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1 CONTENT1

In this supplementary material, we illustrate the details of introduced metrics and provide more2

samples of our dataset. Furthermore, we discuss the configuration of training and report more ex-3

perimental results. We will publish the dataset and code on github soon.4

2 GEOPHYSICS EQUATION5

The Navier–Stokes and mass continuity equations (including the effect of the Earth’s rotation), to-6

gether with the first law of thermodynamics and the ideal gas law, represent the full set of prognostic7

equations in the atmosphere, describing the change in space and time of wind, pressure, density and8

temperature is described (shown in Eq. 1–5).9

Momentum Equations:10
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(1)

Mass Continuity:11

∂ρ

∂t
= −∇ ([u, v, w] · ρ) , (2)

Thermo-dynamic:12

∂θ

∂t
= −[u, v, w] · ∇θ + Q̇, (3)

Ideal Gas:13

p = ρRT, (4)

Moisture equation:14

∂q

∂t
= −[u, v, w] · ∇q +micro(q). (5)

The zonal (u), meridional (v) and vertical (w) wind speed, are driven by air pressure (p). The15

air pressure is driven by the mass density (ρ, determined by wind and the ingredient of air, e.g.,16

moisture) and the temperature. The moisture and air can contain heat, which forms the variable17

latent heat (θ). The heat can also come from other heat sources (Q), e.g., physical processes like sun18

radiation or chemical processes like burning coal. The moisture may also come from snowmelt or19

other physical processes, which is described in microphysics (micro) - a sub-domain of geoscience.20
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3 METRICS21

Due to the difference between down-scaling and traditional figure super-resolution, the metrics work22

well under SR tasks may not be sufficient for precipitation down-scaling. By gathering the most23

common metrics from the meteorologic literature (for example Zhang & Yang (2004); Maraun24

et al. (2015); Ekström (2016); He et al. (2016); Pryor & Schoof (2020); Wootten et al. (2020)), we25

select and rename 6 metrics to reflect the downscaling quality: mesoscale peak precipitation error26

(MPPE), cumulative precipitation mean square error (CPMSE), heavy rain region error (HRRE) ,27

cluster mean distance (CMD), heavy rain transition speed (HRTS) and average miss moving degree28

(AMMD).These 6 metrics can be separated as reconstruction metrics: MPPE, HRRE, CPMSE,29

AMMD, and dynamic metrics: HRTS and CMD.30

The MPPE (mm/hour) is calculated as the difference of top quantile between the generated/real31

rainfall dataset which considering both spatial and temporal property of mesoscale meteorological32

systems, e.g., hurricane, squall. This metric is used in most of these papers (for example Zhang33

& Yang (2004); Maraun et al. (2015); Ekström (2016); He et al. (2016); Pryor & Schoof (2020);34

Wootten et al. (2020) suggest the quantile analysis to evaluate the downscaling quality).35

The CPMSE (mm2/hour2) measures the cumulative rainfall difference on each pixel over the time-36

axis of the test set, which shows the spatial reconstruction property. Similar metrics are used in37

Zhang & Yang (2004); Maraun et al. (2015); Wootten et al. (2020) calculated as the pixel level38

difference of monthly rainfall and used in He et al. (2016) as a pixel level difference of cumulative39

rainfall with different length of record.40

The HRRE (km2) measures the difference of heavy rain coverage on each time slide between gen-41

erated and labeled test set, which shows the temporal reconstruction ability of the models. The42

AMMD (radian) measures the average angle difference between main rainfall clusters. Similar43

metrics are used in Zhang & Yang (2004); Maraun et al. (2015); Wootten et al. (2020) as rainfall44

coverage of a indefinite number precipitation level and used in He et al. (2016); Pryor & Schoof45

(2020) as a continuous spatial analysis.46

As a single variable dataset, it is hard to evaluate the dynamical reconstruction ability of different47

models. So here we introduce the first order variables to evaluate the dynamical property of down-48

scaling results. Similar approaches are suggested in Maraun et al. (2015); Ekström (2016); Pryor &49

Schoof (2020). The CMD (km) physically compares the location difference of the main rainfall sys-50

tem between the generated and labeled test set, which could be also understand as the RMSE of the51

first order derivative of precipitation data on spatial directions.The HRTS (km/hour) measures the52

difference between the main rainfall system moving speed between the generated and labeled test set53

which shows the ability for models to capture the dynamic property, which could be also understand54

as the RMSE of the first order derivative of precipitation data on temporal direction.Similar metrics55

are suggested in Maraun et al. (2015); Ekström (2016); Pryor & Schoof (2020) as auto-regression56

analysis and differential analysis.57

More details about the metrics and their equations are given in supplementary materials. One met-58

rics group (MPPE, HRRE, CPMSE, AMMD) mainly measures the rainfall deviation between the59

generated precipitation maps and GT. The other group (HRTS and CMD) mainly measures the dy-60

namic deviation of generated precipitation maps. In order to further simplify the application of61

indices, we abstract them into two weighted and summed metrics: Precipitation Error Measure62

(PEM) and Precipitation Dynamics Error Measure (PDEM). We first align the dimensions of these63

two groups of metrics respectively. The first group of metrics (MPPE, HRRE, CPMSE, AMMD)64

is normalized, weighted and summed to get the precipitation error measure (PEM). According to65

Gupta et al. (1999), all the metrics are transferred to Percent Bias (PBIAS) to couple with expert66

opinions for metrics weighting. The original definition of PBIAS is the bias divided by observa-67

tion, as PBIAS = |Qmodel − Qobserved|/|Qobserved|. Here we rewrite the original metrics to68

PBIAS by dividing the metrics with annual mean observations of the original variables (AMO), as69

PBIASPEM
i = |MetricsPEM

i |/|AMOPEM
i |. The metrics then are ensembled to a single metric70

(PEM) with equal weight, as PEM =
∑

i wi · PBIASPEM
i . Following the same procedure, we71

then ensemble the second group of dynamic metrics (HRTS and CMD) to a single metrics PDEM.72
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Here we would clarify the calculation in detail and compare the metrics select here with other metrics73

sets. These metrics follow different formulations under the test set time length T and test set area74

size A:75

Mesoscale peak precipitation error (MPPE) This metric measures the ability for the76

down-scaling models to capture the mesoscale peak precipitation. The mesoscale large77

weather/meteorological events are happening on a scale of 200km × 200km, such as hurricane78

or squall. The ability of capturing this metrics would help improve the flood prediction, as the pre-79

cipitation events at this scale could stimulus large flooding. By measuring 1/1000 quantile of pre-80

cipitation ( 5000km2) over temporal and spatial, we could capture the precipitation at the mesoscale81

weather events.82

This metric is comparable to R99p in CLIMDEX Zhang & Yang (2004) and 20-return period in83

VALUE Maraun et al. (2015) by definition.84

MPPE is a similar index to R99p (relatively R99.2p). And 20-year-return-period in VALUE is85

R99.7p in the language of CLIMDEX. Because this is a downscaling dataset, we change that to the86

RMSE of R99.2p, and name that as MPPE following its physics meaning.87

This metric is used in a variety of literature (for example Zhang & Yang (2004); Maraun et al.88

(2015); Ekström (2016); He et al. (2016); Pryor & Schoof (2020); Wootten et al. (2020) suggest the89

quantile analysis to evaluate the downscaling quality).90

Heavy rain region error (HRRE) This metric measures the difference between the reconstructed
dataset and the real high-resolution observations of the heavy rain region. The heavy rain is defined
by 56mm/day, which is a conventional benchmark for heavy rain in weather prediction (America:
50.8−76.2mm/day; Japan, India and China: 50−75mm/day; European: 40−60mm/day). This
metrics is formed by:

HRRE = (
1

T

∑
t

(AHR(P > 56, t)−AGT (P > 56, t)2)0.5,

where HR means the high-resolution data and GT is the generated data. Average miss moving degree91

(AMMD) measures the ability for model to capture the temporal direction of heavy rain, which is92

obtained by recording the center of heavy rain on each frame and record the directional difference.93

This metric is comparable to R20mm in CLIMDEX Zhang & Yang (2004) and number of threshold94

exceedances in Maraun et al. (2015). Here we select the threshold by the definition of heavy rain.95

We name this metric following its physics meaning.96

Similar metrics are used in Zhang & Yang (2004); Maraun et al. (2015); Wootten et al. (2020) as97

rainfall coverage of a indefinite number precipitation level and used in He et al. (2016); Pryor &98

Schoof (2020) as a continuous spatial analysis.99

Cumulative precipitation mean square error (CPMSE) This metric represents the ability for
model to capture the spatial difference of precipitation over a long time, which is usually considered
in climatology. Through long time observation, we use this metric to lay out the impact of miss
alignment issue and focus on the climatology and spatial rainfall estimation. This metrics is formed
by:

CPMSE =
1

T ·A
∑
ij

(
∑
t

PHR(i, j, t)−
∑
t

PGT (i, j, t))
2)0.5.

This metrics in comparable to PRCPTOT (definitely the same definition) in CLIMDEX and ”mean”100

in VALUE. We name this metric following its physics meaning.101

Similar metrics are used in Zhang & Yang (2004); Maraun et al. (2015); Wootten et al. (2020)102

calculated as the pixel level difference of monthly rainfall and used in He et al. (2016) as a pixel103

level difference of cumulative rainfall with different length of record.104

Cluster mean distance (CMD) and Heavy rain transition speed (HRTS) The CMD measures
the distance between the main rainfall clusters between the generated dataset and the high-resolution.
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This metric blocks the rainfall quantity estimation error and focuses on spatial difference on each
time slide. For each frame, we first calculate out the area size of the heavy rain in HR dataset.
We mark the contour of heavy rain in HR dataset as fHR(x, y, t). The area of this contour is
marked as ARain. Then we find the contour of generated rainfall dataset with the same area size
as in fHR(x, y, t) and mark the contour as fGT (x, y, t). We calculate out the heavy rain contour
difference between HR and GT dataset under 2-norm. The metric could be calculated as:

CMD = (
∑
t

1

T ·ARain
〈
∫∫

[x, y]fHR(x, y, t)− [x, y]fGT (x, y, t)dxdy〉)0.5,

in which
∮

is the area integration; 〈〉 means the self inner product.105

To further calculate this value, we need to discrete this value as:106

CMD = (
∑
t

1

T ·ARain
〈
∑
i

∑
j

[i, j]fDHR(i, j, t)− [i, j]fDGT (i, j, t)〉)0.5,

where fD∗ becomes 1 when the lattices are on the boundary of the contours; otherwise it would be 0.107

The HRTS measures the ability for model to capture the dynamics (transition speed) of heavy rain.
For each frame, we first calculate out the area size of the heavy rain in HR dataset. We mark the
contour of heavy rain in HR dataset as fHR(x, y, t). Then for the last frame in HR dataset, we
find the contour of generated rainfall dataset with the same size. We also do this for the generated
dataset. We calculate out the heavy rain contour difference between this and last frame. Then
we compare the difference of HR and GT under 2-norm. This metrics actually shows the order-1
property of dynamics which is shown in main text Eq. 1 - the wind blowing effect. The metrics
could be calculated as:

HRTS = (
∑
t

1

T ·ARain
〈t
∫∫

[x, y]fHR(x, y, t)− [x, y]fGT (x, y, t)dxdy〉)0.5.

To further calculate this value, we need to discrete this value as:108

HRTS = (
∑
t

1

T ·ARain
〈
∑
i

∑
j

[i, j](fHR(i, j, t)

− fHR(i, j, t− 1))− [i, j](fGT (i, j, t)− fGT (i, j, t− 1))〉)0.5.

HRTS and CMD are comparable to auto regression analysis in VALUE (but not in CLIMDEX).109

These are the bias on first order regression on temporal and spatial dimensions. We use these met-110

rics to reflect the dynamic property of the downscaling results and name these metric following its111

physics meaning.Similar metrics are suggested in Maraun et al. (2015); Ekström (2016); Pryor &112

Schoof (2020) as auto-regression analysis and differential analysis.113

4 DATASET DETAILS114

We show more precipitation maps in proposed dataset. In order to display the dynamic characteris-115

tics of the precipitation map more conveniently, we extract the precipitation maps of 4 periods and116

make them into GIFs. These GIFs are organized in the attachment of the supplementary materials.117

5 EXTRA RESULTS OF RAINNET118

5.1 DETAILED NETWORK STRUCTURE119

The structure of vanilla network in our proposed framework is given in Fig. 1. We employ 6120

Residual-in-Residual Dense Blocks (RRDB) Wang et al. (2018) in our downscaling backbone and 3121

RRDB in the implicit dynamic estimation module network.122
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Figure 1: The details structure of vanilla network in our proposed model.

5.2 TRAINING DETAILS123

We select 13 algorithms as benchmark: Bicubic Keys (1981), SRCNN Dong et al. (2016), SR-124

GAN Ledig et al. (2017), EDSR Lim et al. (2017), ESRGAN Wang et al. (2018), DBPN Haris et al.125

(2018), RCAN Zhang et al. (2018), SRGAN-V, EDSR-V, ESRGAN-V, RBPN Haris et al. (2019),126

EDVR Wang et al. (2019) and Kriging. These implementations are derived or adapted from pub-127

licly available code provided by the authors. Since all these methods process three-channel pictures128

by default, we modify the number of input channels of these models (the precipitation map in our129

proposed dataset are all single-channel). According to our task, we also adjust the hype parameters130

of these models for better performance.131

5.3 EXTRA RESULTS132

We randomly pick 6 sets of results and show them in Fig. 2∼ 7. In addition, we extract the down-133

scaling results (our proposed method) of 5 periods and make them into GIFs. These GIFs are134

organized in the attachment of the supplementary materials.135
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Figure 2: Visual comparison with state-of-the-art Super Resolution approaches(the specific time: the
546-th hour in September 2010). Please zoom-in the figure for better observation. Randomly picked
results. Please note that the details of the precipitation map are partially lost due to file compression.
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Figure 3: Visual comparison with state-of-the-art Super Resolution approaches(the specific time: the
635-th hour in November 2011). Please zoom-in the figure for better observation. Randomly picked
results. Please note that the details of the precipitation map are partially lost due to file compression.
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Figure 4: Visual comparison with state-of-the-art Super Resolution approaches(the specific time: the
59-th hour in November 2011). Please zoom-in the figure for better observation. Randomly picked
results. Please note that the details of the precipitation map are partially lost due to file compression.
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Figure 5: Visual comparison with state-of-the-art Super Resolution approaches(the specific time: the
95-th hour in September 2011). Please zoom-in the figure for better observation. Randomly picked
results. Please note that the details of the precipitation map are partially lost due to file compression.
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Figure 6: Visual comparison with state-of-the-art Super Resolution approaches(the specific time: the
649-th hour in August 2011). Please zoom-in the figure for better observation. Randomly picked
results. Please note that the details of the precipitation map are partially lost due to file compression.
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Figure 7: Visual comparison with state-of-the-art Super Resolution approaches(the specific time: the
590-th hour in November 2010). Please zoom-in the figure for better observation. Randomly picked
results. Please note that the details of the precipitation map are partially lost due to file compression.

11


	Content
	Geophysics Equation
	Metrics
	Dataset Details
	Extra Results of RainNet
	Detailed Network Structure
	Training Details
	Extra Results


