sigmoid 1.94 × 10−1 6.08 × 10−5 5.41 × 10−1 9.01 × 10−4 9.81 × 100 1.09 × 10−2

(λ = 1 × 10−4) (λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−2) (λ = 1 × 10−4) (λ = 0)

GFT-r
Fourier 5.52 × 10−6 2.94 × 10−7 1.24 × 10−6 9.75 × 10−7 8.72 × 10−3 2.02 × 10−4

(λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 0)

sigmoid 1.94 × 10−1 6.96 × 10−2 4.33 × 10−1 4.78 × 10−1 2.66 × 100 2.82 × 10−3

(λ = 1 × 10−4) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 0)

Table 5: Comparison for function approximation with: We report the MSE over the test set averaged over
5 runs. The table contains the same experiments as Table 1 with N = 200 features. The deployed λ is
indicated below each result. The best performance is highlighted.

Method Function f1 Function f2 Function f3

Method Activation (d, M) = (5, 300) (d, M) = (10, 500) (d, M) = (5, 500) (d, M) = (10, 1000) (d, M) = (5, 500) (d, M) = (10, 200)

neural net

Fourier 7.22 × 10−4 1.21 × 10−2 1.56 × 10−4 1.36 × 10−4 2.26 × 10−3 3.95 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 0)

sigmoid 1.54 × 10−5 2.35 × 10−5 1.46 × 10−5 4.91 × 10−5 1.21 × 10−3 1.79 × 100

(λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−4) (λ = 0)

ReLU 3.03 × 10−4 1.05 × 10−3 1.78 × 10−4 2.02 × 10−4 6.20 × 10−2 1.84 × 100

(λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4)

F-Opt
Fourier 9.45 × 10−3 1.52 × 10−2 4.47 × 10−5 2.34 × 10−2 1.29 × 100 2.11 × 10+1

(λ = 1 × 10−3) (λ = 1 × 10−2) (λ = 1 × 10−4) (λ = 1 × 10−2) (λ = 1 × 10−2) (λ = 1 × 100)

sigmoid 2.32 × 10−6 5.73 × 10−4 1.19 × 10−6 8.92 × 10−5 7.23 × 10−4 2.40 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 0) (λ = 0) (λ = 0)

GFT
Fourier 6.66 × 10−7 2.33 × 10−7 5.73 × 10−8 6.53 × 10−7 2.26 × 10−5 1.51 × 100

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4)

sigmoid 2.84 × 10−6 3.52 × 10−6 2.04 × 10−7 3.05 × 10−7 1.62 × 10−4 1.75 × 10−2

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0)

GFT-r
Fourier 1.57 × 10−7 6.01 × 10−8 1.42 × 10−8 1.66 × 10−7 1.28 × 10−6 1.82 × 100

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4)

sigmoid 2.04 × 10−6 2.26 × 10−6 4.27 × 10−8 5.41 × 10−8 1.84 × 10−5 1.60 × 10−2

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0)

Yuege Xie, Robert Shi, Hayden Schaeffer, and Rachel Ward. SHRIMP: Sparser random feature models via
iterative magnitude pruning. In Proceedings of Mathematical and Scientific Machine Learning, volume
190, pp. 303–318. PMLR, 2022.

Ian En-Hsu Yen, Ting-Wei Lin, Shou-De Lin, Pradeep K Ravikumar, and Inderjit S Dhillon. Sparse random
feature algorithm as coordinate descent in Hilbert space. In Advances in Neural Information Processing
Systems, volume 27, 2014.

A Dependence on the Number of Features

We redo the experiments from Section 4.3 for N = 50 and N = 200. The results are given in Table 4 and 5.

13

Under review as submission to TMLR

B Implementation Details

We optimize the loss functions for GFT and for the feature refinement with the Adam optimizer using a
learning rate of 1 × 10−4 for 40000 steps. The regularization ϵ for solving the least squares problem (6)
is set to ϵ = 1 × 10−7. For the neural network optimization, we use the Adam optimizer with a learning
rate of 1 × 10−3 for 100000 steps. In all cases, we discretize the spatial integral for the regularization term
in (10) by 1000 samples. For the kernel ridge regression, we use a Gauss kernel with its parameter chosen
by the median rule. That is, we set it to the median distance of two points in the dataset. The PyTorch
implementation corresponding to our experiments is available as supplementary material.

14

	Introduction
	Related Work
	Generative Feature Learning
	Computing the Optimal Weights
	Learning the Proposal Distribution
	Feature Refinement: Adam in the Latent Space
	Regularization for Noisy Data

	Experiments
	Setup and Comparisons
	Visualization of Generated Features
	Function Approximation
	Regression on UCI Datasets

	Discussion
	Dependence on the Number of Features
	Implementation Details

