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A. Implementation details

Concept learning. Unless specified otherwise, we maintain the original hyperparameter choices from LDM (Rombach
et al., 2021). The batch size is set to 4, and the base learning rate is set to 5.0⇥ 10�4. Both MVTec-AD (Bergmann et al.,
2019) and VisA (Zou et al., 2022) datasets are resized to a resolution of 512 ⇥ 512. All results are obtained after 3,000
optimization steps.

For normal-aware concept learning, ↵, regularization hyperparameter for aligning state prompts with images, is set to
0.003. We find that applying large ↵ value results over-fitting to normal state prompt, e.g., “a photo of a flawless c⇤n”,
with the given image. For anomaly-aware concept learning, we first synthesize pseudo-anomalies via pre-trained text-to-
image diffusion model (Meng et al., 2021). Specifically, with the given reference images, we set the strength parameter,
i.e., the amount of noise initially added to the given image, as 0.5. The guidance scale and number of inference steps
are set to 7.5 and 30 respectively. We explore diverse amount of noise, and set which is distinguishable with normal
samples while maintaining the high-level features of the images. In Figure 2 and Figure 4, pseudo-anomalies with different
strength is shown. Hyperparameter ↵ is set to 0.002 and �, distance regularization term between anomaly prompts and
pseudo-anomalies, is set and 0.8. We explore several � values, while small � values results normal state optimization, i.e.,
minimizing the distance between CLIP embeddings of the images and normal state prompt, unstable.

Overview of WinCLIP+. We present the details for incorporating visual features (i.e., feature maps) in computing anomaly
detection score which is described in Section 3.3. WinCLIP+ (Jeong et al., 2023) introduces the reference association
module, which enables the storage and retrieval of memory features R for a given set of images D := {xi}Ki=1 based on
cosine similarity. Using the reference association module along with the corresponding features F 2 Rh⇥w⇥d extracted
from a query image (e.g., patch-level features), we can generate a prediction M 2 [0, 1]h⇥w for each pixel. The prediction
is computed as follows:

Mij := min
r2R

1
2 (1� hFij , ri). (8)

To compute the prediction, three different features are incorporated: small-scale feature FWs, mid-scale feature FWm, and
penultimate feature FP. By applying the reference association module, we obtain three reference memories: RW

s, RW
m, and

RP. Then we compute the average of multi-scale prediction (8), and it is given as:

MW := 1
3 (M

P +MW
s +MW

m). (9)

Subsequently, the maximum value of MW is incorporated into the ADP anomaly detection score (7). This score captures
complementary information derived from the spatial features of the few-shot references. The complete form of ADP anomaly
detection (ADPad) is as follows:

ADP(x)ad :=
1

2

⇣
ADP(x) + max

ij
MW

ij

⌘
. (10)

Anomaly detection with learned concepts. For anomaly detection, we generate 20 pseudo-anomalies for pseudo-
validation set. We set strength parameter, i.e., the amount of noise initially added to the given image, as 0.5. The guidance
scale and number of inference steps are set to 7.5 and 30 respectively. We employ the data pre-processing pipeline from
OpenCLIP (Ilharco et al., 2021) for both MVTec-AD and VisA datasets. This pipeline includes channel-wise standardization
using the pre-computed mean [0.48145466, 0.4578275, 0.40821073] and standard deviation [0.26862954,
0.26130258, 0.27577711] after normalizing each RGB image to the range of [0, 1]. Additionally, we set the input
resolution to be 224 by default, regardless of the original size of the input image. When reproducing the results for
WinCLIP+ (Jeong et al., 2023), we follow the same pre-processing pipeline to ensure compatibility in our experiments.

Datasets. MVTec-AD comprises 15 sub-datasets with a total of 5,354 images, where 1,725 of which are in the test set.
15 sub-datasets are further divided into 10 object categories and 5 texture categories. VisA consists of 12 sub-datasets
with 10,821 images in total. Anomalous images in VisA contain a variety of imperfections, including surface defects and
structural defects. We follow the index given by Zou et al. (2022) for splitting the VisA dataset into train and test sets.
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Computation. We use 64 CPU cores (Intel Xeon CPU @ 2.90GHz) and 1 GPU (NVIDIA GeForce RTX 3090 24GB GPU)
for performing concept learning. The training for 3,000 optimization steps takes approximately 1.5 hours for each class. We
need two times of concept learning i.e., normal-aware concept learning and anomaly-aware concept learning, which takes
similar time for each concept learning. When considering the entire MVTec-AD dataset, which consists of 15 classes, the
complete concept learning process takes 45 hours using a single GPU. For anomaly detection (Section 3.3), we use same
machine which takes approximately 1 hour for the entire dataset both on MVTec-AD and VisA.

B. Additional quantitative results

Class-wise comparison. We provide a detailed anomaly detection (AD) performance, specifically in terms of class-wise
AUROC (%). For the 2-shot and 4-shot scenarios, we report the mean and standard deviation over three random seeds for
WinCLIP+ (Jeong et al., 2023), ADP and ADP`, while other baselines (SPADE (Cohen & Hoshen, 2020), PaDiM (Defard
et al., 2021) and PatchCore (Roth et al., 2022)) are from those reported by Jeong et al. (2023). The class-wise AUROC
(%) results for the MVTec-AD dataset are presented in Table 3 for the 2-shot and 4-shot settings. Similarly, the class-wise
AUROC results for the VisA dataset can be found in Table 4 for the 2-shot and 4-shot settings. Additionally, we compare
our 8-shot AD results with other 8-shot AD methods on MVTec-AD dataset in Table 5. The results for TDG+ (Sheynin
et al., 2021), DiffNet+ (Rudolph et al., 2021) and RegAD (Huang et al., 2022) are from the work of Huang et al. (2022).

Comparison with many-shot methods. Table 6 provides a comparison with the full-shot results of various prior works
on the MVTec-AD dataset. In the 4-shot scenario, ADP surpasses the performance of CutPaste (Li et al., 2021), a recent
full-shot method for AD and is competitive with Metaformer (Wu et al., 2021). While PatchCore (Roth et al., 2022) shows
gratifying performance with full-shot, ADP outperforms to prior works such as MKD (Salehi et al., 2021) and P-SVDD (Yi
& Yoon, 2020) with large margin. Furthermore, our 2-shot ADP achieves superior performance compared to recent few-shot
AD methods such as DiffNet+ (Rudolph et al., 2021), TDG+ (Sheynin et al., 2021), and RegAD (Huang et al., 2022), despite
utilizing only 2 shots instead of the 16 shots used by these methods.

Comparison with textual inversion. Table 7 and 8 present a class-wise comparison between standard textual inversion
(referred to as ”TI” in Table 7 and 8) and the utilization of learned concepts. The evaluation is conducted on 4-shot anomaly
detection tasks in MVTec-AD and VisA datasets, respectively. The results are represented by c⇤n and c⇤a, which indicate the
outcomes obtained by incorporating only c⇤n and c⇤a in the text prompts. Furthermore, c⇤n + c⇤a represents the combination
of both concepts via ADP (Section 3.3). In general, the inclusion of concepts leads to a notable improvement in anomaly
detection performance. While the utilization of only c⇤a does not yield significant enhancements, combining c⇤n and c⇤a proves
to be mutually beneficial. Specifically, the incorporation of learned concepts proves effective in identifying fine-grained
anomalies, such as the “Capsule” class in the MVTec-AD dataset or the “PCB” classes in the VisA dataset.

Table 3. Comparison of anomaly detection (AD) in terms of class-wise AUROC (%) on MVTec-AD for 2- and 4-shot.

2-shot 4-shot

Data \ Method SPADE PaDiM PatchCore WinCLIP+ ADP ADP` SPADE PaDiM PatchCore WinCLIP+ ADP ADP`

Bottle 99.5±0.1 98.5±1.0 99.2±0.3 93.3±0.1 97.1±1.5 95.1±0.4 99.5±0.2 98.8±0.2 99.2±0.3 93.4±0.3 98.9±0.4 97.2±0.7

Cable 76.2±5.2 62.3±5.9 91.0±2.7 82.6±0.2 85.7±1.5 86.2±1.8 83.4±3.1 70.0±6.1 91.0±2.7 83.0±0.0 87.9±2.5 88.3±3.1

Capsule 70.9±6.1 64.3±3.0 72.8±7.0 84.2±9.0 85.0±12.9 85.3±12.1 78.9±5.5 65.2±2.5 72.8±7.0 84.4±9.4 83.4±11.9 84.0±11.5

Carpet 98.3±0.4 97.8±0.5 96.6±0.5 100±0.0 100±0.0 100±0.0 98.6±0.2 97.9±0.4 96.6±0.5 100±0.0 99.9±0.1 100±0.0

Grid 41.3±3.6 67.2±4.2 67.7±8.3 99.2±0.0 97.4±0.7 98.6±0.0 44.6±6.6 68.1±3.8 67.7±8.3 99.1±0.2 98.0±2.5 99.5±0.6

Hazelnut 96.2±2.1 90.8±0.8 93.2±3.8 97.0±0.6 98.8±0.9 98.3±0.9 98.4±1.3 91.9±1.2 93.2±3.8 97.5±0.1 99.4±0.5 98.9±0.4

Leather 100±0.0 97.5±0.9 97.9±0.7 100±0.0 93.1±11.9 100±0.0 100±0.0 98.5±0.2 97.9±0.7 100±0.0 100±0.0 100±0.0

Metal nut 77.0±7.9 54.8±3.8 77.7±8.5 95.5±0.3 99.7±0.3 99.1±0.1 77.8±5.7 60.7±5.2 77.7±8.5 95.7±0.3 99.4±0.5 99.6±0.2

Pill 84.8±0.9 59.1±6.4 82.9±2.9 90.0±0.2 95.2±0.4 95.2±1.0 86.7±0.3 54.9±2.7 82.9±2.9 90.1±0.1 95.2±0.3 94.9±0.6

Screw 46.6±2.2 54.0±4.4 49.0±3.8 96.5±0.2 91.9±5.6 94.8±3.3 50.5±5.4 50.0±4.1 49.0±3.8 96.8±0.3 90.9±2.6 94.1±2.1

Tile 99.9±0.1 93.3±1.1 98.5±1.0 99.4±0.0 99.5±0.2 99.6±0.1 100±0.0 93.1±0.6 98.5±1.0 99.4±0.0 99.8±0.1 99.7±0.1

Toothbrush 78.6±3.2 87.6±4.2 85.9±3.5 94.0±0.6 88.5±3.8 95.0±4.3 78.8±5.2 89.2±2.5 85.9±3.5 93.8±0.2 96.6±4.2 98.6±1.0

Transistor 83.4±3.8 81.3±3.7 72.8±6.3 82.4±0.4 82.3±5.7 87.5±2.4 81.4±2.1 82.4±6.5 90.0±4.3 83.0±0.3 89.3±2.9 90.0±1.9

Wood 99.2±0.4 96.9±0.5 98.3±0.6 100±0.0 99.9±0.3 99.9±0.1 98.9±0.6 97.0±0.2 98.3±0.6 100±0.0 100±0.0 100±0.0

Zipper 93.3±2.9 86.3±2.6 94.0±2.1 92.4±4.4 95.5±5.6 95.8±5.4 95.1±1.3 88.3±2.0 94.0±2.1 95.4±0.7 94.9±6.5 98.8±0.3

Mean 82.9±2.6 78.9±3.1 86.3±3.3 93.8±1.0 94.4±1.2 95.4±0.9 84.8±2.5 80.4±2.5 88.8±2.6 94.1±0.7 95.8±1.1 96.2±0.8
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Table 4. Comparison of anomaly detection (AD) in terms of class-wise AUROC (%) on VisA for 2- and 4-shot.
2-shot 4-shot

Data \ Method SPADE PaDiM PatchCore WinCLIP+ ADP ADP` SPADE PaDiM PatchCore WinCLIP+ ADP ADP`

Candle 91.3±3.3 75.8±2.1 85.3±1.5 95.3±0.4 94.1±1.6 95.1±1.6 92.8±2.1 77.5±1.6 87.8±0.8 95.4±0.7 92.5±1.5 94.0±1.2

Capsules 71.7±11.2 51.7±4.6 57.8±5.4 82.2±5.5 84.4±4.1 84.7±4.1 73.4±7.1 52.7±3.4 63.4±5.4 81.8±6.7 87.3±0.7 87.4±0.5

Cashew 97.3±1.4 74.6±3.6 93.6±0.6 88.9±0.8 91.5±4.3 91.6±3.9 96.4±1.3 77.7±3.2 93.0±1.5 88.9±0.9 91.7±1.7 91.7±2.1

Chewinggum 93.4±1.0 82.7±2.1 97.8±0.6 94.6±0.3 98.2±0.5 98.1±0.7 93.5±1.4 83.5±3.7 98.3±0.3 95.1±0.1 97.7±0.6 97.9±0.1

Fryum 90.5±3.9 69.2±9.0 83.4±2.4 87.7±0.3 93.6±1.4 91.9±2.1 92.9±1.6 71.2±5.9 88.6±1.3 87.7±0.4 94.6±2.0 94.0±1.9

Macaroni1 69.1±8.2 62.2±5.0 75.6±4.6 91.1±0.6 91.1±3.7 92.9±3.4 65.8±1.2 65.9±3.9 82.9±2.7 91.3±0.8 91.4±3.3 91.9±2.0

Macaroni2 58.3±4.4 50.8±2.9 57.3±5.6 74.7±1.5 76.1±4.7 76.7±5.2 56.7±3.2 55.0±2.9 61.7±1.8 74.6±1.7 71.7±3.4 72.5±2.4

PCB1 86.7±1.1 62.4±10.8 71.5±20.0 87.7±0.4 80.1±13.4 83.9±9.4 83.4±8.5 82.6±1.5 84.7±6.7 88.1±0.3 87.7±1.5 90.4±1.7

PCB2 70.3±8.1 66.8±2.0 84.3±1.7 61.9±1.6 71.3±3.0 71.1±2.9 71.7±7.0 73.5±2.4 84.3±1.0 63.1±1.5 74.3±2.7 73.8±2.1

PCB3 75.8±5.7 67.3±3.8 84.8±1.2 70.2±0.5 64.0±1.0 67.0±2.6 79.0±4.1 65.9±1.9 87.0±1.1 70.1±1.2 67.8±9.6 71.4±6.4

PCB4 86.1±8.2 69.3±13.7 94.3±3.2 83.0±5.2 86.3±10.6 90.4±6.2 95.4±2.3 85.4±2.0 95.6±1.6 85.6±4.1 96.7±0.8 97.1±0.9

Pipe fryum 78.1±3.0 75.3±1.8 93.5±1.3 93.3±0.1 98.3±1.9 98.9±1.1 79.3±0.9 82.9±2.2 96.4±0.7 93.4±0.0 99.1±0.2 99.2±0.4

Mean 80.7±5.0 67.4±5.1 81.6±4.0 84.2±0.2 85.7±0.9 86.9±0.9 81.7±3.4 72.8±2.9 85.3±2.1 84.6±0.4 87.7±0.3 88.4±0.4

Table 5. Comparison of anomaly detection (AD) with existing 8-shot AD in terms of
class-wise AUROC (%) on MVTec-AD for 8-shot.

8-shot

Data \ Method TDG+ DiffNet+ RegAD WinCLIP+ ADP ADP`

Bottle 70.3 99.4 99.8 93.7±0.1 99.4±0.3 97.5±1.0

Cable 74.7 87.9 80.6 83.0±0.1 88.0±1.9 88.5±2.4

Capsule 44.7 78.6 76.3 90.9±1.4 93.1±1.7 93.0±1.5

Carpet 78.2 78.5 98.5 100±0.0 99.5±0.7 99.7±0.4

Grid 87.6 78.5 91.5 99.0±0.5 98.2±1.7 99.4±0.4

Hazelnut 82.8 97.9 96.5 97.7±0.1 99.5±0.7 99.1±0.5

Leather 93.5 92.2 100 100±0.0 100±0.0 100±0.0

Metal nut 68.7 67.6 98.3 95.8±0.4 99.6±0.4 99.6±0.2

Pill 67.9 82.1 80.6 90.1±0.1 95.6±0.5 94.9±0.5

Screw 99.0 75.0 63.4 96.9±0.3 91.2±0.8 94.5±1.0

Tile 87.4 99.6 97.4 99.5±0.1 99.8±0.1 99.8±0.0

Toothbrush 57.6 60.8 98.5 93.5±0.2 99.3±1.3 98.8±1.3

Transistor 71.5 63.3 93.4 83.4±0.1 90.0±2.4 90.6±1.9

Wood 98.4 99.4 99.4 100±0.0 100±0.1 100±0.0

Zipper 66.3 87.3 94.0 96.1±0.2 99.2±0.2 99.2±0.2

Mean 76.6 83.2 91.2 94.6±0.1 96.8±0.4 97.0±0.2

Table 6. Comparison with existing many-
shot AD methods in terms of AUROC
(%) on MVTec-AD.

Methods Setup AD

ADP (ours) 2-shot 94.4
ADP (ours) 4-shot 95.8
ADP (ours) 8-shot 96.8
ADP (ours) 16-shot 97.1

TDG+ 16-shot 78.0
DiffNet+ 16-shot 87.3
RegAD 16-shot 92.7

MKD full-shot 87.7
P-SVDD full-shot 92.1
CutPaste full-shot 95.2
Metaformer full-shot 95.8
PatchCore full-shot 99.6
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Table 7. Comparison of anomaly detection (AD) in terms of class-
wise AUROC (%) with naı̈ve textual inversion and across the
use of learned concepts in MVTec-AD for 4-shot. Naı̈ve textual
inversion is denoted as “TI”.

Data \ Method TI c⇤n c⇤a c⇤n + c⇤a

Bottle 91.5 99.4 97.9 98.6
Cable 76.3 90.3 90.9 90.6
Capsule 61.8 88.5 90.0 88.6
Carpet 100 100 100 100
Grid 99.6 99.0 93.7 95.2
Hazelnut 94.4 99.7 98.4 99.8
Leather 88.0 100 100 100
Metal nut 98.8 98.0 99.2 98.9
Pill 84.5 94.4 95.4 95.1
Screw 92.1 84.6 86.2 88.8
Tile 99.4 99.5 99.6 99.8
Toothbrush 75.0 99.4 92.8 100
Transistor 71.3 86.9 86.0 86.3
Wood 98.1 100 100 100
Zipper 98.5 98.5 98.3 98.4

Mean 88.6 95.9 95.2 96.0

Table 8. Comparison of anomaly detection (AD) in terms of class-
wise AUROC (%) with naı̈ve textual inversion and across the use
of learned concepts in VisA for 4-shot. Naı̈ve textual inversion is
denoted as “TI”.

Data \ Method TI c⇤n c⇤a c⇤n + c⇤a

Candle 97.0 90.0 91.4 90.9
Capsules 88.0 88.5 77.6 87.5
Cashew 76.6 92.4 91.5 92.6
Chewinggum 97.4 98.8 96.9 97.6
Fryum 51.1 96.3 96.1 96.4
Macaroni1 84.9 92.9 81.7 87.7
Macaroni2 66.4 62.0 69.0 67.9
PCB1 60.5 85.0 91.4 88.8
PCB2 65.9 77.6 63.6 72.9
PCB3 68.0 69.4 69.9 75.0
PCB4 88.9 94.3 96.1 96.3
Pipe fryum 97.6 98.1 99.0 99.0

Mean 78.5 87.1 85.3 87.7
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C. Additional qualitative results

In Figure 2-5, we present additional qualitative results of pseudo-anomalies synthesized using the pre-trained text-to-image
diffusion model (Meng et al., 2021) for both VisA (Zou et al., 2022) and MVTec-AD (Bergmann et al., 2019) datasets.
We adjust the level of noise added to the reference image, denoted as S. We explore four different noise level, 0.1, 0.3,
0.5 and 0.7. Figure 2 and Figure 4 showcase the pseudo-anomalies conditioned with a simple text prompt, as described in
Section 3.2, for the VisA and MVTec-AD datasets, respectively. On the other hand, Figure 3 and Figure 5 demonstrate the
pseudo-anomalies conditioned with a prompt incorporating c⇤a, as described in Section 3.3, for the VisA and MVTec-AD
datasets, respectively. Overall, incorporating c⇤a in the conditioning prompt generates more fine-grained anomalies compared
to the simple text prompt. Synthesizing pseudo-anomalies using pre-trained text-to-image diffusion models allows for better
control over different noise levels and prompts, depending on the context.

D. Prompt templates

Below we provide the list of text templates used when learning the state-aware concept and detecting anomaly where
S 2 {Sn, Sc} are state templates and c 2 {cn, ca} are concepts:

• “a photo of a S(c)”,

• “a rendering of a S(c).”,

• “a cropped photo of the S(c).”,

• “the photo of a S(c).”,

• “a photo of a clean S(c).”,

• “a photo of a dirty S(c).”,

• “a dark photo of the S(c).”,

• “a photo of my S(c).”,

• “a photo of the cool S(c).”,

• “a close-up photo of a S(c).”,

• “a bright photo of the S(c).”,

• “a cropped photo of a S(c).”,

• “a photo of the S(c).”,

• “a good photo of the S(c).”,

• “a photo of one S(c).”,

• “a close-up photo of the S(c).”,

• “a rendition of the S(c).”,

• “a photo of the clean S(c).”,

• “a rendition of a S(c).”,

• “a photo of a nice S(c).”,

• “a good photo of a S(c).”,

• “a photo of the nice S(c).”,

• “a photo of the small S(c).”,

• “a photo of the weird S(c).”,

• “a photo of the large S(c).”,

• “a photo of a cool S(c).”,

• “a photo of a small S(c).”,

E. Limitation and future work

Despite its strong performances in few-shot AD, we expect the effectiveness of current ADP may saturate earlier as more
normal samples become available, e.g., compared to other approaches such as PatchCore (Roth et al., 2022): the current
technique of textual inversion is known to fall short with many samples, e.g., more than 4-5 in practice (Gal et al., 2022).
Making textual inversion to extract better concepts from many samples would be an interesting future work itself, not only
in the context of AD but also in the context of generative modeling.

F. Potential negative social impact

Abilities in performing anomaly-aware few-shot personalization could be potentially misused in face identification and
generation. This may raise several privacy issues, for example, one can extract someone’s personal information very
efficiently from cameras in public spaces. It is an interesting research direction to protect information from personalization
techniques like textual inversion or ADP.
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Candle

Capsules

Cashew

Fryum

Macaroni1

Macaroni2

PCB2

Chewing-
gum

PCB1

PCB3

PCB4

Pipe-fryum

S=0.1 S=0.3 S=0.5 S=0.7

(a) Normal (b) Anomaly (c) Pseudo-anomalies with different noise level

Figure 2. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image diffusion model
with different noise level (S) in VisA. Pseudo-anomalies are generated with simple prompt text such as “a photo with damage”.
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Figure 3. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image diffusion model
with different noise level (S) in VisA. Pseudo-anomalies are generated with prompts incorporating c⇤a, such as “a photo of a c⇤a with

damage”.
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Figure 4. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image diffusion model
with different noise level (S) in MVTec-AD. Pseudo-anomalies are generated with simple prompt text such as “a photo with damage”.
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Figure 5. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image diffusion model
with different noise level (S) in MVTec-AD. Pseudo-anomalies are generated with prompts incorporating c⇤a, such as “a photo of a c⇤a
with damage”.


