
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

model = Gpt(
parameter_sizes=[z_dim*n], # z_dim is latent space dimension
parameter_names=[’weight’],
predict_xstart=True,
absolute_loss_conditioning=False,
chunk_size=64, # cfg.transformer.chunk_size,
max_freq_log2=20,
num_frequencies=128,
n_embd=64, # cfg.transformer.n_embd,
encoder_depth=2, # cfg.transformer.encoder_depth,
decoder_depth=2, # cfg.transformer.decoder_depth,
n_layer=768, # cfg.transformer.n_layer,
n_head=16, # cfg.transformer.n_head,
attn_pdrop=0.1, # cfg.transformer.dropout_prob,
resid_pdrop=0.1, # cfg.transformer.dropout_prob,
embd_pdrop=0.1 # cfg.transformer.dropout_prob

)

Figure 7: GPT modified transformer for diffusion Peebles et al. (2022) in latent space: The
latent embedding dimension for KTH, BAIR and Human3.6M is kept at 64 and 128 for the UCF101
dataset. Additionally, we keep the number of timesteps T as 100 given our compute resources. n
is the number of initial context frames based on which next frame is predicted,i.e., z0:n → z1:n+1.
Also, for KTH, Human3.6M, and BAIR datasets we used vgg-based autoencoders Shrivastava &
Shrivastava (2021). For UCF101 we used pretrained autoencoder Rombach et al. (2022).

A TRAINING DETAILS

For the optimization of our model, we harnessed the compute of two Nvidia A6000 GPUs, each
equipped with 48GB of memory, to train our CVF model effectively. We adopted a batch size of
64 and conducted training for a total of 500,000 iterations. To optimize the model parameters, we
employed the AdamW optimizer. Additionally, we incorporated a cosine decay schedule for learning
rate adjustment, with warm-up steps set at 10,000 iterations. The maximum learning rate (Max LR)
utilized during training was 5e-5.

B LIMITATION

While our method demonstrates strong performance in video prediction, it is essential to acknowledge
certain limitations that point toward avenues for future work.

First, a key limitation lies in computational efficiency. Although our approach requires fewer
sampling steps compared to traditional diffusion-based models, generating each frame still demands
a sequential process that can become a bottleneck when scaling to longer video sequences or real-
time applications. Further optimization, particularly in reducing the number of sampling steps and
computational overhead, remains an open challenge.

Second, our experiments were constrained by computational resources, utilizing only two A6000
GPUs. With access to more powerful hardware or distributed computing, there may be potential
for significant gains in both model complexity and performance. We encourage future research to
investigate the model’s behavior on larger datasets and with more substantial computational resources,
as these factors could reveal additional improvements in video prediction quality.

14


	Introduction
	Related Works
	Method
	Video Prediction Framework
	Forward and Reverse Process
	Likelihood and Variational Bound
	Reverse Process
	Training Objective

	Experiments
	Datasets
	Metrics

	Setup and Results
	Conclusion
	Training Details
	Limitation



