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1 Definitions

First we recall our geometric definitions of neural network and layer.

Definition 1 (Neural Network). A neural network is a sequence of C* maps \; between manifolds of
the form:
Ay

A2 A4 An—l A

MO Ml M2 Mn—l — Mn (1)

We call My the input manifold and M, the output manifold. All the other manifolds of the sequence
are called representation manifolds. The maps \; are the layers of the neural network. We denote
with Nijy = Ap o --- o Ay : My — M, the mapping from the i-th representation layer to the output
layer.

Definition 2 (Smooth layer). A map A; : M;_1 — M, is called a smooth layer if it is the restriction
to M;_1 of a function A (z) : R%—1 — R% of the form

A () = ZA( 25 + b )

fori=1,---,n, z € R% b e R¥ gnd AW e RE*di-1 with () . R% — R% g diffeomor-
phism.

We also need some standard definitions in differential geometry [4].

Definition 3 (Submersion). Let f : M — N be a smooth map between manifolds. Then f is a
submersion if, in any chart, the Jacobian J; has rank dim(N).

Definition 4 (Embedding). Let f : M — N be a smooth map between manifolds. f is an embedding
if its differential is everywhere injective and if it is an homeomorphism with its image. In other words,
f is a diffeomorphism with its image.

Definition 5 (Distribution). A distribution D of dimension k over a m-dimensional manifold M is a
collection of k smooth vector fields vy, - - , vy such that (vi)p, - - , (v )p form a basis of a vector
subspace of dimension k in T}, M for every p € M.

Definition 6 (Integrable distribution). A distribution D of dimension k is an integrable distribution
if there exist a manifold M of dimension m > k such that the collection of k smooth vector fields
v1,- -+ , Uy are generating a vector space of dimension k over T, M for allp € M.

Definition 7 (Trivial fiber bundle). A trivial fiber bundle is a structure (E, B, 7, F'), where E, B and
F are topological spaces with E = B X F and the map 7 : E — B is the projection of B x F on
B. The space F is called typical fiber. In the case F is a vector space, then (E, B, w, F) is called a
trivial vector bundle.

Definition 8 (Vertical and horizontal spaces). Let (E, M, w, F') be a vector bundle over a manifold
M. Then the vertical space V,E at p € E is the vector space V,E = Ker(dym) C T,E. The
horizontal space H, E is a choice of a subspace of T, F such that T, E = V,E ® H,E. The spaces
VE = UpepVpE and HE = UycgH, E are two bundles called vertical and horizontal bundles
respectively.
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2 Hypotheses

In the following lemmas and propositions we always assume the following hypotheses to hold true.
Assumption 1. The manifolds M; are open and path-connected sets of dimension dim M; = d;.

Assumption 2. The sequence of maps (1)) satisfies the following properties:
1) If dim(M;_1) < dim(M;) the map A; : M;—1 — M; is a smooth embedding.
2) If dim(M;_1) > dim(M;) the map A; : M;—1 — M; is a smooth submersion.

A(ss)umption 3. The manifold M,, is equipped with the structure of Riemannian manifold, with metric
g

Assumption 4. We assume that the manifolds M; are diffeomorphic to R% for some d, - -- ,d,, € N.
Assumption 5. The matrices of weights in the maps A;, i = 1,--- ,n, as per in Definition 2] are of
full rank.

3 Proof of the propositions

Proposition 1. Let vy : [0,1] — M; be a piecewise C* curve. Let k € {i,i+1,--- ,n} and consider
the curve vy, = A o -+ o A; oy on M. Then Pl;(v) = Pli(vx)

Proof. It is enough to notice that ~y;, : (0,1) — Mj, is still a piecewise C! curve and that

1
Pln) = [\ Gulo) ulo)ds

1
= [ Ve 080190 (o). Ao)s
= Pl;i()
where (Aj, o --- 0 A;)*g*) is the pullback of g(*) via Ay o --- 0 A;. O
Corollary 1. Let vy : [0,1] — M; be a piecewise C* curve. Consider the curve I' = N; oy on

N (My) C M,,. Then Pl;(~y) = PL,(T), with L,, the length of a curve defined using the Riemannian
metric g(").

Proof. The thesis immediately follows from Proposition [1|setting k = n. O

Lemma 1. M;/ ~; is an open, path-connected, Hausdorff, second-countable set.

Proof. An elementary property of quotient maps yields that M;/ ~; is still a path-connected space
and by [3| Corollary 3.17] we also know that 7; is an open map, therefore the quotient set M;/ ~; is
open. Since pseudometric spaces are completely regular [3, Section 7], we conclude that M;/ ~;
is Tychonoff and therefore it is in particular 75. At last we note that, since 7; is an open quotient,
M;/ ~; is also second-countable. L]

Proposition 2. If two points p, q € M; are in the same class of equivalence, then N;(p) = N;(q).

Proof. Let p,q € M; two points in the same class of equivalence [p]. Then, since M; is path
connected by hypothesis, there is a piecewise C! null curve « : [0, 1] — M; connecting ¢ and p, with
Pl;(v) = 0. Consider now the curve I' = N; o v on M,,. By Corollary [1|we conclude that also
P1,,(T') = 0 and being g™ a Riemannian metric we have that \/;(p) = N;(q). O

Proposition 3. Let z,y € M;, then x ~; y if and only if T ~ 7, y.

Proof. If x ~; v, then there is a piecewise C! null curve  with v(0) = z and (1) = y and we have
that Pl;(y) = Pl,(N;o~) = 0. Since (™) is a non-degenerate Riemannian metric, Pl,,(N;ov) =0
entails that the tangent vector to \; o y(s) is the zero vector for every s € (0, 1) and therefore NV; oy
is the constant curve N; o v(s) = N;(z). This proves x ~; y = x ~u; y. Let us now assume
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that  ~, y. By definition we know that there is a piecewise C! curve ~ : [0,1] — M; such that
v(0) = z,7(1) = y and N; o y(s) = N;(x) Vs € [0, 1]. It remains to prove that +y is a null curve.
This follows from the fact that, being \; o v a constant curve, then Pl;(y) = (N o) = 0. O

Corollary 2. Under the hypothesis OfProposition one has that M; /~; = Mz‘/NM,+1- Moreover,
if two points p,q € M; are connected by a C* curve v : [0,1] — M; satisfying N;(p) = N; o y(s)
forevery s € 0, 1), then they lie in the same class of equivalence.

Proof. The statement follows immediately from Propositions [2]and [3|making use of the definitions
of the quotients ~; and ~ 7, , . O

Theorem 1 (Godement’s criterion, [2} [1]]). Let X be a smooth manifold and R C X x X be an
equivalence relation. The quotient X /R is a smooth manifold if and only if

1) R is a submanifold of X x X

2) The projection map on the second component pro : R C X x X — X is a submersion.
Now we can prove that M; ~; is a smooth manifold.

M; .
Proposition 4. — is a smooth manifold of dimension dim(N (Mo)).

Proof. We prove that the quotient M;/ ~; is a smooth manifold using Godement’s criterion (Theo-
rem. The graph G; 1 of ~, is the union of C,, x C,, with C,, a connected component of N, * (p),
with p € N;(M;_1) C M, and therefore G; 1 is a submanifold of M; x M;. Furthermore, the
restriction of the projection pry to R is the restriction of the identity map to C;, for some p € M;,
which is a diffeomorphism with its image and therefore a submersion. The statement about the
dimension follows from the proof of 2) = 1) of Theorem m see [2, Lemma 9.4], taking in account
that T, N; = dim(Ker(g(")) is constant. O

This proposition, along with [2, Lemma 9.4 and Lemma 9.9], yields that the classes of equivalence
[p] are the leaves of a simple foliation of M; and that ; is a smooth submersion.

Proposition 5. 7; : M; — M;/ ~; is a smooth fiber bundle, with Ker(dmr;) = VM;, which is
therefore an integrable distribution. Every class of equivalence [p| is a path-connected submanifold
of M; and coincide with the fiber of the bundle over p.

Proof. The first part of the statement follows applying Proposition ] together with [2} Lemma 9.4 and
Lemma 9.9]. The second part of the statement is then a consequence of the definitions of equivalence
class and vertical bundle. O

4 ChatGPT prompts

In order to generate a small dataset of 100 sentences for hate speech detection, we prompt ChatGPT
(3.5 version) with several requests. The first one is: can you generate 100 sentences with [CLS] and
[MASK] tokens as input for BERT? Do not enumerate them while printing them, I want to do a copy
paste directly in a txt file.

Then: can you do the same but generating sentences for training a BERT model for hate speech
detection?

And finally: can you do the same but without the [MASK] token and with some of them being offensive
(37%), other hate speech (39%) and others neutral (24%)? Still add the [ CLS] token.

This yields the dataset we used for exploration of BERT input embedding space.
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5 Using interpretation outputs as alternative prompts (cont.)

ViT experiments were conducted using 1000 iteration outcomes from both SIMEC and SiMExp,
applied to a subset of the MNIST dataset containing 14 images of the digit “4”. BERT for MLM
experiments involved 1000 iterations from both SIMEC and SiMExp, applied to a subset of 8
sentences from the “fill in the mask” dataset (see Section [ for more details).

For ViT experiments, we first extract the original predicted class +* = arg max; y;, which represents
the output whose equivalence class we aim to explore. Then, we run the interpretation algorithm
for each pg ... px to obtain K interpretations in the form of images. Finally, we classify the new
images, obtaining the corresponding predictions Y = y(© ... y(5) where each y(*) ¢ RN, N
being the number of prediction classes (e.g., N = 10 in MNIST). We visualize the prediction
trend for the i*th value in every y(©) ... y¥) categorizing the images into two subsets: those
that lead to a change in prediction Y, = {y*) € Y | argmax; ygk) # ¢*} and those that don’t
k .
Yi={y:;€Y| argmaxiyg )= 1.
Considering BERT for MLM experiments, we proceed as illustrated in the main text.

Figure [T]illustrates a scenario similar to the one described in the main text. Specifically, it shows SiM-
Exp’s tendency to identify modifications that lower the prediction value for the original equivalence
class, 7*.

Equivalence class probability value for y € Y, Equivalence class probability value for y €Y,
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Figure 1: Results of ViT experiments involving 1000 iterations from both SIMEC and SiMExp,
applied to subsets of MNIST dataset, each containing 14 sentences. The left plot shows prediction
values for ¢* for each y € Y, whereas the right plot depicts prediction values for y € Y. In general,
both plots show a similar trend where SiMExp generally identifies alternative prompts that lower the
prediction value for ¢*.

Results for experiments using BERT for MLM are depicted in Figure[2] The plot on the left side
exhibits the expected behavior. However, when selecting alternative tokens that lead to the same
equivalence class, SIMExp seems unable to lower the prediction value of ¢*. While our primary
concern is validating the expected behavior when the prediction class changes (left plot), a deeper
investigation into using interpretation outputs as prompts will be crucial in future work.

6 Example of feature importance in image classification

As, to the best of our knowledge, we are not aware of any explainable version of the MNIST dataset,
we show the results of the same methods applied to ViT in an example, reported in Figure 3] This
example is in line with the results obtained on the sample of 100 images from the MNIST dataset and
shows that our method gives higher importance to pixels that are contained in the actual shape of the
digit or that would form another digit if white (in the case of 6, these are the upper right ones, which
would transform 6 into 8). Though on different scales, the number of pixels assigned high importance
by our approach is larger than in the AR approach and lower with respect to the Relevancy approach.
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Figure 2: Results of BERT experiments involving 1000 iterations from both SIMEC and SiMExp,
applied to subsets of a “fill in the mask™ dataset, each containing 8 sentences. The left plot shows
prediction values for ¢* for each y € Y., whereas the right plot depicts prediction values fory € Y.
Here, the expected behavior can be noted on the left side, where SIMEXxp tries to predict tokens which
in turn lower the probability of the equivalence class prediction ¢*. However, the same cannot be said
for the plot on the right, where SIMExp is unable to find tokens leading to lower probabilities for 7*.

This contributes to give a precise (contrary to AR) and noiseless (contrary to the Relevancy method)
explanation.
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Figure 3: Example of feature importance with our method (left), AR (center) and the Relevancy
method (right) on a sample image from the MNIST dataset.
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