
A Proofs568

Proof of Prop. 4.1. Substituting vKL into the definition of �v(S, j,x) gives:569

�KL(S, j,x) = �DKL(pY |x k pY |xS ,xj
) +DKL(pY |x k pY |xS

).

Rearranging and using the definition of KL-divergence, we have:570

�KL(S, j,x) = E
Y |x

⇥
log p(y | x)� log p(y | xS)

⇤
� E

Y |x

⇥
log p(y | x)� log p(y | xS , xj)

⇤
.

Cleaning up in steps:571

�KL(S, j,x) = E
Y |x

⇥
log p(y | x)� log p(y | xS)� log p(y | x) + log p(y | xS , xj)

⇤

= E
Y |x

⇥
log p(y | xS , xj)� log p(y | xS)

⇤

=

Z

Y
p(y | x) log

p(y | xS , xj)
p(y | xS)

dy.

Substituting vCE into the definition of �v(S, j,x) gives:572

�CE (S, j,x) = �H(pY |x, pY |xS ,xj
) +H(pY |x, pY |xS

).

Rearranging and using the definition of cross entropy, we have:573

�CE (S, j,x) = H(pY |x, pY |xS
)�H(pY |x, pY |xS[{j})

= E
Y |x

⇥
� log p(y | xS)

⇤
� E

Y |x

⇥
� log p(y | xS , xj)

⇤

= E
Y |x

⇥
log p(y | xS , xj)� log p(y | xS)

⇤

=

Z

Y
p(y | x) log

p(y | xS , xj)
p(y | xS)

dy.

Proof of Prop. 4.2. Since the Shapley value �v(j,x) is just the expectation of �v(S, j,x) under a certain574

distribution on coalitions S ✓ [d]\{j} (see Eq. 1), it follows from Prop. 4.1 that feature attributions will575

be identical under vKL and vCE . To show that resulting Shapley values sum to the KL-divergence between576

p(Y | x) and p(Y ), we exploit the efficiency property:577

dX

j=1

�KL(j,x) = vKL([d],x)� vKL(;,x)

= �DKL(pY |x k pY |x) +DKL(pY |x k pY )

= DKL(pY |x k pY ).

The last step exploits Gibbs’s inequality, according to which DKL(p k q) � 0, with DKL(p k q) = 0 iff p = q.578

Proof of Prop. 4.3. Substituting vIG into the definition of �v(S, j,x) gives:579

�IG(S, j,x) = �H(Y | xS , xj) +H(Y | xS)

= H(Y | xS)�H(Y | xS , xj)

= I(Y ;xj | xS)

=

Z

Y
p(y, xj | xS) log

p(y, xj | xS)
p(y | xS) p(xj | xS)

dy.

In the penultimate line, we exploit the equality I(Y ;X) = H(Y ) �H(Y | X), by which we define mutual580

information (see Appx. B.1).581

Proof of Prop. 4.4. We once again rely on efficiency and the definition of mutual information in terms of582

marginal and conditional entropy:583

dX

j=1

�IG(j,x) = vIG([d],x)� vIG(;,x)

= �H(Y | x) +H(Y )

= H(Y )�H(Y | x)
= I(Y ;x).
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Proof of Thm. 4.5. Begin with item (a). Note that the conditional independence statement Y ??Xj | XS584

holds iff, for all points (x, y) ⇠ D, we have:585

p(y | xS , xj) = p(y | xS) and p(y, xj | xS) = p(y | xS) p(xj | xS).

The former guarantees that marginal payouts evaluate to zero for v 2 {vKL, vCE}; the latter does the same586

for v 2 {vIG, vH}. This follows because the log ratio in each formula evaluates to zero when numerator and587

denominator are equal.588

Of course, conditional independence is also sufficient for zero marginal payout with more familiar value589

functions such as v0. But item (a) makes an additional claim—that the converse holds as well, i.e. that590

conditional independence is necessary for zero marginal payout across all x. This follows from the definitions591

of the value functions themselves. Observe:592

E
x⇠DX

⇥
�KL(S, j,x)

⇤
= E

(x,y)⇠D

"
log

p(y | xs, xj)
p(y | xS)

#

= E
DX

"

E
Y |xs,xj

"
log

p(y | xs, xj)
p(y | xS)

##

= E
DX

⇥
DKL(pY |xS ,xj

k pY |xS
)
⇤

By Gibbs’s inequality, the KL-divergence between two distributions is zero iff they are equal, so setting this593

value to zero for all x satisfies the first definition of conditional independence above. For the latter, we simply594

point out that:595

E
x⇠DX

⇥
�IG(S, j,x)

⇤
= I(Y ;Xj | XS).

Since conditional mutual information equals zero iff the relevant variables are conditionally independent, this596

satisfies the second definition above.597

Item (b) states that CSI, which is strictly weaker than standard conditional independence, is also sufficient for598

zero marginal payout at a given point x. This follows directly from the sufficiency argument above.599

The converse relationship is more complex, however. Call a distribution conspiratorial if there exists some600

S, j,x such that �v (S, j,x) = 0 ^ Y 6??xj | xS for some v 2 {vKL, vCE , vIG, vH}. Such distributions are601

so named because the relevant probabilities must coordinate in a very specific way to guarantee summation to602

zero as we marginalize over Y . As a concrete example, consider the following data generating process:603

X ⇠ Bern(0.5), Z ⇠ Bern(0.5), Y ⇠ Bern(0.3 + 0.4X � 0.2Z).

What is the contribution of X to coalition S = ; when X = 1 and Z = 1? In this case, we have neither global604

nor context-specific independence, i.e. Y 6??x. Yet, evaluating the payoffs in a KL-divergence game, we have:605

�KL(S, j,x) =
X

y

P (y | X = 1, Z = 1) log
P (y | X = 1)

P (y)

= 0.5 log
0.4
0.6

+ 0.5 log
0.6
0.4

= 0.

In this case, we find that negative and positive values of the log ratio cancel out exactly as we marginalize over606

Y . (Similar examples can be constructed for vIG and vH .) This shows that CSI is sufficient but not necessary607

for �v(S, j,x) = 0.608

However, just because conspiratorial distributions are possible does not mean that they are common. Item (c)609

states that the set of all such distributions has Lebesgue measure zero. Our proof strategy here follows that of610

Meek [44], who demonstrates a similar result in the case of unfaithful distributions, i.e. those whose (conditional)611

independencies are not entailed by the data’s underlying graphical structure. This is an important topic in the612

causal discovery literature (see, e.g., [80, 81]).613

For simplicity, assume a discrete state space X ⇥Y . Fix some S, j such that Y 6??xj | xS. Let C be the number614

of possible outcomes, Y = {y1, . . . , yC}. Define vectors p, r of length C such that, for each c 2 [C]:615

pc = p(yc | x), rc = log
p(yc | xS , xj)
p(yc | xS)

.

(Technically, we only require C�1 entries to fully describe these conditional distributions, but there is no penalty616

for overparametrization here.) By the assumption of local conditional dependence, we know that krk0 > 0. Yet617

for our conspiracy to obtain, the inner product of these vectors must satisfy p · r = 0. A well-known algebraic618

lemma of Okamoto [48] states that if a polynomial constraint is non-trivial (i.e., if there exists some p, r for619

which it does not hold), then the subset of parameters for which it does hold has Lebesgue measure zero. Since620

the conspiracy requires nontrivial constraints that are linear in the parameters p, r, we conclude that the set of621

conspiratorial distributions has Lebesgue measure zero.622
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Proof of Thm. 5.1. Our proof is an application of the split conformal method (see [38, Thm. 2.2]). Whereas623

that method was designed to bound the distance between predicted and observed outcomes for a regression624

task, we effectively treat the mean Shapley value as a constant outcome to measure the concentration of feature625

attributions. To achieve this, we replace out-of-sample absolute residuals with out-of-sample Shapley values and626

labels with the mean Shapley value. With these substitutions in place, the result follows immediately from the627

symmetry of �(j,x(i+1)) and �(j,x(i)), i 2 I2, which is itself a direct implication of the i.i.d. assumption.1628

Since the margin is calculated so as to cover (1� ↵)⇥ 100% of the distribution, it is unlikely that new samples629

will fall outside this region. Specifically, such exceptions occur with probability at most ↵. This amounts to a630

sort of PAC guarantee, i.e. that Shapley values will be within radius ⌧j of their mean µj with probability at least631

1� ↵.632

B Addenda633

This section includes extra background material on information theory and Shapley values.634

B.1 Information Theory635

Let p, q be two probability distributions over the same �-algebra of events. (In the continuous case, we636

additionally require that p, q be absolutely continuous with respect to Lebesgue measure.) The entropy of637

p is defined as H(p) := Ep[� log p], i.e. the expected number of bits required to encode the distribution.2638

The cross entropy of p and q is defined as H(p, q) := Ep[� log q], i.e. the expected number of bits required639

to encode samples from p using code optimized for q. The KL-divergence between p and q is defined as640

DKL(p k q) := Ep[log p/q], i.e. the cost in bits of modeling p with q. These three quantities are related by the641

formula DKL(p k q) = H(p, q)�H(p). The reduction in Y ’s uncertainty attributable to X is also called the642

mutual information, I(Y ;X) := H(Y )�H(Y | X). This quantity is nonnegative, with I(Y ;X) = 0 if and643

only if the variables are independent.644

However, conditioning on a specific value of X may increase uncertainty in Y , in which case the local conditional645

entropy exceeds the marginal. Thus it is possible that H(Y | x) > H(Y ) for some x 2 X . For example,646

consider the following data generating process:647

X ⇠ Bern(0.8), Y ⇠ Bern(0.5 + 0.25X).

In this case, we have P (Y = 1) = 0.7, P (Y = 1 | X = 0) = 0.5, and P (Y = 1 | X = 1) = 0.75. It is648

easy to see that even though the marginal entropy H(Y ) exceeds the global conditional entropy H(Y | X), the649

local entropy at X = 0 is larger than either quantity, H(Y | X = 0) > H(Y ) > H(Y | X). In other words,650

conditioning on the event X = 0 increases our uncertainty about Y .651

Similarly, there may be cases in which I(Y ;X | Z) > 0, but I(Y ;X | z) = 0. This is what Boutilier et al.652

[7] call context-specific independence (CSI). For instance, if X,Z 2 {0, 1}2 and Y := X _ Z, then we have653

Y 6??X | Z, but Y ??X | (Z = 1) since Y ’s value is determined as soon as we know that either parent is 1.654

B.2 The Shapley Axioms655

For completeness, we here list the Shapley axioms.656

Efficiency. Shapley values sum to the difference in payoff between complete and null coalitions:657

dX

j=1

�(j,x) = v([d],x)� v(;,x).

Symmetry. If two players make identical contributions to all coalitions, then their Shapley values are equal:658

8S ✓ [d]\{i, j} : v(S [ {i},x) = v(S [ {j},x) ) �(i,x) = �(j,x).

Sensitivity. If a player makes zero contribution to all coalitions, then its Shapley value is zero:659

8S ✓ [d]\{j} : v(S [ {j},x) = v(S,x) ) �(j,x) = 0.

1Note that conformal inference relies on the weaker assumption of exchangeability. However, since we
operate in the standard i.i.d. setting of statistical learning theory (see Sect. 3), exchangeability naturally follows.

2Though the term “bit” is technically reserved for units of information measured with logarithmic base 2, we
use the word somewhat more loosely to refer to any unit of information.
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Linearity. The Shapley value for a convex combination of games can be decomposed into a convex combina-660

tion of Shapley values. For any a, b 2 R and value functions v1, v2, we have:661

�a·v1+b·v2(j,x) = a�v1(j,x) + b�v2(j,x).

C Experiments662

C.1 Datasets.663

The MNIST dataset is available online.3 The IMDB dataset is available on Kaggle.4 The BreastCancer,664

Diabetes, Ionosphere, and Sonar datasets are all distributed in the mlbench package, which is available on665

CRAN.5666

C.2 Models.667

All neural network training was conducted in PyTorch [54]. We use a standard convolutional neural network668

for the MNIST experiment, including convolutions, max pooling, and batch norm. We use ReLU activations,669

cross entropy loss, and optimize with Adam [33]. For the IMDB experiment, we use a pre-trained BERT model670

from the Hugging Face transformers library.6 All hyperparameters are set to their default values. All XGBoost671

models are trained with the default hyperparameters, with the number of training rounds cited in the text.672

C.3 Coverage673

To empirically test our conformal coverage guarantee, we compute means and margins on out-of-sample Shapley674

values for the modified Friedman benchmark. Results for conditional expectation and conditional variance are675

reported in Table 1, with target level ↵ = 0.1. Note that what constitutes a “small” or “large” margin is context676

dependent. The conditional variance model is fit to ✏
2
y , which has a tighter range than Z, leading to smaller677

Shapley values on average. However, nominal coverage is very close to the target 90% throughout, illustrating678

how the conformal method can be used for feature selection and outlier detection.679

Table 1: Means, margins, and nominal coverage at ↵ = 0.1 for Shapley values from the conditional
mean and conditional variance models. Results are averaged over 50 replicates.

Mean Variance

Feature µ ⌧ Coverage µ r Coverage

X1 -0.002 0.066 0.899 -0.009 0.505 0.898
X2 0.008 0.141 0.898 -0.001 0.435 0.900
X3 0.002 0.084 0.899 0.001 0.278 0.898
X4 -0.004 0.098 0.901 -0.006 0.727 0.900
X5 -0.004 0.092 0.905 0.020 0.333 0.902
X6 -0.162 3.637 0.903 -0.001 0.060 0.900
X7 -0.032 3.555 0.901 0.003 0.049 0.899
X8 -0.027 1.981 0.898 0.001 0.055 0.900
X9 0.190 4.114 0.898 -0.002 0.053 0.899
X10 -0.044 1.952 0.903 -0.001 0.053 0.900

3http://yann.lecun.com/exdb/mnist/.
4https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews.
5https://cran.r-project.org/web/packages/mlbench/index.html.
6https://huggingface.co/docs/transformers/model_doc/bert.
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