
A Task details

A.1 Benchmark: autoassociative recall

For the autoassociative memory benchmark task, we generate T memories, each of which is a
uniformly randomly generated d-dimensional vector xt 2 {+1,�1}d, for t = 1, . . . , T . During the
storage phase, the key and value matrices are initialized to zero and each pattern is shown to the
network sequentially with the network’s global third factor qt = 1 active for all patterns. For storage,
both the network’s input and output layers are clamped to the input value xt. Next, during the test
phase, the network is shown queries ext, corresponding to the previously shown stimuli with 60%
of the entries in each vector randomly set to zero (Figure A1). Queries are shown in the same order
as the stimuli and the global third factor qt = 0 to ensure no plasticity occurs. Only the input layer
is clamped and the result is read out from the output layer eyt. Accuracy is computed as the total
fraction of correctly recalled entries, calculated for varying values of T :

accuracy =
1

Td

TX

t=1

dX

i=1

I {[xt]i = sign([eyt]i)} (18)

Note that for the classical Hopfield network, the input and readout neurons are the same, so by
presenting a query ext, a fraction of the output bits in eyt are a priori set to the correct values from xt.
This raises the chance level of the classical Hopfield network compared to the other networks we
consider in Figure 2a.

Figure A1: Autoassociative recall benchmark task. d = 30, T = 15, 60% occluded during test.

A.2 Beyond simple recall

To test the network in a continual setting, rather than datasets of fixed length T , we use arbitrarily
long datasets where the network is asked to recall a stimulus that was presented R timesteps ago.
To generate the dataset, at each timestep with probability pgen = 0.5 the input xt is a randomly
generated binary vector (as in the benchmark dataset). With probability 1� pgen = 0.5, the input is a
query (as in the benchmark dataset) ext, corresponding to the input shown R timesteps ago5, xt�R.
For the generated stimuli which are subsequently queried, the modulator qt = 1 during their initial
presentation. Otherwise, qt = 0. To ensure that the network is operating in steady state and therefore
in the continual learning regime, we use a long trial duration T = max(1000, 20R). Figure A2a
shows 30 timesteps of such a trial with R = 2. Note that in a single trial, the delay interval between
the stored stimulus and the query is always a fixed value R. However, we test the network on multiple
trials, each with a different value of R.

Performance of the network with sequential local third factors decreases in steps of width N because
it selects the next slot at each timestep regardless of whether the current one was written to. Since a
global third factor does not occur at every timestep, some slots left untouched when the local third
factor selects them for a second time, thus preserving their contents with a probability which depends
on the frequency of queries in the stream. This probability is the same for all delays of length N + 1
to 2N , slightly lower for all delays of length 2N + 1 to 3N (i.e. the slot doesn’t get written when the
local factor selects it the second and the third time), and so forth, resulting in a stepwise curve.

5We furthermore ensure that a query is not presented twice, so if the input R timesteps ago was a query, a
stimulus vector is generated.

13

The "flashbulb" memory task is similar to the continual task, however for every trial, 5 memories are
selected as flashbulb memories. These are generated as the others, but are accompanied by a very
strong modulatory input qt = 10 rather than the normal qt = 1. Figure A2b shows a portion of the
continual stream, including two of the flashbulb memories.

To test the network performance on datasets with correlated stimuli, we generate T binary random
vectors and evaluate the network as in the benchmark task (Figure A1). The first "template" vector is
generated randomly x1 2 {+1,�1}d as before. All subsequent stimuli are generated by randomly
flipping a fraction (1� ⇢) of the entries in the template vector, resulting in correlated stimuli with
corr(xt,xt0) = ⇢ (Figure A2c). Figure C5 shows the network performance for additional values of
⇢.

Figure A2: (a) Thirty timesteps of a continual autoassociative recall task with R = 2. (b) Thirty
timesteps of a flashbulb task, showing two of the flashbulb memories. Note colorbar range. For
visualization, modulation strength qt = 3 during flashbulb memories. (c) Autoassociative recall task
for correlated memories with ⇢ = 0.6.

A.3 Beyond autoassociative memory

The heteroassociative recall task (Figure A2a) is identical to the autoassociative memory benchmark
task (Figure A1) except we have the additional generation of m-dimensional vectors yt 2 {+1,�1}d,
for t = 1, . . . , T . For our task, m = d

2 . Thus, although during the storage phase the network’s input
is clamped to some input value xt as in the autoassociative benchmark, the output layer is clamped to
the output value yt.

In the sequence recall task (Figure A2b), similar to the benchmark task, we randomly generate T

memories, each of d-dimensions. This forms a T -length sequence. During the testing phase, a prompt
pattern xt from the middle of this sequence is shown. The goal of the task is to then return the rest of
the patterns in this sequence in order: (xt+1,xt+2, . . . ,xT). We run our network recurrently so that,
at time t, we clamp the network input to sign(eyt�1) and the network output to xt.

14

In the copy-paste task (Figure A2c) we begin by randomly generating a T -length sequence as in
the sequence recall task. Each pattern st is of dimension D = 25 (we use a different variable
name since the stored keys xt will be different than the elements of the sequence). We add an
additional dimension to each pattern and an additional pattern to the sequence, such that the sequence
is (D+1)⇥ (T +1). The additional dimension is used to denote the end-of-sequence (EOS) marker
and is set to �1 when it is not in use. The EOS marker is shown at the end of the sequence, at
time T + 1. Thus, the vector shown to the network at time T + 1 is sT+1 = [�1 � 1 . . . + 1].
After seeing the EOS marker, the goal of the task is to repeat the entire sequence (s1, s2, . . . , sT+1).
During training and evaluation, T is randomly drawn from 1 to 10 in the task.

We use three feedforward controller networks coupled with our memory network. At time t, each
controller network receives a (D+2d+1)-dimensional input vt: a concatenation of st,xt�1, eyt�1

and qt�1. The outputs for the three networks are the d-dimensional key xt (d = 40), d-dimensional
value yt, and scalar global third factor qt for the memory module as follows. Then,

x0
t = tanh(Rxvt + bx)

y0
t = tanh(Ryvt + by)

qt = �(Rqvt + bq)

where �(·) is the logistic function, and Rx,Ry ,Rq ,bx,by ,bq are learned matrices. These outputs are
normalized to have L2-norm

p
d to match the norm of the inputs presented in the autoassociative

memory task:

xt =
p
d

x0
t

||x0
t||

(19)

yt =
p
d

y0
t

||y0
t||

(20)

The controller outputs xt,yt, qt are presented to the memory network, which is updated according to
our proposed plasticity rules. With the updated key and value matrices, we retrieve the output of the
memory module eyt, using xt as the query. Finally, eyt is fed into a one-layer network to transform
the output from d dimensions to a D-dimensional output rt,

rt = tanh(Roeyt + bo) (21)

where Ro is learned. The values xt, eyt, qt are then fed back into the controller as the input for
the next time step, along with st+1. The initial inputs x0, ey0 and q0 corresponding to s1 are also
learned.

When the network is prompted with the EOS marker, the output (rT+2, . . . , r2T+2) should be equal
to the original sequence (s1, . . . , sT+1). We train the network end-to-end with backpropagation
through time to minimize mean squared error loss.

For our simulations with BAM, we follow the same controller set-up as above. As is the case for the
previous heteroassociative tasks, we use the typical BAM update and update the weight matrix by
⌘xty

|
t with learning rate ⌘. The learning rate is modulated by the global third factor, as is the case

for our models. However, for training purposes, we found it helpful to scale the learning rate such
that ⌘ = 1

40qt.

B TVT key-value memory mechanism

TVT is an algorithm that enhances the learning of memory-based agents by combining attentional
memory access with reinforcement learning [Hung et al., 2019]. Here, we used the key-value memory
mechanism used by the model where inputs were written to memory and attentional memory access
was used to read stored inputs from memory. Unlike in the original work, there is no LSTM controller
or reinforcement learning component. We simply use the read and write functions to a memory matrix
as in the original paper, but do not use the TVT algorithm itself or any of the additional architecture
used in the original authors’ work.

First, a memory matrix is initialized whose rows will each store one stimulus along with its read
strength. There is a reader network and a writer network for the read and write operations respectively.

15

Figure A3: (a) Heteroassociative recall task. d = 30,m = 15, T = 15, 60% occluded during test.
(b) Sequence recall task with d = 40 and T = 7. The prompt is the 4th pattern of the sequence. (c)
Copy-paste task with d = 8, T = 10.

A call to write stores a stimulus. A call to read returns the H most similar memories, where H is the
number of read heads, or locations that can be read from simultaneously.

For the recall task, the writer receives an index indicating which row in memory should be written to.
During a write to memory, the specified row of the memory matrix is cleared and the input vector is
written to this cleared slot. During the storage phase, input vectors are stored sequentially such that
each incoming input vector is written to the next unfilled row of the memory matrix. If the memory
matrix is full, a filled row beginning with the first row will be cleared and an incoming input will be
stored in it.

During the retrieval phase of the recall task, the reader uses attentional memory access to retrieve a
weighted version the H most similar (smallest in cosine distance) memories from the memory, using
H read heads. First, it is given M ⇥H tensor of inputs where M is the length of each input vector
for each of the H read heads. Next, the read keys and the weights used for each key are computed by
passing the input through a linear layer that produces an (M + 1)⇥H output. The softplus function
is then applied to the keys and read strengths output by this linear layer. The resulting (M + 1)⇥H

tensor is separated into a M ⇥H tensor of read keys and a H ⇥ 1 tensor of read strengths for each
read head.

The read keys and the values in the memory matrix are then normalized and multiplied together. This
yields a tensor of cosine distances between each read key and each item in memory.

This is multiplied by the H ⇥ 1 tensor of read strengths, yielding a H ⇥ R tensor of weighted
distances, where R is the number of rows in the memory matrix. These weighted distances are then

16

passed through a softmax function. Each row then has one element (corresponding to one row in the
memory) that is maximally activated. This tensor is then multiplied by the memory matrix, yielding a
tensor of memory reads that is a weighted sum of the rows most similar to the weighted read keys.

The linear layer used to generate the keys and read strengths is learned using SGD. A model trained
on 20000 steps was used, and with a 40-row memory matrix (to be compared with a size 40 hidden
layer of our network).

In the simplified model, unlike in the original paper, only a single read head was used in order to
make comparisons with our network. The TVT’s key-value memory mechanism works very similarly
to the our network with sequential local third factors. The sequential network, however, adds in the
biological feature of plasticity rules to store memories.

C Supplementary results

Figure C4: Same as Figure 3d, but for a network with random local third factors.

Figure C5: Same as Figure 4c, with different correlation strengths.

17

