
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MESH SKELETONIZATION

Scanned incomplete/broken mesh

Non-tree structure

Figure 12: Failure cases of our
mesh skeletonization pipeline.

Result comparison. We compare our method with learning-
based method RigNet (Xu et al., 2020), and the results are
shown in Fig. 13. More results of our method are shown in
Fig. 14. The most important reason that RigNet can not
be direcly applied is that it assumes that the skeletons are
symmetric. However, the dataset contains many asymmetric
objects. Even the object is symmetric, once it is posed, it will
also become asymmetric. In addition, since the symmetry
constraint is imposed, the object should stay in a determined
orientation related to the plane of symmetry. If the orienta-
tion is wrong, RigNet will produce wrong results. In addition,
RigNet relies on hyperparameters to produce decent results.
Using default hyperparameters may produce inaccruate joints
and bones. Consequently, the total success rate is around 15%
in our test. On the contrary, our method runs without limita-
tion of symmetry and is not sensitive to hyperparameters. It
can produce more reliable results with a higher success rate
around 80%.

Failure cases. We show the failure cases of our pipeline in
Fig. 12. The skeletons may not be properly generated for non-tree like structures, e.g. a ball or
a bottle. When the input mesh is incomplete or broken (e.g. mesh scanned from real-world), our
pipeline may also fail, since it requires the input mesh to be watertight.

Flexibility (orientation) Joint Alignment Bone AlignmentFlexibility (symmetry)

Ri
gN
et

O
ur

s

RigNet: 16/100
Ours: 78/100

Figure 13: Comparison of skeletons generated by RigNet (Xu et al., 2020) and our method.

Figure 14: Demonstration of generated skeletons in our Objaverse-SK dataset.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 SKELETAL CONDITIONED SINGLE-VIEW GENERATION

We train a single-view (SV) skeletal conditioned generation model. The base diffusion model is
StableDiffusion 2.1 base 1. We use a single-view skeletal image with CCE-D as the input condition.
Similar to ControlNet (Zhang et al., 2023), the UNet encoder is copied and trained for conditional
generation. The model is also trained on Objaverse-SK. We render the training images at the res-
olution of 5122 (note the resolution of multi-view training is 2562). The same resolution trade-off
occurs in MVDream (Shi et al., 2023) and StableDiffusion (Rombach et al., 2022).

A.2.1 SINGLE-VIEW SKELETON CORRELATION MODELING

We also apply our skeleton correlation module (SCM) in single-view generation, in which the cross-
view attention is replaced with a self-attention layer. The alignment scores are evaluated and results
are shown in Tab. 3. Similar to the multi-view scenario, SCM also facilitates conditioned learning
and achieves higher skeleton alignment score for single-view conditions.

Method/SKA Score MeanInst. MeanClass Animals Humans Plants Apodes Bipeds Quadrupeds Arthropods Wings
SV w/o SCM 67.58 57.06 83.22 60.44 27.53 89.24 83.06 82.94 82.97 75.44
SV with SCM 74.39 65.86 86.78 70.15 40.66 88.93 83.93 89.60 82.50 86.45

Table 3: Comparison of Skeleton Alignment Score (SKA) between models with and without SCM.

A.2.2 SINGLE-VIEW VS. MULTI-VIEW GENERATION

We compare the result of single-view (SV) and multi-view (MV) generation. The SV model gen-
erates images with a higher resolution of 5122, but suffer from skeleton ambiguity. Although the
MV model produces lower resolution images, the anatomy and pose can be determined by multiple
views. As a result, when considering the possible poses and orientations of the skeletal conditions,
MV model tends to perform better.

Front BackRight Left Front BackRight Left

Sk
el

et
on

1
vi

ew
4 

vi
ew

Sk
el

et
on

1
vi

ew
4 

vi
ew

A rattlesnake, thick body, triangular head, segmented rattle at the tail.A lizard, elongated body, scaly skin, long tail, small head, four legs.

A gorilla, robust body, black fur, large hands. A dragon, large scaled body, long serpentine tail, expansive wings, sharp claws.

Figure 15: Comparison of single-view and multi-view generation. Since the single view condition
may be ambiguous, the correctness of generated content could be affected.

1https://huggingface.co/stabilityai/stable-diffusion-2-1-base/tree/main

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 ADDITIONAL EVALUATION RESULTS

We evaluate our model on ShapeNet (Chang et al., 2015) to demonstrate the generalization ability.
In our training data, animals, human shapes and plants are included while the skeletal conditioned
generation can actually generalize to arbitrary categories. We sample 150 instances from three new
classes “Airplane”, “Chair” and “Guitar” in ShapeNet. Skeletons are extracted and then served as
conditions for generation. The qualitative results are in Fig 16. The quantitative evaluation results
are in Tab 4.

A
ir
pl
an
e

C
ha
ir

G
ui
ta
r

Figure 16: Skeletal conditioned generation on categories not covered by the training set.

PickScore SKA Score
Method Training Win Rate Airplane Chair Guitar Meaninst. Airplane Chair Guitar
SDEdit (Meng et al., 2021) ❍ 24.57 33.43 21.22 19.05 70.43 76.61 65.34 69.38
SDEdit+COSAG ◗ 24.29 32.56 19.19 21.13 69.84 75.43 64.54 69.54

Ours ● 51.14 34.01 59.59 59.82 74.55 81.74 70.00 71.91

Table 4: Comparison of Skeleton Alignment Score (SKA) and PickScore on ShapeNet (Chang et al.,
2015).

A.4 IMPLEMENTATION DETAILS

A.4.1 DATASET CONSTRUCTION

Mesh preprocessing. In order to construct the mesh-skeleton pairs with a high success rate, we
propose a full pipeline starting from an arbitrary mesh to final skeleton. The mesh preprocessing
and rendering are finished in Blender2: a) Normalization. Given a mesh file, we first normalize
it into (−0.5, 0.5)3. Files with a size larger than 200M are filtered to avoid crash. b) Remeshing.
The remesh modifier is applied, with the voxel size set as 0.005. We need to make sure the mesh

2https://www.blender.org/

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

is watertight before skeletonization. c) Decimation. To accelerate later skeletonization steps, the
remeshed result is further decimated with a ratio of 0.2, i.e. the face count is reduced into 1/5.

Mesh skeletonization. We use the implementation of Mean Curvature Flow (Tagliasacchi et al.,
2012) in CGAL library3. After curve graph are generated from the preprocessed mesh, we first find
the largest connected component. Only the main object of the mesh is considered. Then the graph
is separate into parts by intersection points. The Douglas–Peucker algorithm (Douglas & Peucker,
1973) is used to simplify each part, with the distance threshold set as 0.01. In addition, points with
a distance less than 0.01 are also merged. Later, the sparse graph is converted into a spanning tree to
remove cycles. Finally, the root of the skeleton is determined by finding the minimum height tree.

Mesh and skeleton rendering. For each mesh file, we randomly select 4 elevation angles in
[−10◦, 45◦] degrees. For each elevation angle, 32 azimuth angles are selected uniformly in 360◦.
The FOV of the camera is set as 45◦. The distance between the camera and the object is randomly
set between [2.5, 3.5]. Finally, 128 RGB images with a size 256× 256 are rendered for each object.
We use the EEVEE engine in Blender for fast rendering. For each RGB image, the corresponding
skeleton is rendered with the same camera parameters. The joints are projected by the perspec-
tive transformation and colored by the proposed coordinate color encoding method. Bones are then
drawn between joints, and bone colors are determined by the center points. During projection, the
depth values are calculated and are inversed and normalized to [0.2, 1] as the alpha channel.

A.4.2 MODEL TRAINING

The models are trained on our proposed Objaverse-SK dataset with a learning rate of 1 × 10−5.
Multi-view models are trained with 4k steps, and the batch size is 240*4 (four views). For models
without skeletal correlation module, we train 8k steps for convergence. Single-view models are
trained with 6k steps, and the batch size is 240. Since the image resolution for multi-view training
is 2562 while that for single-view training is 5122, the total GPU memory consumption is similar.
Diffusers 4 and Accelerate 5 libraries are used for mix-precision training. The implementation of the
models is based on MVDream (Shi et al., 2023) and MVControl (Li et al., 2023d).

A.5 LIMITATION AND FUTURE WORK

Shape representation. Noticing the limited capacity of text for shape description, we resort to
skeletons. However, there are still some objects which can not be well described by skeletons (Fig.
12). A possible future work is to design more general and expressive shape representations as
conditions. Some works propose new skeletal shape representations (Dou et al., 2022; Guo et al.,
2023), but the utility and simplicity for editing and articulation may be compromised.

Skeleton ambiguity. Although we propose to use multi-view generation to avoid skeleton ambi-
guity, there are still some cases that the skeleton is not correctly recognized. The key problem is
that parts in the skeleton are not bind with specific semantics. A meaningful future work is to inject
semantic information into the skeletal conditions. For example, the word “head” is bind with the
head joints in the skeleton and can be recognized by the model. This will not only help the model to
understand the skeleton and generate correct content but also enable more flexible controlling.

3https://www.cgal.org/
4https://huggingface.co/docs/diffusers/en/index
5https://huggingface.co/docs/accelerate/en/index

18


	Introduction
	Related Work
	Dataset Construction
	Data Preparation
	Skeleton Generation

	Method
	Skeletal Conditioned Multi-view Generation
	Multi-view Images to 3D Generation
	Object-Skeleton Alignment Evaluation

	Experiments
	Results of Mesh Skeletonization
	Results of Multi-view Generation
	Results of 3D Generation

	Ablation Study
	Skeletal Condition Representation
	Skeletal Correlation Modeling
	3D Appearance Refinement

	Limitation and Future Work
	Conclusion
	Appendix
	Mesh Skeletonization
	Skeletal Conditioned Single-view Generation
	Single-view Skeleton Correlation Modeling
	Single-view vs. Multi-view Generation

	Additional Evaluation Results
	Implementation Details
	Dataset Construction
	Model Training

	Limitation and Future Work




