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Parameter Value

Environments AirSimNH, TrapCamera
Dataset size 39645 movies, 112x112x10 frames
Nominal FPS 30
Heading (yaw) VonMises(0, 2.5) (rad)
Heading (pitch) VonMises(0, 16) (rad)
Head rotation (yaw) Normal(σ = π/6) (rad/s)
Head rotation (pitch) Normal(σ = π/18) (rad/s)
Walking speed Uniform(0, 3) (m/s)
Height from ground Uniform(1.4, 2) (m)
Step size 0.003
Training epochs 100
Layers 0: 64 7x7x5 conv filters, stride 1x1x1

1: leaky ReLU, 3x3x1 maxpooling, 2x downsampling, batch norm
2: residual block

branch 1: 64 filters projected to 32 via 1x1x1 convs
branch 2: 32 1x1x1 filters, 8 3x3x1, 32 1x1x1, batch norm

3: residual block, 32 1x1x3 filters, 8 3x3x1, 32 1x1x1, batch norm
4: residual block, 32 1x1x1 filters, 8 3x3x1, 32 1x1x1, batch norm
5: residual block, 32 1x1x3 filters, 8 3x3x1, 32 1x1x1, batch norm

Boosting step size 0.1
Boosting max iterations 100

Table S1: Airsim dataset and training parameters
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Figure S1: A: Separability index of layer 1. B: pattern index for layers 1 and 2. C: population curves
for optic flow in layer 3
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Figure S2: Alignment between layers of DorsalNet and datasets when resizing stimuli. V1 alignment
shifts slightly higher as scale is increased, as expected. Alignment is nevertheless broadly similar
across different scales.
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Figure S3: CKA across layers. We used a battery of all stimuli from the airsim dataset to compare
representations across layers. We extracted the response of the central pixel of a representation in a
given layer and computed alignment between internal representations using centered kernel alignment
(CKA) [69]. 0 indicates no alignment, while 1 indicates perfect alignment between layers.

metric overall pitch yaw rotation pitch rotation yaw speed
area

v1 -0.39 0.13 0.11 -0.36 -0.54 -0.12
mt -0.66 -0.05 -0.02 -0.51 -0.64 -0.40
mst -0.53 0.05 0.05 -0.51 -0.69 -0.13

Table S2: Correlation between loss on heading task and performance on data from different areas
across models and layers. Performance on predicting head rotation parameters (rotation pitch and
rotation yaw) is most correlated with match to different brain areas.

V1 MT MST
scaling pvc1 pvc4 mt1 mt2 mst

motionnet 0.66X .303 (.044) .373 (.041) .221 (.018) .306 (.016) .403 (.052)
1X .276 (.042) .364 (.039) .238 (.018) .333 (.016) .441 (.053)
1.5X .343 (.040) .371 (.039) .252 (.019) .346 (.016) .452 (.050)

dorsalnet 0.66X .358 (.041) .380 (.040) .245 (.018) .388 (.016) .460 (.056)
1X .364 (.043) .370 (.039) .251 (.019) .381 (.017) .454 (.054)
1.5X .389 (.034) .359 (.038) .252 (.020) .370 (.017) .411 (.052)

Table S3: Relative performance of DorsalNet and MotionNet across different scalings of the input,
measured with ridge regression. MotionNet generally benefits from scaling up the videos (1.5X),
presumably because of its large second layer receptive fields (27x27). DorsalNet performance is
relatively constant across scalings. Table shows normalized pearson correlation (R; see Methods for
definition) of different models with different input scaling on different datasets.
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MT MST
scaling mt1 mt2 mst

motionnet 0.66X - - .336 (.050)
1X .159 (.012) .284 (.012) .361 (.048)
1.5X .160 (.011) .298 (.012) .385 (.047)

dorsalnet 0.66X - - .464 (.054)
1X .228 (.017) .370 (.016) .474 (.051)
1.5X .230 (.017) .362 (.016) .434 (.051)

Table S4: DorsalNet quantitatively performs best across the dorsal stream across different scalings,
as measured with boosting after downsampling. Table shows normalized pearson correlation (R; see
Methods for definition) of different models with different input scaling on different datasets.

V1 MT MST
scaling pvc1 pvc4 mt1 mt2 mst

motionnet 0.66X .371 (.048) .319 (.036) .157 (.012) .258 (.013) .345 (.049)
1X .426 (.050) .311 (.034) .158 (.012) .271 (.012) .359 (.048)
1.5X .460 (.051) .313 (.036) .158 (.012) .282 (.012) .365 (.047)

dorsalnet 0.66X .471 (.051) .355 (.038) .212 (.016) .353 (.016) .435 (.052)
1X .491 (.049) .313 (.039) .217 (.016) .348 (.016) .415 (.055)
1.5X .503 (.051) .313 (.034) .209 (.016) .328 (.016) .356 (.052)

Table S5: DorsalNet quantitatively performs best across the dorsal stream across different scalings,
as measured with boosting after subsampling. Table shows normalized pearson correlation (R; see
Methods for definition) of different models with different input scaling on different datasets.
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Figure S4: Correlation between heading loss and performance on dorsal stream datasets across
networks and layers. Networks and layers which perform better at heading discrimination tend to
better match the dorsal stream.
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Figure S5: First layer filters for alternative networks. i3d and CPC on UCF learn orientation selectivity
but not direction selectivity. CPC on Airsim learns both.

19


	Introduction
	Background and related work
	Methods
	Results
	3D resnets trained for self-motion learn dorsal-like representations
	Networks with alternative objectives do not account for responses in the dorsal stream

	Self-motion estimation performance correlates with dorsal stream match
	Limitations
	Discussion
	Appendix

