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1 Definitions1

First we recall our geometric definitions of neural network and layer.2

Definition 1 (Neural Network). A neural network is a sequence of C1 maps Λi between manifolds of3

the form:4

M0 M1 M2 · · · Mn−1 Mn
Λ1 Λ2 Λ4 Λn−1 Λn (1)

We call M0 the input manifold and Mn the output manifold. All the other manifolds of the sequence5

are called representation manifolds. The maps Λi are the layers of the neural network. We denote6

with N(i) = Λn ◦ · · · ◦ Λi : Mi → Mn the mapping from the i-th representation layer to the output7

layer.8

Definition 2 (Smooth layer). A map Λi : Mi−1 → Mi is called a smooth layer if it is the restriction9

to Mi−1 of a function Λ
(i)
(x) : Rdi−1 → Rdi of the form10

Λ
(i)

α (x) = F (i)
α

∑
β

A
(i)
αβxβ + b(i)α

 (2)

for i = 1, · · · , n, x ∈ Rdi , b(i) ∈ Rdi and A(i) ∈ Rdi×di−1 , with F (i) : Rdi → Rdi a diffeomor-11

phism.12

We also need some standard definitions in differential geometry [4].13

Definition 3 (Submersion). Let f : M → N be a smooth map between manifolds. Then f is a14

submersion if, in any chart, the Jacobian Jf has rank dim(N).15

Definition 4 (Embedding). Let f : M → N be a smooth map between manifolds. f is an embedding16

if its differential is everywhere injective and if it is an homeomorphism with its image. In other words,17

f is a diffeomorphism with its image.18

Definition 5 (Distribution). A distribution D of dimension k over a m-dimensional manifold M is a19

collection of k smooth vector fields v1, · · · , vk such that (v1)p, · · · , (vk)p form a basis of a vector20

subspace of dimension k in TpM for every p ∈ M .21

Definition 6 (Integrable distribution). A distribution D of dimension k is an integrable distribution22

if there exist a manifold M of dimension m ≥ k such that the collection of k smooth vector fields23

v1, · · · , vk are generating a vector space of dimension k over TpM for all p ∈ M .24

Definition 7 (Trivial fiber bundle). A trivial fiber bundle is a structure (E,B, π, F ), where E,B and25

F are topological spaces with E = B × F and the map π : E → B is the projection of B × F on26

B. The space F is called typical fiber. In the case F is a vector space, then (E,B, π, F ) is called a27

trivial vector bundle.28

Definition 8 (Vertical and horizontal spaces). Let (E,M, π, F ) be a vector bundle over a manifold29

M . Then the vertical space VpE at p ∈ E is the vector space VpE = Ker(dpπ) ⊂ TpE. The30

horizontal space HpE is a choice of a subspace of TpE such that TpE = VpE ⊕HpE. The spaces31

VE := ⊔p∈EVpE and HE := ⊔p∈EHpE are two bundles called vertical and horizontal bundles32

respectively.33
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2 Hypotheses34

In the following lemmas and propositions we always assume the following hypotheses to hold true.35

Assumption 1. The manifolds Mi are open and path-connected sets of dimension dimMi = di.36

Assumption 2. The sequence of maps (1) satisfies the following properties:37

1) If dim(Mi−1) ≤ dim(Mi) the map Λi : Mi−1 → Mi is a smooth embedding.38

2) If dim(Mi−1) > dim(Mi) the map Λi : Mi−1 → Mi is a smooth submersion.39

Assumption 3. The manifold Mn is equipped with the structure of Riemannian manifold, with metric40

g(n).41

Assumption 4. We assume that the manifolds Mi are diffeomorphic to Rdi for some d1, · · · , dn ∈ N.42

Assumption 5. The matrices of weights in the maps Λi, i = 1, · · · , n, as per in Definition 2 are of43

full rank.44

3 Proof of the propositions45

Proposition 1. Let γ : [0, 1] → Mi be a piecewise C1 curve. Let k ∈ {i, i+ 1, · · · , n} and consider46

the curve γk = Λk ◦ · · · ◦ Λi ◦ γ on Mk. Then Pli(γ) = Plk(γk)47

Proof. It is enough to notice that γk : (0, 1) → Mk is still a piecewise C1 curve and that48

Plk(γk) =

∫ 1

0

√
g
(k)
γk(s)

(γ̇k(s), γ̇k(s))ds

=

∫ 1

0

√
((Λk ◦ · · · ◦ Λi)∗g(k))γ(s)(γ̇(s), γ̇(s))ds

= Pli(γ)

where (Λk ◦ · · · ◦ Λi)
∗g(k) is the pullback of g(k) via Λk ◦ · · · ◦ Λi.49

Corollary 1. Let γ : [0, 1] → Mi be a piecewise C1 curve. Consider the curve Γ = Ni ◦ γ on50

N (M0) ⊆ Mn. Then Pli(γ) = Pln(Γ), with Ln the length of a curve defined using the Riemannian51

metric g(n).52

Proof. The thesis immediately follows from Proposition 1 setting k = n.53

Lemma 1. Mi/ ∼i is an open, path-connected, Hausdorff, second-countable set.54

Proof. An elementary property of quotient maps yields that Mi/ ∼i is still a path-connected space55

and by [3, Corollary 3.17] we also know that πi is an open map, therefore the quotient set Mi/ ∼i is56

open. Since pseudometric spaces are completely regular [3, Section 7], we conclude that Mi/ ∼i57

is Tychonoff and therefore it is in particular T2. At last we note that, since πi is an open quotient,58

Mi/ ∼i is also second-countable.59

Proposition 2. If two points p, q ∈ Mi are in the same class of equivalence, then Ni(p) = Ni(q).60

Proof. Let p, q ∈ Mi two points in the same class of equivalence [p]. Then, since Mi is path61

connected by hypothesis, there is a piecewise C1 null curve γ : [0, 1] → M0 connecting q and p, with62

Pli(γ) = 0. Consider now the curve Γ = Ni ◦ γ on Mn. By Corollary 1 we conclude that also63

Pln(Γ) = 0 and being g(n) a Riemannian metric we have that Ni(p) = Ni(q).64

Proposition 3. Let x, y ∈ Mi, then x ∼i y if and only if x ∼Ni
y.65

Proof. If x ∼i y, then there is a piecewise C1 null curve γ with γ(0) = x and γ(1) = y and we have66

that Pli(γ) = Pln(Ni ◦γ) = 0. Since g(n) is a non-degenerate Riemannian metric, Pln(Ni ◦γ) = 067

entails that the tangent vector to Ni ◦ γ(s) is the zero vector for every s ∈ (0, 1) and therefore Ni ◦ γ68

is the constant curve Ni ◦ γ(s) = Ni(x). This proves x ∼i y ⇒ x ∼Ni
y. Let us now assume69
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that x ∼Ni y. By definition we know that there is a piecewise C1 curve γ : [0, 1] → Mi such that70

γ(0) = x, γ(1) = y and Ni ◦ γ(s) = Ni(x) ∀s ∈ [0, 1]. It remains to prove that γ is a null curve.71

This follows from the fact that, being Ni ◦ γ a constant curve, then Pli(γ) = l(N ◦ γ) = 0.72

Corollary 2. Under the hypothesis of Proposition 3, one has that Mi/∼i = Mi/∼Ni+1 . Moreover,73

if two points p, q ∈ Mi are connected by a C1 curve γ : [0, 1] → Mi satisfying Ni(p) = Ni ◦ γ(s)74

for every s ∈ [0, 1], then they lie in the same class of equivalence.75

Proof. The statement follows immediately from Propositions 2 and 3 making use of the definitions76

of the quotients ∼i and ∼Ni+1
.77

Theorem 1 (Godement’s criterion, [2, 1]). Let X be a smooth manifold and R ⊂ X × X be an78

equivalence relation. The quotient X/R is a smooth manifold if and only if79

1) R is a submanifold of X ×X80

2) The projection map on the second component pr2 : R ⊂ X ×X → X is a submersion.81

Now we can prove that Mi ∼i is a smooth manifold.82

Proposition 4.
Mi

∼i
is a smooth manifold of dimension dim(N (M0)).83

Proof. We prove that the quotient Mi/ ∼i is a smooth manifold using Godement’s criterion (Theo-84

rem 1). The graph Gi+1 of ∼Ni is the union of Cp ×Cp, with Cp a connected component of N−1
i (p),85

with p ∈ Ni(Mi−1) ⊆ Mn and therefore Gi+1 is a submanifold of Mi × Mi. Furthermore, the86

restriction of the projection pr2 to R is the restriction of the identity map to Cp for some p ∈ Mi,87

which is a diffeomorphism with its image and therefore a submersion. The statement about the88

dimension follows from the proof of 2) ⇒ 1) of Theorem 1, see [2, Lemma 9.4], taking in account89

that TpNi = dim(Ker(g(i))) is constant.90

This proposition, along with [2, Lemma 9.4 and Lemma 9.9], yields that the classes of equivalence91

[p] are the leaves of a simple foliation of Mi and that πi is a smooth submersion.92

Proposition 5. πi : Mi → Mi/ ∼i is a smooth fiber bundle, with Ker(dπi) = VMi, which is93

therefore an integrable distribution. Every class of equivalence [p] is a path-connected submanifold94

of Mi and coincide with the fiber of the bundle over p.95

Proof. The first part of the statement follows applying Proposition 4 together with [2, Lemma 9.4 and96

Lemma 9.9]. The second part of the statement is then a consequence of the definitions of equivalence97

class and vertical bundle.98

4 ChatGPT prompts99

In order to generate a small dataset of 100 sentences for hate speech detection, we prompt ChatGPT100

(3.5 version) with several requests. The first one is: can you generate 100 sentences with [CLS] and101

[MASK] tokens as input for BERT? Do not enumerate them while printing them, I want to do a copy102

paste directly in a txt file.103

Then: can you do the same but generating sentences for training a BERT model for hate speech104

detection?105

And finally: can you do the same but without the [MASK] token and with some of them being offensive106

(37%), other hate speech (39%) and others neutral (24%)? Still add the [CLS] token.107

This yields the dataset we used for exploration of BERT input embedding space.108
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5 Using interpretation outputs as alternative prompts (cont.)109

ViT experiments were conducted using 1000 iteration outcomes from both SiMEC and SiMExp,110

applied to a subset of the MNIST dataset containing 14 images of the digit “4”. BERT for MLM111

experiments involved 1000 iterations from both SiMEC and SiMExp, applied to a subset of 8112

sentences from the “fill in the mask” dataset (see Section 4 for more details).113

For ViT experiments, we first extract the original predicted class i∗ = argmaxi yi, which represents114

the output whose equivalence class we aim to explore. Then, we run the interpretation algorithm115

for each p0 . . . pK to obtain K interpretations in the form of images. Finally, we classify the new116

images, obtaining the corresponding predictions Y = y(0) . . .y(K), where each y(k) ∈ RN , N117

being the number of prediction classes (e.g., N = 10 in MNIST). We visualize the prediction118

trend for the i∗th value in every y(0) . . .y(K) categorizing the images into two subsets: those119

that lead to a change in prediction Yc = {y(k) ∈ Y | argmaxi y
(k)
i ̸= i∗} and those that don’t120

Ys = {yi ∈ Y | argmaxi y
(k)
i = i∗}.121

Considering BERT for MLM experiments, we proceed as illustrated in the main text.122

Figure 1 illustrates a scenario similar to the one described in the main text. Specifically, it shows SiM-123

Exp’s tendency to identify modifications that lower the prediction value for the original equivalence124

class, i∗.125

Figure 1: Results of ViT experiments involving 1000 iterations from both SiMEC and SiMExp,
applied to subsets of MNIST dataset, each containing 14 sentences. The left plot shows prediction
values for i∗ for each y ∈ Yc, whereas the right plot depicts prediction values for y ∈ Ys. In general,
both plots show a similar trend where SiMExp generally identifies alternative prompts that lower the
prediction value for i∗.

Results for experiments using BERT for MLM are depicted in Figure 2. The plot on the left side126

exhibits the expected behavior. However, when selecting alternative tokens that lead to the same127

equivalence class, SiMExp seems unable to lower the prediction value of i∗. While our primary128

concern is validating the expected behavior when the prediction class changes (left plot), a deeper129

investigation into using interpretation outputs as prompts will be crucial in future work.130

6 Example of feature importance in image classification131

As, to the best of our knowledge, we are not aware of any explainable version of the MNIST dataset,132

we show the results of the same methods applied to ViT in an example, reported in Figure 3. This133

example is in line with the results obtained on the sample of 100 images from the MNIST dataset and134

shows that our method gives higher importance to pixels that are contained in the actual shape of the135

digit or that would form another digit if white (in the case of 6, these are the upper right ones, which136

would transform 6 into 8). Though on different scales, the number of pixels assigned high importance137

by our approach is larger than in the AR approach and lower with respect to the Relevancy approach.138
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Figure 2: Results of BERT experiments involving 1000 iterations from both SiMEC and SiMExp,
applied to subsets of a “fill in the mask” dataset, each containing 8 sentences. The left plot shows
prediction values for i∗ for each y ∈ Yc, whereas the right plot depicts prediction values for y ∈ Ys.
Here, the expected behavior can be noted on the left side, where SiMExp tries to predict tokens which
in turn lower the probability of the equivalence class prediction i∗. However, the same cannot be said
for the plot on the right, where SiMExp is unable to find tokens leading to lower probabilities for i∗.

This contributes to give a precise (contrary to AR) and noiseless (contrary to the Relevancy method)139

explanation.140

Figure 3: Example of feature importance with our method (left), AR (center) and the Relevancy
method (right) on a sample image from the MNIST dataset.
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