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A EXPERIMENTAL DETAILS

Software and Hardware. We conduct our experiments NVIDIA RTX A6000 GPUs (48GB
VRAM). We use Ubuntu 22.04.2 LTS as the operating system and install the NVIDIA CUDA
Toolkit version 11.6 and cuDNN 8.9. All experiments are implemented in Python 3.8.1 using the
PyTorch 1.12.1 framework.

Training cross-entropy models. For methods using cross-entropy loss, such as MSP (Hendrycks &
Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis (Lee et al., 2018b), Energy (Liu et al.,
2020), ViM (Wang et al., 2022), ReAct (Sun et al., 2021), DICE (Sun & Li, 2022), SHE (Zhang
et al., 2023), and FeatureNorm (Yu et al., 2023b), we adopt the same training scheme as in (Ming
et al., 2023) for CIFAR-10 and CIFAR-100. Specifically, the models are trained using stochastic
gradient descent with momentum 0.9 and weight decay 10�4. The initial learning rate is 0.1 and
decays by a factor of 10 at epochs 100, 150, and 180. We train the models for 200 epochs on both
CIFAR-10 and CIFAR-100. For the ImageNet benchmark, we adopt PyTorch’s pre-trained ResNet-50
model with ImageNet-1k weights.

Training contrastive models. For methods using SupCon loss (Khosla et al., 2020), such as
KNN+ (Khosla et al., 2020) and SSD+ (Sehwag et al., 2021), we adopt the same training scheme as
in (Ming et al., 2023). For CIFAR-10 and CIFAR-100 models, we use stochastic gradient descent
with a momentum of 0.9 and a weight decay of 10�4. The initial learning rate to 0.5 and follows a
cosine annealing schedule. We train the models for 500 epochs. The training-time temperature ⌧ is
set to be 0.1. For the ImageNet model, we use the checkpoint provided in (Sun et al., 2022b). For
methods using CIDER, the models are trained using stochastic gradient descent with momentum 0.9
and weight decay 10�4. The initial learning rate is 0.5 and follows a cosine annealing schedule. We
use a batch size of 512 and train the model for 500 epochs. The training-time temperature ⌧ is set to
be 0.1. We adopt the exponential-moving-average (EMA) for the prototype update (Li et al., 2020),
with a momentum of 0.99 for CIFAR-10 and 0.5 for CIFAR-100. Training details of ImageNet-1k
are included in Section 4.3.

Evaluation configurations. We outline the configurations for methods that require appropriate
hyperparameter selection, which has already been extensively studied in the literature.

• MSP uses the maximum softmax probability obtained from the logits. The method does not
require any specific configuration.

• ODIN uses temperature scaling to calibrate the softmax score. We set the temperature T to
1,000.

• Mahalanobis utilizes class conditional Gaussian distributions based on the low- and
upper-level features obtained from a model. These distributions are then used to calculate
the Mahalanobis distance.

• Energy derives the energy score, which includes the temperature parameter. We set the
temperature to the default value of T = 1.

• ViM generates an additional logit from the residual of the feature against the principal space.
We set the dimension of principal space to D = 256 for ResNet-18 and ResNet-34 and
D = 1024 for ResNet-50.

• ReAct improves the energy score by rectifying activations at an upper limit, which is set
based on the p-th percentile of the activations estimated on the in-distribution (ID) data. We
set p to the default value of p = 90.

• DICE utilizes logit sparsification to enhance the vanilla energy score, which is set based on
the p-th percentile of the unit contributions estimated on the ID data. We set the sparsity
parameter p = 0.7.

• SHE stores the mean direction of the penultimate layer features from correctly classified
training samples. During inference, the Hopfield energy score is calculated as the dot product
between the sample embedding and the class mean of the predicted class.

• FeatureNorm utilizes the norm of the feature map obtained from the chosen block in
the neural network. We utilize the ImageNet-1k results as represented in Yu et al. (2023b),
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and for CIFAR-10 and CIFAR-100, we run the experiments using block 4.1 as the selected
block.

• SSD+ applies the Mahalanobis score on the penultimate layer features obtained from a
model pre-trained with the SupCon loss.

• KNN+ and CIDER utilize the KNN score, which requires selecting a number of nearest
neighbors k. Following the settings in Ming et al. (2023), we set k to 100, 300, and 1,000
for CIFAR-10, CIFAR-100, and the ImageNet benchmark, respectively.

B VALIDATION METHOD FOR SELECTING TEST-TIME TEMPERATURE

To select the test-time temperature for our proposed hyperspherical energy score, we follow the
validation method outlined in Hendrycks et al. (2019). We generate a validation distribution by
corrupting in-distribution data with speckle noise, creating speckle-noised anomalies that simulate
out-of-distribution data. After that, we compute the performance of hyperspherical energy at different
test-time temperatures on the validation set and select the one that achieves the highest AUROC.

C ID CLASSIFICATION ACCURACY

Table 5 presents the in-distribution classification accuracy for each training dataset. We evaluate
the classification accuracy of methods that involve learning hyperspherical representations, such as
KNN+, SSD+, CIDER, and Hyperspherical Energy, by performing linear probes on normal-
ized features, following the approach in Khosla et al. (2020). Our method shows competitive ID
classification accuracy compared to the other existing methods, indicating it does not compromise
the model’s capability to distinguish samples between in-distribution classes.

Table 5: ID classification accuracy of each method on CIFAR-10, CIFAR-100, and ImageNet (%).

Method ID classification accuracy "
CIFAR-10 CIFAR-100 ImageNet

Methods using cross-entropy loss
MSP 94.21 75.03 76.15
ODIN 94.21 75.03 76.15
Mahalanobis 94.21 75.03 76.15
Energy 94.21 75.03 76.15
ViM 94.21 75.03 76.15
ReAct 93.95 74.43 74.89
DICE 93.92 74.38 73.72
SHE 94.21 75.03 76.15

Methods using hyperspherical representations
SSD+ 94.75 75.42 79.10
KNN+ 94.75 75.42 79.10
CIDER 94.62 74.28 76.55
Hyperspherical energy 94.62 74.28 76.55

D RESULTS ON CIFAR-10 BENCHMARK

In this section, we present additional results and analysis on the CIFAR-10 benchmark, using the
experimental settings described in Section A. As shown in Table 6, Hyperspherical Energy
displays competitive performance compared to existing state-of-the-art methods. In particular, our
method achieves FPR95 of 14.16%, which is similar to CIDER, which achieves 13.85%.

E VISUALIZATION ANALYSIS FOR LARGE-SCALE DATASET

Figure 4 presents the UMAP visualization of the learned embeddings derived from a subset of
ImageNet-1k classes and larger-scale out-of-distribution (OOD) datasets. The class prototypes are
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Table 6: OOD detection performance for CIFAR-10 (ID) with ResNet-18. Hyperspherical energy achieves
competitive performance with state-of-the-art methods.

Method
OOD Dataset AverageSVHN Places365 LSUN iSUN Texture

FPR # AUROC " FPR # AUROC " FPR # AUROC " FPR # AUROC " FPR # AUROC " FPR # AUROC "
Methods using cross-entropy loss

MSP 59.81 91.25 62.57 88.69 45.43 93.80 55.20 92.03 66.61 88.50 57.92 90.85
ODIN 53.81 91.29 44.31 91.04 10.96 97.93 28.36 95.49 55.32 89.40 38.55 93.03
Mahalanobis 9.24 97.80 83.94 70.04 67.73 73.61 5.57 98.71 23.09 92.92 37.91 86.61
Energy 54.43 91.22 43.85 91.08 10.21 98.05 27.53 95.57 54.98 89.38 38.20 93.06
ViM 26.34 95.23 44.84 91.24 15.65 97.33 30.57 95.10 25.69 95.01 28.62 94.78
ReAct 48.21 92.20 48.11 90.97 23.03 95.96 22.02 96.38 48.90 91.19 38.05 93.34
DICE 65.34 89.66 50.44 89.81 3.95 99.21 34.98 94.87 59.22 88.50 42.79 92.41
SHE 64.29 88.31 70.13 80.70 8.00 98.56 55.27 90.78 58.10 87.99 51.16 89.27
FeatureNorm 8.79 98.27 76.75 79.84 0.16 99.92 37.67 94.17 29.96 94.08 30.67 93.26

Methods using hyperspherical representations
SSD+ 1.52 99.68 28.56 94.74 6.13 98.48 33.69 95.15 13.05 97.70 16.59 97.15
KNN+ 2.52 99.51 22.96 95.40 1.72 99.52 19.96 96.73 8.05 98.57 11.04 97.95
CIDER 3.46 99.37 31.57 94.50 2.59 99.37 15.97 97.28 15.66 97.58 13.85 97.62
Hyperspherical energy 3.89 99.28 32.59 94.14 3.05 99.29 16.02 97.20 15.27 97.64 14.16 97.51

Figure 4: UMAP visualization of a subset of ImageNet classes and OOD datasets.

designated by a star symbol *, while the OOD embeddings are distinguished by pink color. These
visualizations indeed reveal compact representations, where each sample appears to be effectively
drawn in towards its corresponding class prototype. A notable separation between in-distribution
(ID) and OOD classes is also evident, suggesting that the OOD samples exhibit a high hyperspherical
energy score.
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F ID AND OOO DENSITY PLOTS

Figure 5 showcases the density plots of the hyperspherical score for In-Distribution (ID) data, using
CIFAR-100, and Out-Of-Distribution (OOD) data, comprising SVHN, Places365, LSUN, iSUN, and
Textures.

Figure 5: Density plots illustrating the distribution of hyperspherical scores.
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