
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 EXPERIMENT SETTINGS

A.1.1 TESTBED CONFIGURATION

To validate the feasibility of our proposed method, we build a FL testbed with 32 Android-based mo-
bile devices, including 10 models from 7 different manufactures. The detailed hardware configuration
for the testbed is listed on the Table 2.

Table 2: Hardware configuration for the mobile device testbed.

Model Name Internal Memory RAM Processor Amount

OnePlus 9 Pro 256 GB 12 GB Qualcomm Snapdragon 888 3
OnePlus 7 Pro 256 GB 8 GB Qualcomm Snapdragon 855 4

SAMSUNG Galaxy S20 128 GB 6 GB SAMSUNG Exynos 990 2
SAMSUNG Galaxy A53 128 GB 6 GB Qualcomm SAMSUNG Exynos 1280 4

Google Pixel 6 128 GB 8 GB Google Tensor 2
Google Pixel 3 64 GB 4 GB Qualcomm Snapdragon 845 4
LG Velvet 5G 128 GB 6 GB Qualcomm Snapdragon 765G 4
Moto G Power 64 GB 4 GB Qualcomm Snapdragon 662 3

Nokia G20 128 GB 4 GB Mediatek Helio G35 3
Xiaomi Redmi Note 10 128 GB 4 GB Qualcomm Snapdragon 678 3

A.1.2 COMPUTING INFRASTRUCTURE

All experiments are conducted by CPU/GPU simulation and real-deployment on testbed. The
configuration of the testbed was elaborated in Section A.1.1. The simulation experiments are
conducted on a computing server with one GPU. The server is equipped with AMD EPYC 7502
32-Core Processor and 1024G memory. The GPU is NVIDIA RTX A4000.

A.1.3 DATASETS AND MODELS

AI Benchmark. AI Benchmark Ignatov et al. (2019) is a public dataset that is designed for evaluating
the performance of important AI tasks on mobile devices. AI Benchmark provides diverse models’
training and inference speed across various devices, including chipsets from Qualcomm, HiSilicon,
Samsung, MediaTek, and Unisoc. Figure 9a illustrates the distribution of the computation efficiency
across clients in the AI Benchmark. The slowest device would take around 13.3× computational
times than the fastest device for the same task. To approach the dynamic availability of devices, such
as low-power mode or multi-process running, we design a coefficient w as follows:

x ∼ N (1, 0.3)

w =


1 x ≤ 1

x 1 ≤ x ≤ 1.3

1.3 x ≥ 1.3

(2)

In this work, we assign the values from AI Benchmark as base computation time to the clients to
emulate real devices, analogous to the usage in FedScale Lai et al. (2021a). We also generate the
coefficient w every round for each client to simulate the natural disturbance to availability. The local
computation time in each round equals the product of w and the base computation time for each
client.

MobiPerf. MobiPerf is a public dataset for measuring network performance on mobile devices,
which collects the available cloud-to-edge network throughput of over 100k worldwide mobile clients.
Figure 9b illustrates the distribution of communication consumption of MobiPerf. Note that the best
communication channel can be 200× better than the worst one. We randomly assign a value from
MobiPerf to a simulated device every communication round to emulate intermittent connectivity in a
real deployment.

CIFAR-10. The CIFAR-10 dataset Krizhevsky (2009) consists of 60,000 32x32 colour images in
10 classes. There are 50,000 training images and 10,000 test images. We normalize the images by
the mean and standard deviation of the dataset. We evaluate the dataset with ResNet-20 He et al.

12



Under review as a conference paper at ICLR 2023

(a) Diverse computation efficiency in AI Benchmark (b) Diverse communicate efficiency in Mobiperf

Figure 9: Heterogeneous system utility across simulated clients.

(2016) model. To emulate the realistic non-iid distribution, we partition the dataset using a Dirichlet
distribution, following the previous works Nguyen et al. (2021).

Google Command The Google Command speech dataset Warden (2018) covers 105,829 audio
recordings collected from 2,618 clients. The training set includes recordings from 2,112 speakers, the
validation set includes 256 speakers, and the test set includes 250 speakers. The data set is composed
of 35 common words from the everyday vocabulary, such as "Yes", "No", "Up", and "Down". We
evaluate the dataset with VGG11 Simonyan & Zisserman (2015) model and a lightweight model
based on one related work Zhang et al. (2022) for a 35-class keyword spotting task.

For the VGG11-based experiment on Google Speech Commands, we use the Mel-frequency cepstral
coefficients (MFCC) method to pre-process the raw audio data. Specifically, a sequence of overlapping
Hamming windows is applied to the raw speech signal with a time shift of 10 ms and window size of
25ms. The MFCC is used for training the keyword spotting model.

For the lightweight model experiment, to pre-process the raw audio data, a sequence of overlapping
Hamming windows is applied to the raw speech signal with a time shift of 10 ms. We calculate the
discrete Fourier transform (DFT) with a frame length of 1,024 and compute the Mel-spectrogram
with a dimension of 128. The Mel-spectrogram is used for training the keyword spotting model. We
follow Zhang et al. (2022) for this setup.

Reddit Reddit red consists of comments from 1,660,820 users in the Reddit forum. Each client
corresponds to a user, whose data are all of their personal posts. Thus it follows the real non-iid data
under FL scenarios. In this dataset, we filter the users with less than 20 words in total and restrict
to the 30k most frequently used words, as the same settings in the previous work Lai et al. (2021a).
Then, we train the lightweight Albert Lan et al. (2020) model for the next-word-prediction task. The
performance is evaluated by the perplexity loss (ppl), which lower is better.

A.1.4 HYPERPARAMETER SETTINGS

We searched for the client learning rate in a range from 10−6 to 100, server learning rate in a range
from 10−4 to 100, input batch size in a range from 5 to 1000, and total training round in a range from
1000 to 10000. The aggregation goal and aggregation participation target is searched from 30% to
50% of training concurrency per round for FedBuff and TimelyFL, respectively.

After hyper-parameter searching, we fixed the following hyperparameters: for CIFAR-10 related
experiments, the total training round is 2000, and training concurrency is 128 for all setups. The
aggregation goal and aggregation participation target is 50% of the training concurrency for both
FedBuff and TimelyFL. For CIFAR-10 with FedAvg related experiments, the batch size is 8, and
the client learning rate is 0.8. For CIFAR-10 with FedOpt related experiments, the batch size is 10,
the client learning rate is 0.03, and the server learning rate is 0.001 with ADAM as server optimizer.

13



Under review as a conference paper at ICLR 2023

(a) Diverse computation efficiency in FL testbed (b) Partial training performance in FL testbed

Figure 10: System Performance in FL testbed.

For Google command related experiments with VGG11 model, the total training round is 1000, and
training concurrency is 20 for all setups. The aggregation goal and aggregation participation target is
50% of the training concurrency for both FedBuff and TimelyFL. The batch size is 32, and the
client learning rate is 0.01. Under the FedOpt, the server learning rate is 0.001 with ADAM as server
optimizer.

For Google command related experiments with the lightweight model, the total training round is 5000,
and training concurrency is 106 for all setups. The aggregation goal and aggregation participation
target is 50% of the training concurrency for both FedBuff and TimelyFL. The batch size is 16,
and the client learning rate is 0.1 under the FedAvg. Under the FedOpt, the client learning rate is 0.05
for synchrounous FL and TimelyFL, and the client learning rate is 0.2 for FedBuff. The server
learning rate is 0.001 with ADAM as server optimizer for all setups.

Finally, for Reddit related experiments, the total training round is 500, and training concurrency is
20 for all setups. The aggregation goal and aggregation participation target is 50% of the training
concurrency for both FedBuff and TimelyFL. The batch size is 20, and the client learning rate
is 0.0005 for SyncFL and TimelyFL, and 0.0003 for FedBuff. Under the FedOpt, the server
learning rate is 0.001 with ADAM as server optimizer.

A.2 SYSTEM PERFORMANCE

A.2.1 PERFORMANCE ON TESTBED

In this work, we implement our strategy and its baselines on the FL testbed. To demonstrate the
device heterogeneity in the testbed, we record the computation time for one full epoch training of
ResNet20 on each device. As shown in Figure 10a, the fastest device is 4.96× faster than the slowest
one.

A.2.2 PARTIAL TRAINING PERFORMANCE

Due to different parameters and tensor shapes among different layers, the training time (computational
time of the forward and backward propagation) is not strictly linear to the trainable layer numbers
and varies with the model structures. For simplicity and generality, we define the training time of
the partial model as the linear multiplication of the training time of the full model and the training
ratio. This linear relationship is verified through our real measurement on a Samsung Galaxy S20
with ResNet-20 model using MNN Jiang et al. (2020) library. As shown in Figure 10b, most of the
test results are below the linear straight line (except the ratio is below 0.2), justifying the rationality
of our choice.

14



Under review as a conference paper at ICLR 2023

Table 3: Wall clock training time to reach target validation accuracy on benchmark datasets (lower is
better).

Dataset Agg. function Accuracy TimelyFL FedBuff SyncFL

Google Speech
FedAvg 70% 2.23 ±2.1% hr 3.55 ±1.9% hr (1.59×) 18.37 ±0.6% hr (8.24×)

80% 4.16 ±1.3% hr 6.13 ±1.4% hr (1.47×) 32.46 ±0.4% hr (7.80×)

FedOpt 70% 0.48 ±1.7% hr 1.66 ±1.0% hr (3.46×) 4.61 ±2.1% hr (9.60×)
80% 1.13 ±1.2% hr 3.25 ±0.8% hr (2.88×) 7.47 ±1.1% hr (6.61×)

A.3 ADDITIONAL EXPERIMENTS

To investigate the effectiveness of the lightweight model on the TimelyFL framework, we implement
one lightweight model on the Google Speech Commands dataset for the keyword spotting task.

Following one previous work Zhang et al. (2022), we choose the model that consists of two con-
volution layers followed by one Gated Recurrent Units (GRU) layer. An average pooling layer is
connected to the GRU output, which is then fed through two dense layers to generate the predictions.
The parameter size of this model is equal to 79044.

We adapt the same baseline selections as in the Section 4. The hyperparameters for the experiments
are listed in the Section A.1.4. The experiment results are summarized in the Table 3. TimelyFL
achieves a higher convergence speed compared with the other two strategies before reaching the test
accuracy, which confirms the simulation results elaborated in Section 4.2.

15


	Appendix
	Experiment Settings
	Testbed Configuration
	Computing Infrastructure
	Datasets and Models
	Hyperparameter Settings

	System Performance
	Performance on Testbed
	Partial Training Performance

	Additional Experiments


