A Technical Lemmas

Lemma A.1 (Lemma 12 of [1l]). Let A, B and C be positive semi-definite matrices with finite
dimension, such that A = B + C. Then, we have that:

x ' Ax < det(A)
su
x;; x"Bx ~ det(B)
Lemma A.2 (Extension of Lemma E] to kernel matrix). Define positive definite matrices A =

A+ <I>1'—‘I>1 + <I>;_‘I>2 and B = \1+®| ®1, where <I>1'—<I>1, @;—@2 € RP*P and p is possibly infinite.
Then, we have that:

6T Ap  det(T+A"1K.)
Sup == < )
70 ¢' Bop det(I+)\ KB)

P,

where K 4 = [(1)2

] (@], 0]] and Ky =,

Proof of LemmalA.2] Similar to the proof of Lemma 12 of [I]l, we start from the simple case when
&, &, = mm ", where m € RP. Using Cauchy-Schwartz inequality, we have

(¢Tm)* = (¢T BY2B™2m)* < | BY26|| B72ml|* = ||g||Bllm| %,

and thus,
¢"(B+mm")p < ¢ " Bo+ |l BIml5-1 = (1+ [ml5-0)l¢lE,
so we have
o' Ag 2

for any ¢. Then using the kernel trick, e.g., see the derivation of Eq (27) in [31]], we have
det(I+ 2 "1Ky)
det(I + )\_1KB) ’

which finishes the proof of this simple case. Now consider the general case where ®] &, =

Lt ml[3 =

mlm;r + QO;r + -+ mt,lm;';l. Let’s define V, = B + mlm]— + QO;— 4+ ms,lm;';l
P,

. . m{ T 6T Ad
and the corresponding kernel matrix Ky, = [*1)1 , M, ... ,ms,l], and note that oTBS =
T
msfl

o Vio ¢ Vicad ¢ Voo - ;
¢TVti1 3 <z>Tszz 5 aT - o Then we can apply the result for the simple case on each term in the

product above, which gives us
¢ AP < det(T+ A\"'Ky,) det(I+ A 'Ky, ,)  det(T+ \"'Ky,)
¢"Bp ~ det(I+ A"'Ky, ,)det(I+ A "'Ky, ,)  det(I+ A "'Kp)
det(T+X'Ky,) det(T+21Ky)
T det@T+ A 'Kp)  detI+ A Kp)
which finishes the proof.

O

Lemma A.3 (Eq (26) and Eq (27) of [31]]). Let {¢+}:2, be a sequence in RP, V' € RP*P q positive
definite matrix, where p is possibly infinite, and define V; =V + 22:1 b5¢] . Then we have that

Zlmin(HqStH%/;ll?l) < 2In(det(I+ A "'Ky,)),
t=

where Ky, is the kernel matrix corresponding to Vy as defined in LemmalA.2]

Lemma A.4 (Lemma 4 of [4]). Fort > t;.y, we have for any x € R¢
t

6}(x) <67, (0 < (1+ D 67, (x))57 (%)
s=tiay+1
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B Confidence Ellipsoid for DisKernelUCB

In this section, we construct the confidence ellipsoid for DisKernelUCB as shown in Lemma@

Lemma B.1 (Confidence Ellipsoid for DisKernelUCB). Let § € (0,1). With probability at least
1—0,forallt € [NT],i € [N], we have

1005 = Oulla,.. < VO] + By/2I0(NT/8) + In(det(Kp, ) p, 50/ A + T)).

The analysis is rooted in [31] for kernelized contextual bandit, but with non-trivial extensions to
address the dependencies due to the event-triggered distributed communication. This problem also
exists in prior works of distributed linear bandit, but was not addressed rigorously (see Lemma H.1.
of [30])). First, recall that the Ridge regression estimator

Oi=Arl D by =AL D du(d] s+ ns)

€Dy (4) s€ED:(3)
=0, =M+ AL D bans,
SED (1)
and thus, we have
1/2/4 -1/2 -1/2
AL (Bri — 0] = |-AA; 20, + AL ST dandll
s€D(7)
—1/2 —1/2
< INAZ0 1AL Y dunl s
s€D(7)
<O+ 1A S danl
SED (1)

where the first inequality is due to the triangle inequality, and the second is due to the property of

Rayleigh quotient, i.e., [ A; /20, < 0.1/ Amax (AL < (1041 J5.

Difference from standard argument Note that the second term may seem similar to the ones
appear in the self-normalized bound in previous works of linear and kernelized bandits [/} 16} [31]].
However, a main difference is that D,(7), i.e., the sequence of indices for the data points used to
update client 4, is constructed using the event-trigger as defined in Eq . The event-trigger is
data-dependent, and thus it is a delayed and permuted version of the original sequence [t]. It is delayed
in the sense that the length |D;(7)| < ¢ unless ¢ is the global synchronization step. It is permuted
in the sense that every client receives the data in a different order, i.e., before the synchronization,
each client first updates using its local new data, and then receives data from other clients at the
synchronization. This prevents us from directly applying Lemma 3.1 of [31], and requires a more
careful treatment as shown in the following paragraph.

First, we should note that during the time steps of global synchronization, i.e., t € {t,},e[5], We
have D, (i) = [t],Vi € [IN], which recovers the case under centralized setting, i.e., the centralized
agent that has access to all data points in the learning system. Therefore, analogous to the proof of
RARELY SWITCHING OFUL algorithm in Appendix D of [1]], with the standard argument in [31],
we have

1A72 S b < R\/2 In(1/8) + In(det(Kp, (5).p, i) /A + 1))
s€Dy (i)
forall t € {t,},cp) and i € [N], with probability at least 1 — J. If our proposed algorithm has
no local update, or use the ‘hallucinating update’ as in [4]], then this would suffice. However, the
existence of local update requires us to obtain self-normalized bounds for the local models that have
been updated using each client’s newly collected data after the synchronization step, which leads to
the issue mentioned in the previous paragraph. Therefore, we need to address this issue by a union
bound over all possible time steps of global synchronization and all clients.

Specifically, consider some time step ¢t ¢ {t,},c;5 and client i. We denote the time step
of the most recent global synchronization to ¢ as %), and define the filtration {.Fg}';‘;“o U
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{Fsi}s2,. .41, where the o-algebra Fy = o((X;,7:)res)) for s € [0,tq0), and Fy; =
(%17 ) reftus]> (X2 117 ) r€ftu,s] in—i) fOr 8 > tiaq + 1. By applying the standard argument for
self-normalized bound using the filtration constructed above and then an union bound over NN clients,
we have

Ty ¢Sns\|gR\/2ln(N/6)—|—ln(det(KDt(i),Dt(i)/)\+I))
SED (1)

for all t > ¢, and ¢ € [N], with probability at least 1 — §. As the time step of global synchronization
t1ast 1s data-dependent, and thus can take any value in [T'], we apply another union bound, which
finishes the proof.

C Proof of Lemma 3.1; Regret and Communication Cost of DisKernelUCB

Based on Lemma [B.]and the arm selection rule in Eq (IJ), we have

1,00 (XF) F @13, 00— 1,4, (X)) < fle—1,5,(Xe) + Qp—1,3,06—1,4, (X¢),
1,5 (X¢) — 1,4, 01,4, (Xt),

and thus ry = f(x}) — f(x¢) < 2a4-1,4,64—1,i, (x¢), for all t € [NT, with probability at least 1 — 4.
Then following similar steps as DisLinUCB of [30], we can obtain the regret and communication
cost upper bound of DisKernelUCB.

C.1 Regret Upper Bound

We call the time period in-between two consecutive global synchronizations as an epoch, i.e., the
p-th epoch refers to [t,_1 + 1,¢,], where p € [B] and 0 < B < NT denotes the total number of
global synchronizations. Now consider an imaginary centralized agent that has immediate access to
each data point in the learning system, and denote by A; = 22:1 b5 and Ky, fort € [NT]
the covariance matrix and kernel matrix constructed by this centralized agent. Then similar to [30],
we call the p-th epoch a good epoch if

det(I+ A\ 'K
o (e EEA” K)o
det(I+A~'Kj, )

p—1][tp—1]

otherwise it is a bad epoch. Note that In(det(/ + A 'K{y7),(n77)) < 2yn7 by definition of
det(I-l—)\*lK[tl],[t ]) det(I—&-)\*lK[t 1,0t ])
o )t ln(det(1+/\‘1K[tjl,[:J))

YNT, i.€., the maximum information gain. Since In(

det(I+2 'K _ .
-+ In( dett((ﬂ/\_q([ggﬁ\g))) = In(det(I + A 'K n7y,(n7])) < 2N, and due to the pigeonhole

principle, there can be at most 27 bad epochs.

If the instantaneous regret 7, is incurred during a good epoch, we have

s el < 2acnadbdac oy, A6,

— 94 4 H(b ” » det(I + )\_1K[t,1]’[t,1])
=L lIPtaTL det(I+A_lKDt—l(it)ypt—l(it))

< 2vVear—1, [ dell o,

where the second inequality is due to Lemma [A.2] and the last inequality is due to the defi-
det(I4+A 'Ky _15,1-1) det(T4HA ™ K, ) (1))

: : < e. Define

> det(M+HA"TKp, (i), 0, 1Gy) — det@FATK e, _q1) —

ant = V0] + V2In(NT/6) + In(det(Knr),v7]/A + I)). Then using standard arguments,

nition of good epoch, i.e.

16



the cumulative regret incurred in all good epochs can be bounded by,

det(I+ A~ K[t 1.t ])
ood — 1 Pl <]- < 2 it -
Rgood Z I T Ry, ) }Z Z Vear i oo
NT
S 2\/604]\]1“ ZH(ﬁtHAt:ll S 2\/EaNT\/NT . 21n(det(I + A_lK[NT],[NT]))

=1
< 2yeanr/NT - dynT = O<V NT(||0.]lv/ANT +’YNT))

where the third 1nequa11ty is due to Cauchy Schwartz and Lemma[A.3] and the forth is due to the
definition of maximum information gain yyr.

Then we look at the regret incurred during bad epochs. Consider some bad epoch p, and the cumulative
regret incurred during this epoch can be bounded by

p

N N
Z ry = Z Z re < 2anT Z Z H(ZStHAt_jM

t=t,_1+1 i=1 €Dy, (i)\Dy,_, (i) i=1 €Dy, (i)\Dy,_, (i)

<2aNTZ (N0 R SN OD D S 1 v

t€Dy, (i)\De,,_, (4)

det(I+A"'Kop, (i), (1))
det(I+A"1Kp, (), ()

<2aNTZ |Dt ‘_|,Dt (Z)Dl (

< 2\/§OéNTN\/5

where the last inequality is due to our event-trigger in Eq (2)). Since there can be at most 2y bad
epochs, the cumulative regret incurred in all bad epochs

bt ZﬂaNTN\/E - O(ND0'5(H9*||’YNT + 711\/5T))
Combining cumulative regret incurred during both good and bad epochs, we have

RNT = Rgood + Rpad = O((VNT + N+/Dynr)(|0«][v/ANT + 1))

C.2 Communication Upper Bound

For some v > 0, there can be at most (%1 epochs with length larger than «. Based on
det(I+>‘71K[tp],[tp])

dCt(I+>‘71K[tp_1],[tp_1])

our event-trigger design, we know that (|D;, (i¢,)| — |Ds,_, (it,)]) In( ) >

. . det(IJr)‘_lK’Dt (i1,): Py (ig))
(|Dtp (th)| - |Dtp71 (th)D ln(det(l-{-/\_lK'Dt p(itp).Dtp I()if )
p—1"tp/rTtp_1Vtp
1y, is the client who triggers the global synchronization at time step ¢,. Then if the length of certain

det(I-‘r}\i K[tp [tp]) ND
det(THATK[e, ) (1, 1])) > . Since
det (T+A ™ K11, 1¢)) det(T+A " K1, t5]) det (T+A ™ K[ 41,1t 1)
In( det(T) )+ In(Gormese Ry ( ])) oot ln(dct(l-&-)\*lK[fB RE:

)) > D for any epoch p € [B], where

epoch p is smaller than o, i.e., t, — t,_1 < «, we have In(

- ])) < In(det(I+
tB—1

A 'K n7y,(vr))) < 27N the total number of such epochs is upper bounded by [233£2 7. Combin-
ing the two terms, the total number of epochs can be bounded by,

NT. 2ynra
B[]+ [T

« ND
To obtain the optimal order of regret, we set D = O(ﬁ), so that Ry = O(VNT(||0.]| /ANt +

'YNT))- And the total number of epochs B = O(\/N vnT). However, we should note that as
DisKernelUCB communicates all the unshared raw data at each global synchronization, the total

where the LHS can be minimized using the AM-GM inequality, i.e., B < /&L 2uvzra — \/ 2N T
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communication cost mainly depends on when the last global synchronization happens. Since the
sequence of candidate sets {.A; };e[n7), Which controls the growth of determinant, is an arbitrary
subset of A, the time of last global synchronization could happen at the last time step t = NT.
Therefore, O = O(N?2Td) in such a worst case.

D Derivation of the Approximated Mean and Variance in Section {4

For simplicity, subscript ¢ is omitted in this section. The approximated Ridge regression estimator for
dataset {(xs,ys)}sep is formulated as

. 2
0= argminz ((PS¢S)T0_yS) + All6]3
0eH seD

where D denotes the sequence of time indices for data in the original dataset, S C D denotes the time
indices for data in the dictionary, and Ps € RP*P denotes the orthogonal projection matrix defined

by S. Then by taking derivative and setting it to zero, we have (Ps®,®pPs + )\1)0~ =Ps®Lyp,
and thus § = A~ 'b, where A = PS@E@DPS + AMland b = Pgﬁgyp.

Hence, the approximated mean reward and variance for some arm x are

firi(x) = ¢(x)TA"'D

61.i(x) =/ ¢(x)TA1(x)
To obtain their kernelized representation, we rewrite
(Ps®L®pPs + \)i = Ps®Lyp
& Ps®L(yp — ®pPsh) = M\
& 0=Ps®Lp
where p := L(yp — ®pPsf) = +(yp — ®pPsPs®}p). Solving this equation, we get p =
(2pPsPs®,, + AI)"lyp. Note that PsPs = Pg, since projection matrix P is idempotent.

Moreover, we have (®T® + A\[)®@" =@ (@' + \),and (@' ® + \I)'¢T = o (dP" +
AI)~L. Therefore, we can rewrite the approximated mean for some arm x as

[i(x) = (%) Ps® 5 (BpPsPs®), + \I) lyp
= (PY*6(x)T(@pPY*) T [®pP{*(@pPY*)T + A 'yp
= (P{*6(x)) (P @p®pP” + A1) (@0PY”) Ty
= 2(x;8) (ZD.sZpis + M) ' Z3 syp
To derive the approximated variance, we start from the fact that (Ps®,®pPs + A)p(x) =
Ps®,®pPso(x) + Ap(x), so
$(x) = (Ps®p®pPs + M) 'Ps®p®pPso(x) + A(Ps®p®pPs + M) '(x)
= Ps®p(PpPsPs®p + A) ' @pPso(x) + A(PsPpPpPs + AT) ' ¢(x)
Then we have
¢(x) " ¢(x)
—{Ps®L(DpPsPs®] + A) ' ®pPsd(x) + APs®LPpPs + A1) o(x)}
{Ps®)(2pPsPs®p + AI) ' ®pPsd(x) + A(PsPp®pPs + M) '6(x) }
=¢(x) " Ps®h(PpPsPs®) + M) ' ®pPsPs® 5 (PpPsPs®,, + A\I) ' ®pPsé(x)
+2)¢(x) Ps®p(2pPsPs®p + AI) "' @pPs(Ps®p@pPs + A ¢(x)
+20(x) T (Ps®LPpPs + AI) 'A(Ps®L,®pPs + M)~ Lop(x)
=¢(x) "Ps®h(®pPsPs®p + \I) ' ®pPsh(x) + A\p(x) | (Ps®p®pPs + M)~ Lp(x)
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By rearranging terms, we have
5°(x) =¢(x) (Ps@p®pPs + AI) ' ¢(x)
:§{¢(X)T¢(X) — ¢(x) ' Ps®(2pPsPs®], + /\I)_l‘I’DPsqb(X)}

1
:X{k(x, x) = 2(x;8) " Zp.s s [Lp.,s Zpis + M| 7' 2(x|S)}

E Proof of Lemma 4.1

In the following, we analyze the ¢, ;-accuracy of the dictionary for all ¢, 4.

At the time steps when global synchronization happens, i.e., t, for p € [B], S, is sampled from
[tp] = Dy, (i) using approximated variance af ;- In this case, the accuracy of the dictionary only
depends on the RLS procedure, and Calandnello et al. [4] have already showed that the following

guarantee on the accuracy and size of dictionary holds V¢ € {,},¢ (5.

Lemma E.1 (Lemma 2 of [4]). Under the condition that § = 615 1og(4NT/6) /€, for some
e € [0, 1), with probability at least 1 — §, we have V't € {tp}pe[B] that the dictionary {(Xs,Ys) }ses,
is e-accurate w.r.t. {(Xs,Ys)}sep, ), and he #(x) < 67(x) < 10 (x),Vx € A. Moreover,
the size of dictionary |S;| < 3(1 + L?/)\) 1Jr6qcl where d := Tr(K[NT] vt (Kinry vy + A~ b

denotes the effective dimension of the problem, and it is known that d= O(ynr) [6].

Lemma guarantees that for all ¢ € {¢,,} ,¢[p). the dictionary has a constant accuracy, i.e., €;; =
€, Vi. In addition, since the dictionary is fixed for ¢ ¢ {t,},¢c(p). its size S; = O(yn1), Vt € [NT].

Then for time steps ¢ ¢ {¢,},c[5]. due to the local update, the accuracy of the dictionary will degrade.
However, thanks to our event- trlgger in Eq (@), the extent of such degradation can be controlled, i.e., a
new dictionary update will be triggered before the previous dictionary becomes completely 1rrelevant.
This is shown in Lemma [E.2] below.

Lemma E.2. Under the condition that {(xs,ys)}ses,, is e-accurate w.rt. {(Xs,Ys)}sep,, i), Vt €

[ty + 1, tp41],i € [N], Sy, is (e+1 — )-accurate w.r.t. Dy(i).

1
1+1E<D
Combining Lemma [E.T|and Lemma [E.7] finishes the proof.

Proof of Lemma[E.2] Similar to [3]], we can rewrite the e-accuracy condition of S;, w.r.t. Dy (i) for
teft,+1,t,41] as

(1 =€) (@D, 1y ®p, () + AI) X 85, (1,S:80i®p, (i) + AT = (14 €,0)(®p, 1y ®p, (i) + A)
o — Et,i(‘I’gt(i)@Dt(i) + M) < Q;t(i)s;st,i%t(i) - 'I)gt(i)épt(i) =< €t,i(‘1’1;t(i)’1’pt(i + )
& — e, L = (@p, (P, (i) + /\I)_I/Q(q’gt(i)g;gmq)m(i) — B, 8D, (B, B, ) + AD) 12 < 1
S| @5,y ®p. i) + XDV (®4,(yS 808D, (1) — B, 1y @D, 1)) (D, 1y ®D. (i) + AD V[ < €
@HX}—~4¢W + 30— < e

SEDy,, s€D(i)\ Dy,

where ¢ = (@, ®p,(;) + AI)~1/2¢,. Notice that the second term in the norm has weight —
because the dictionary Sy is fixed after ¢,,. With triangle inequality, now it suffices to bound

qs
1Y (= =Dyl + D O=Dbstpd [ <Y (= = Dbt [+ D Py |-
sEDy, Ps $ED()\Dy,, SEDy, Ps s€D;(i)\ Dy,

We should note that the first term corresponds to the approximation accuracy of S, w.r.t. the dataset
Dy,,. And under the condition that it is e-accurate w.r.t. D; , we have HZéEth ( —Dpsap] || < e

The second term measures the difference between D, (i) compared with D, , Wthh is unique to our
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work. We can bound it as follows.

> i

SEDt(i)\Dtp
=[(®5, @0,y +AD T2 Y 6.0 ) @D,y Py + AD) T
€D, ()\ Dy,
¢ (R, 1) Pp.i) + )‘1)71/2(Zs6Df,(i)\Df,p 0503 ) (@, @D,y + AD) 20
= max
bEH ¢To
¢T(Zsept(')\ptp Psbd )P

N gleadf)l( ¢T( De(i )(I’Dt + /\I)(b
ngT(<I>1—gf <I>Dt + )\I)¢
=1 — min

9eH 6T (Dp, ()P, (i) + ADY
1

:1 —
$T(@L, ®p, 1AD 16
maXgpeH —2 >
¢T(¢Dt(i)q>Dt(i)+)\I)71¢
1 1
T 02 (x)
ps
maXx af,(x)

o2
t,, i

We can further bound the term (( )) using the threshold of the event-trigger in Eq (). For any
x € R4,

op,i(%) 1+ 1+
f; <14 Z Jt2 ix) <1+ : € Z &?pﬂ-(xs) <1+ : D

— €

s€D¢(i)\ Dy, € s€D¢(i)\ Dy,

where the first inequality is due to Lemma[A.4] the second is due to Lemma[E.T] and the third is due
to the event-trigger in Eq (). Putting everything together, we have that if S;, is e-accurate w.r.t. Dy,

then it is (¢ + 1 — ;= )-accurate w.r.t. dataset D¢ (i), which finishes the proof. O
1—e

F Proof of Lemma

To prove Lemmad.2] we need the following lemma.
Lemma F.1. We have Vt,1 that

18ei — 0.z, , < (18, @~ Ps)| + VA) 6] + Ry/4In N/5 + 2ndet((1 + NI+ Ko, (,5,(r)

with probability at least 1 — 0.

Proof of LemmalF71] Recall that the approximated kernel Ridge regression estimator for 6, is defined
as
bri= A, [Ps®p,;)¥p,0)

where Ps is the orthogonal projection matrix for the Nystrom approximation, and At,i =
Pgtﬁgt(i)i’pt(i)Pg + AL Then our goal is to bound

(Or — 0.) T Ay (05 — 0.)
= (01 — 0.) T AL (A Ps®L, (YD, (i) — 0)
=(0ri — 0.) T AL (A PsBL, () (P, (1) 0x + 1D, (5)) — 04]
= —0,)"A t,z(At i PS‘I’D ()P, ()0x — 0x) + (01 — 9*)TAt,iAt_7i1PS"I’;.r)t(z‘)nDt(i)
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Bounding the first term To bound the first term, we begin with rewriting
A (A Ps®L @, (i)0x — 0.)
=Ps®p, (s ®p,(1)0x — Ps®p, iy ®p, (i) Psbs — M
=Ps®7, ;®p, (i) (I— Ps)d, — A,
and by substituting this into the first term, we have
(0r.i — 9*)TAt,i(A;Z‘1PS(I’:Drt(i)(I)Dt(i)o* —0,)
=(0ri = 0.) "Ps®p, ;) ®p, (i) (L= Ps)0 — A(Bri — 0.) 70,
=(0r; — 0.)TAPAPPs®L, 1 ®p, ) (1~ Ps)0. — A0, — 0.)TALPA 0,
<[[6+,; — 04l 4, , (1A *Ps®s, ;) ®p, i) (T — Ps)o.]| + All6xl471)
<0ei = 0ull&,, (147 "Ps@, 5l @0,0) (T = P[] + VX6
<[|6ri — 0ull &, , (1D, i) (T Ps)| + VA) |64

where the first inequality is due to Cauchy Schwartz, and the last inequality is because
IA,}*Ps®], )Hf\/cth(Z)Ps(Pgtbpt()<I>Dt(z)P5+>\I) 1Pgd] <1

Dy ()
Bounding the second term By applying Cauchy-Schwartz inequality to the second term, we have
(01 — 0,)T Ay, iAt_}PS'I);t ) T1D, (i)
<[00 = Ol 4, IA L *Ps @, iy, o |
=l16s — 0., AP A AL 2@, (i, o]

<[16s: — b+l 4, ,

A 1/2P5A1/2||||A 2ol np, ol

Note that PsA,; ;Ps = P5(<I>T Dy )‘I>Dt + AI)Ps = At i + AM(Ps —1I)and Ps < 1, so we have

2 1/2 2 1/2 . 1/2 2 —=1/2, % T —1/2
|, 2P AL = \JIAPPsAPAPSA; 2 < \JIA; Y2 (Ar + A(Ps — D)A; )

= \/HI + AP (Ps - I))AZZ-WH < \/1 + A IPs - D)
<VI+A A1 1=12

Then using the self-normalized bound derived for Lemma the term || A, 2-1/ Z‘PEt(i)ﬁDt(i) | =
185, (1) 102 (i) |- can be bounded by

||¢'—|D—f,(i)nDt(i) HA;il < R\/2 In(NT/6) + In(det(Kp, i),p, (i) /A + 1))

< R\2Wn(NT/d) + 2ynT
for Vt, i, with probability at least 1 — §. Combining everything finishes the proof. O

Now we are ready to prove Lemma 4.2 by further bounding the term ||®p, ;) (I - Ps, )|

Proof of Lemmad.2] Recall that S.i € RIP@IXIP()] denotes the diagonal matrix, whose s-th
diagonal entry equals to \}1;5;, where g, = 1if s € St and 0 otherwise (note that for s ¢ St , we set

ps = 1,50 qs/Ds = 0). Therefore, Vs € Dy (i) \Dtp, gs = 0, as the dictionary is fixed after ¢,,. We
can rewrite ‘I)Dt(i)StﬂSm!I)Dt(z) = ZseDt(z) 5 20 1, where ¢, := $(x,). Then by definition of
j we have

[®p,i)(I—Ps, )|l = \/Amax(‘bm(i)(l —Ps, )2 @5, ) = \/Amax(‘l’vt(i)(l —Ps, )@, ;)
(6)
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Moreover, due to Lemma L, we know St is €; ;-accurate w.r.t. Dy(i) for t € [t, + 1,¢p41], where
€= (e+1— WTD)’ sowe have I - Ps, = 17’2 , (<I>Dt( 2D, (i) + AI)~! by the property of
e-accuracy (Propositi(;n 10 of [3]]). Therefore, by substituting this back to Eq (6), we have

A
@D, (T—Ps, )| < \/)‘max(l_mq)pt(i)(q)£t(i)épt(i) +ADTIRG () <

which finishes the proof. O

G Proof of Theorem 4.3; Regret and Communication Cost of
Approx-DisKernelUCB

G.1 Regret Analysis

Consider some time step ¢ € [t,—1 + 1, t,], where p € [B]. Due to Lemma[4.2] i.e., the confidence el-
lipsoid for approximated estimator, and the fact that x; = argmax, ¢ 4, . fle—1,i(X)+—1,i5¢1,i(X),
we have

11, (%) Fop—1,i0e—14(x)) < g1 i (Xe) + —1.i0t—1,i(Xe),

t—1,i(Xe) — 1,004 1,4 (X¢),

and thus r, = f(x}) — f(x¢) < 204-1,461—1,(x:), where

1

1= <+ - + 1) \5”9*” +R\/4lnNT/(5+21ndet((1+)\)I+KD,,71(,;)7D‘71(,;)).

—e
1+1E£D

Note that, different from Appendix @, the ay_1 ; term now depends on the threshold D and accuracy
constant e, as a result of the approximation error. As we will see in the following paragraphs, their
values need to be set properly in order to bound a;—1 ;.

det(I+/\ K[fp] [t ]) ) <
det(I+)\ 1K tp_1)i[tp— 1]) —
1, otherwise it is a bad epoch. Moreover, due to the pigeon-hold principle, there can be at most 2yNT
bad epochs.

We begin the regret analysis of Approx-DisKernelUCB with the same decomposition of good and bad
epochs as in Appendix i.e., we call the p-th epoch a good epoch if In(

As we will show in the following paragraphs, using Lemma|[E.T] we can obtain a similar bound for
the cumulative regret in good epochs as that in Appendix [C.1} but with additional dependence on D
and e. The proof mainly differs in the bad epochs, where we need to use the event-trigger in Eq (@)
to bound the cumulative regret in each bad epoch. Compared with Eq (2), Eq (@) does not contain
the number of local updates on each client since last synchronization., and as mentioned in Section
, this introduces a /7T factor in the regret bound for bad epochs in place of the VNT term in

Appendix [C.T]

Cumulative Regret in Good Epochs Let’s first consider some time step ¢ in a good epoch p, i.e.,
t € [tp—1 + 1,t,], and we have the following bound on the instantaneous regret

1+e

re < 201,i01-1,i(Xt) < 201,01, (%) < 2at—1,i170'tp,1,i(xt)

14e det(T+ A" Kp_1),1—1))
= 200107 JOT AL 00 < 200 i [6T A
1, Op Ay~ 08 < 200, \/det T+ A 1K, 1 tp-1))
1+e€ _
< 2\/51 760&71,@‘\/@

where the second inequality is because the (approximated) variance is non-decreasing, the third
inequality is due to LemmaB [E.1] the forth is due to Lemma and the last is because in a good

det (T+A ™ K (p_ ). 111)) det(I+2 'Ky ), [tp])
epoch, we have T TR, 1, 2] = da 1K, <efort € [tp_1 + 1,1y

p—1lltp_11)
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Therefore, the cumulative regret incurred in all good epochs, denoted by R4, is upper bounded by

Zat 11\/¢t At_ 19t <

€
CONTV NT - 29N

good < 2\/>

NT - Zast e

1
§2\/61+

where a7 = <11+1> \f/\HQ*H +R\/4 In NT/§ + 2Indet((1 4+ NI+ K[NT],[NT])-

1+1EED

Cumulative Regret in Bad Epochs The cumulative regret incurred in this bad epoch is

t
i det(I+ A" K], 1t,)) ) 1) Z”: .
t
— d t(T+ A~ 1K[ ]v[tp—l]) t=t, _1+1
B det(T+ A" Ko, 1) >

<2 1{In( )> 1} > w—1aGioi(xe)
= det (T +A"1K,_1,0e,_q1) =
det(T+ A K, 11,1)
1 51
dct(I+A*1K[tp ) > }Z Z Ge—1,i(x¢)

1hitp-11) =1LEN, (0\Ny, (1)

B
S Q(XNT Z ]l{ln(
p=1

det(I + AilK[tp],[tp])
det(I + X’IK[t

B
< 2anT Z 1{In(
p=1

p—1lltp—1] tEN, (\Ny,_y ()

P> 1}; J (Nap ()] = N2, (D)) ) 52, (%)

det(I + " K[tp p])
det(I+)\ [p 111ty

B
< 2an7VD S 1{In( >1}z¢wfp<>\ Nip_y (D)

B det(IT+ A~ K[t LIt ])
<2 vD S 1{l PP 1
< 2anr pZ:jl {n(det(I+A o ) > }Z,/

1]

det(I + AilK[tp]T[tp])
det(I + )‘71K[t

B
SQ(XNT\/DNZ]I{IU( ) > l}vtp_tp—l
p=1

p1lltp_11)

det(I+ A"1Kp, tp]

B B —1
]) det(I+)\ K[t IBG ])
> oi{l bp 1Htp — tp—1) - > 1{1 L L
{n(d t(I+ A\ 1K, ) > 1}(tp p—1) = {In(

det(I + ALK,

) > 1}
oo [tp—1 1,[,,_1])

S 20¢NTV DN\/ 2NT’)/NT

where the third inequality is due to the Cauchy-Schwartz inequality, the forth is due to our event-
trigger in Eq (@), the fifth is due to our assumption that clients interact with the environment in a
round-robin manner, the sixth is due to the Cauchy-Schwartz inequality again, and the last is due to
the fact that there can be at most 2+ bad epochs.

S Q(INT\/DNJ

p—1lltp—1]

Combining cumulative regret incurred during both good and bad epochs, we have

v +2anTtV DN\ 2NTyNT

Byt < R,

G.2 Communication Cost Analysis

Consider some epoch p. We know that for the client ¢ who triggers the global synchronization, we
have

t t
1+e¢ ? LA
D DL AN CO I DI ANCS E D DI AN COES

s=tp_1+1 s=tp_1+1 SEDtP(z‘)\Dtp,I( )

Then by summing over B epochs, we have
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I(XS)

2
(e
Now we need to bound the ratio ?’7
Os_1 (xs)

fors € [t,—1 +1,t,].

S S

2
O-tp, (XS) 2 1+e€ ~92
o? 1(X ) = {1 + Z Ut”*l(XT)} = [IJF 1—e€ Z Utpfl(XT)

s—1\"s T=t,_1+1 T=tp_1+1

Note that for the «client who triggers the global synchronization, we have
2 oseDe. 1(\De. (i) 5fp71(xs) < D, ie., one time step before it triggers the synchroniza-
‘p— p—1

tion at time ¢,. Due to the fact that the (approximated) posterior variance cannot exceed L2/,
we have >3 p o, () &fp [(xs) < D+ L?/X\. For the other N — 1 clients, we have
tp 1 -

D oseDe (\Dy. - (1) % (xs) < D. Summing them together, we have
tp (0 tp_1 (2 tp—1

tp
> 67 (%) < (ND+L*/))
s=tp_1+1

for the p-th epoch. By substituting this back, we have

2

o ,1(XS) 14+¢€
P 7 S [1 +
02_1()(3) 1

(ND + L? /)\)}

— €

Therefore,
tl’

l+e 2 ¢ 2
[1+ (ND+ L /A)] Y )

1—c¢
p=1s=t,_1+1

1+e

BD
<1—e

1 1
<3 e [1 + E(ND + LQ/A)}QVNT

and thus the total number of epochs B < 1££[4 + {2£(N + L?/(AD))]2ynT.

By setting D = % we have

1

1+e 1
I+t w

1
anT = <+ + 1) V6, + R\/4ln N/o 4 2Indet((1 + NI+ Ky, n77)
—€

1
< T +1 \/XHG*H + R\/41HN/6 + 21ndet((1 + )\)I + K[NT],[NT])
1—e
because N > 1. Moreover, to ensure —e + ﬁ > 0, we need to set the constant ¢ < 1/3.
1—e

Therefore,
Ryt = O<V NT(||0.)lv/ANT + ’YNT))

and the total number of global synchronizations B = O(N~x7). Since for each global synchroniza-
tion, the communication cost is O(N~37), we have

Cnr = O(N%?VT)

H Experiment Setup

Synthetic dataset We simulated the distributed bandit setting defined in Section with d =
20,7 = 100, N = 100 (NT = 10* interactions in total). In each round [ € [T, each client i € [N]
(denote t = N (I — 1) + 7) selects an arm from candidate set .4;, where A; is uniformly sampled
from a ¢ unit ball, with |A;| = 20. Then the corresponding reward is generated using one of the
following reward functions:

filx) = cos(3xT9*)
fo(x) = (x76,)> —=3(x"6,)> = (x"6,) +3

where the parameter 6, is uniformly sampled from a /5 unit ball.
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UCI Datasets To evaluate Approx-DisKernelUCB’s performance in a more challenging and prac-
tical scenario, we performed experiments using real-world datasets: MagicTelescope, Mushroom
and Shuttle from the UCI Machine Learning Repository [8]. To convert them to contextual bandit
problems, we pre-processed these datasets following the steps in [12]]. In particular, we partitioned
the dataset in to 20 clusters using k-means, and used the centroid of each cluster as the context vector
for the arm and the averaged response variable as mean reward (the response variable is binarized by
associating one class as 1, and all the others as 0). Then we simulated the distributed bandit learning
problem in Sectionwith |A;| =20, T =100 and N = 100 (NT = 10* interactions in total).

MovieLens and Yelp dataset Yelp dataset, which is released by the Yelp dataset challenge, consists
of 4.7 million rating entries for 157 thousand restaurants by 1.18 million users. MovieLens is a
dataset consisting of 25 million ratings between 160 thousand users and 60 thousand movies [13]].
Following the pre-processing steps in [2], we built the rating matrix by choosing the top 2000
users and top 10000 restaurants/movies and used singular-value decomposition (SVD) to extract a
10-dimension feature vector for each user and restaurant/movie. We treated rating greater than 2 as
positive. We simulated the distributed bandit learning problem in Section [3.1] with 7" = 100 and
N =100 (NT = 10* interactions in total). In each time step, the candidate set A; (with |.A4;| = 20)
is constructed by sampling an arm with reward 1 and nineteen arms with reward O from the arm pool,
and the concatenation of user and restaurant/movie feature vector is used as the context vector for the
arm (thus d = 20).

I Lower Bound for Distributed Kernelized Contextual Bandits

First, we need the following two lemmas

Lemma I.1 (Theorem 1 of [29]). There exists a constant C' > 0, such that for any instance of
kernelized bandit with L = S = R = 1, the expected cumulative regret for KernelUCB algorithm is
upper bounded by E[Rr] < C\/T~r, where the maximum information gain yr = O ((In(T))4*1)
for Squared Exponential kernels.

Lemma 1.2 (Theorem 2 of [23]]). There always exists a set of hard-to-learn instances of kernelized
bandit with L = S = R = 1, such that for any algorithm, for a uniformly random instance in the
set, the expected cumulative regret E[Rr) > c\/T(In(T))%/2 for Squared Exponential kernels, with
some constant c.

Then we follow a similar procedure as the proof for Theorem 2 of [30]] and Theorem 5.3 of [[14], to
prove the following lower bound results for distributed kernelized bandit with Squared Exponential
kernels.

Theorem L.3. For any distributed kernelized bandit algorithm with expected communication cost
less than O(W%) there exists a kernelized bandit instance with Squared Exponential

kernel, and L = S = R = 1, such that the expected cumulative regret for this algorithm is at least

Q(N/T(In(T))472).

Proof of Theorem|[.3] Here we consider kernelized bandit with Squared Exponential kernels. The
proof relies on the construction of a auxiliary algorithm, denoted by AuxAlg, based on the original
distributed kernelized bandit algorithm, denoted by DisKernelAlg, as shown below. For each agent
i € [N], AuxAlg performs DisKernelAlg, until any communication happens between client ¢ and the
server, in which case, AuxAlg switches to the single-agent optimal algorithm, i.e., the KernelUCB
algorithm that attains the rate in Lemma [[.T] Therefore, AuxAlg is a single-agent bandit algorithm,
and the lower bound in Lemma|[[.2]applies: the cumulative regret that AuxAlg incurs for some agent
i € [N] is lower bounded by

E[RAuxAlg,i] >c T(ln(T>)d/27

and by summing over all N clients, we have

N

E[Rauxalg] = Z E[Rauxalg,i] > ¢N1/T(In(T))4/2.

i=1
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For each client ¢ € [N], denote the probability that client ¢ will communicate with the server as p;,

and p := Zfil p;. Note that before the communication, the cumulative regret incurred by AuxAlg is
the same as DisKernelAlg, and after the communication happens, the regret incurred by AuxAlg is
the same as KernelUCB, whose upper bound is given in Lemma|[[.1] Therefore, the cumulative regret
that AuxAlg incurs for client ¢ can be upper bounded by

E[Ruxalg,i] < E[Rpiskernelalg,i] + piCy/T(In(T))d+1,

and by summing over NN clients, we have

N
E[Rauxalg] = Z E[Rauxalg,i]

i=1
N N

< Z E[RDisKemelAlg,qi] + (Z pq;)c T(ln(T))d‘H
1=1 i=1

= E[RDisKernelAlg] + pC T(lH(T))dJrl.

Combining the upper and lower bounds for E[Rauxalg], we have

E[RDisKemelAlg] Z CN\ / T(ln(T))d/2 - pC\ / T(ln(T))d+1 .

Therefore, for any DisKernelAlg with number of communications p < N W =

O((III(T))O%)’ we haVe

E[RDisKernelAlg] Z gN\ / T(ln(T))d/2 = Q(N T(ln(T))d/Q)
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