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Abstract

The goal of Automated Machine Learning (AutoML) is to make Machine Learning (ML)
tools more accessible. Collaborative Filtering (CF) methods have shown great success
in automating the creation of machine learning pipelines. In this work, we frame the
AutoML problem under a sequential setting where datasets arrive one at a time. On each
dataset, an agent can try a small number of pipelines (exploration) before recommending
a pipeline for this dataset (recommendation). The goal is to maximize the performance
of the recommended pipelines over the sequence of datasets. More specifically, we focus
on the exploration policy used for selecting the pipelines to explore before making the
recommendation. We propose an approach based on the LinUCB bandit algorithm that
leverages the latent representations extracted from matrix factorization (MF). We show
that the exploration policy impacts the recommendation performance and that MF-based
latent representations are more useful for exploration than for recommendation.

1. Introduction

The goal of Automated Machine Learning (AutoML) is to make Machine Learning (ML)
tools more accessible. The AutoML community has developed frameworks that automate
the creation of machine learning pipelines (Feurer et al., 2020; Kotthoff et al., 2017; Olson
et al., 2016). Collaborative Filtering (CF) frameworks have also shown great success to
tackle this problem (Fusi et al., 2018; Yang et al., 2019, 2020; Zhang et al., 2020; Cunha
et al., 2018). Existing work focuses on the off-line setting in which there exists a large matrix
where numerous pipelines have been benchmarked on many datasets. When a user asks for
a pipeline recommendation for a new dataset, an agent selects a small number of pipelines to
try on this dataset, then CF is used to infer the performance of unobserved pipelines on this
dataset given existing observations on other datasets, and a recommendation is performed
based on these predictions.

In this work, we tackle the problem of pipeline optimization in an sequential setting
where datasets arrive one after the other. For each dataset, the agent can try a small
number of pipelines (exploration policy) to conduct the predictive task on this dataset. The
performance observed for these pipelines on the dataset are then added to the knowledge
of the agent, which then recommends a pipeline (recommendation policy) for this dataset.
The goal of the agent is to recommend the optimal pipeline for each dataset encountered
in the sequence. We therefore focus on how the sequential information collected by the
exploration policy influences the recommendation performance.

More specifically, we formulate this sequential AutoML problem under the bandit set-
ting (Lattimore and Szepesvári, 2020) and propose a LinUCB (Li et al., 2010) exploration
policy by leveraging a CF-based latent representation extracted from matrix factorization.
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Our empirical results highlight the impacts of the exploration policy on recommendations
and indicate that recommendations should not be based on inference.

2. Problem setting

Consider that there are K pipelines available for conducting a predictive task given a
dataset, i.e. to predict the output given the input. Assuming that trying every pipeline
would require too much time to identify the most effective one (or computing resources), we
would like to identify the optimal pipeline for a new dataset by trying only c < K pipelines
on the dataset (where c is small compared to K). Given a sequence of datasets, the idea
in this work is to leverage information about pipeline performances that was acquired on
previously encountered datasets in order to be able to identify the optimal pipeline in a few
trials on a new dataset.

This AutoML problem can be formulated like an episodic game, where for each episode
t ∈ {1, . . . , T}, a new dataset dt arrives, then the agent selects a subset C(t) of c pipelines
(exploration policy) and observes the performance rt,k of each pipeline k ∈ C(t) applied on
dt. These performances are then appended to the knowledge matrix R(t− 1) ∈ [0, 1]t−1×K .
More precisely, the resulting knowledge matrix R′(t) ∈ [0, 1]t×K is a sparse matrix in which
the i-th row contains the performances that were observed for pipelines in C(i) on dataset
di (with i ≤ t). Note that R(0) is empty (it contains 0 rows). Using R′(t), the agent then
recommends what they think is the optimal pipeline, i.e. kt (recommendation policy). The
performance rt,kt observed for the recommended pipeline on dataset dt is then added to
R′(t) (row t, column kt), resulting into the knowledge matrix R(t). Note that if kt ∈ C(t),
then R(t) = R′(t). Let k?t = arg maxk=1...K rt,k denote the optimal pipeline for dataset dt,
i.e. the one maximizing performance on dataset dt. The goal of the agent is to explore
pipelines C(t) such as to recommend kt to minimize the cumulative regret over time:

R(T ) =
T∑
t=1

(rt,k?t − rt,kt). (1)

This problem corresponds to a bandit problem (Lattimore and Szepesvári, 2020) where c
actions can be tried (without regret) before recommending the action on a given time step.
In other words, the bandit problem is the specific case with c = 0.

3. Related work

In the sequential AutoML problem initially introduced by Hutter et al. (2011), pipelines
were limited to hyper-parameters of pre-determined models and the task was to optimize
the hyper-parameters on a given dataset by sequentially trying different values for that
dataset. Lindauer and Hutter (2017) later showed that information from optimization
tasks conducted on previously encountered datasets could be used to warm-start the search,
yielding to substantial speed-ups. Similarly, our work tackles the general AutoML problem
on a sequence of tasks. However, we are not limited to hyper-parameter tuning, but rather
consider the design of processing pipelines that are the combination of a data preparation
operation, a classification algorithm and a set of hyper-parameters.
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Collaborative Filtering (CF) approaches have been previously applied to the off-line
AutoML problem (Fusi et al., 2018; Yang et al., 2020, 2019) where the goal is to recommend
a pipeline for a dataset given a provided knowledge matrix. This almost dense matrix
typically consists of a benchmarking of many of the available pipelines on several datasets.
The focus is therefore to use this knowledge to perform good recommendations for the
targeted dataset. In this work, we frame the AutoML problem under an on-line setting
where knowledge is gathered and accumulated along a sequence of optimization tasks. The
(sparse) knowledge matrix available when encountering a given dataset therefore depends
on pipelines explored and recommended on previously encountered datasets.

Recall that the exploration policy is in charge of selecting the pipelines to explore before
recommending a pipeline for a given dataset. In the off-line setting, the unique goal of the
exploration policy is to select pipelines informative about the current dataset only (Fusi
et al., 2018; Yang et al., 2019, 2020). This selection typically relies on a provided knowledge
or on meta-information, e.g a set of meta-features (Fusi et al., 2018) or training time (Yang
et al., 2019, 2020). Under the sequential setting tackled in this work, the exploration policy
must also select pipelines that allow to share knowledge across datasets encountered over
time. A similar challenge occurs in the sequential recommendation system setting where
one must recommend items (akin to pipelines) to a new user (akin to a new dataset).
Bandit algorithms were shown to be successful at exploring items for a new user in order to
simultaneously improve CF-based recommendations while collecting informative knowledge
about the users (Guillou et al., 2015; Mary et al., 2015). This inspired the approach proposed
in this work.

4. A bandit strategy for sequential AutoML

We now introduce a strategy based on the linear bandits (Lattimore and Szepesvári, 2020)
algorithm LinUCB (Li et al., 2010) in order to conduct the exploration of pipelines by
leveraging a Collaborative Filtering (CF) latent representation of available pipelines.

4.1 Learning a latent representation from matrix factorization

CF strategies based on matrix factorization have shown great success as recommendation
policies in AutoML problems (Fusi et al., 2018; Yang et al., 2020). These algorithms extract
a latent representation for pipelines by decomposing a (possibly sparse) knowledge matrix
R acquired on J datasets (rows) and K pipelines (columns) into matrices P ∈ RK×L and
Q ∈ RL×J such that R ≈ 〈P,Q〉. The operation 〈, 〉 denotes the scalar product between two
matrices and L denotes the size of the latent space (L < K and L < J). This is achieved
by minimizing an objective function based on the Mean Squared Error (Koren et al., 2009).

A latent representation (P,Q) can be used by the recommendation policy. For example,
one can factorize R′(t) into P ′(t) and Q′(t), and use the dense reconstruction R̄′(t) =
〈P (t), Q(t)〉 to recommend kt = arg maxk=1...K r̄t,k, where r̄t,k is the predicted performance
of pipeline k on dataset dt.
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4.2 LinUCB exploration policy

In the sequential AutoML problem, a good exploration policy trades-off the exploration
of pipelines to improve the knowledge and the exploitation of pipelines to support the
recommendation policy. We propose an exploration policy based on the contextual Upper
Confidence Bound (UCB) algorithm with disjoint linear models (Li et al., 2010), using the
latent representation extracted from matrix factorization as context.

Given a set of available actions to chose from, the LinUCB algorithm uses a context
φk for each available action k ∈ {1, . . . ,K} and selects the action which maximizes an
optimistic predicted value using upper confidence intervals. The context corresponds to
features allowing to share information across actions. Here actions are pipelines and we
consider as context for pipeline k at episode t the k-th column of the latent representation
P (t−1) factorized from the previous knowledge R(t−1). LinUCB assumes that the problem
setting is characterized by an unknown parameter vector θ?k for each k such that the expected
outcome for a pipeline corresponds to E[rt,k] = 〈φk, θ?k〉. At episode t and for each pipeline k,

the unknown parameter θ?k is estimated using ridge regression, such that θ̂k(t) = A(t)−1k b(t)k
where A(t) = A(t − 1) + φkφ

>
k and b(t)k = b(t − 1)k + rt,kφk. Note that b(0)k = 0K,1 and

A(0) = IK . Using this, LinUCB computes for each pipeline k: i) the estimated reward

r̂t,k = 〈φk, θ̂k(t)〉 and ii) the uncertainty of rt,k defined as ut,k =
√
φ>k A(t)−1k φk. For a given

dataset dt, LinUCB selects as C(t) the set of top-c pipelines according to their UCB value:
UCBk(t) = r̂t,k + αut,k, where α ≥ 0 articulates the exploration-exploitation trade-off.

In practice, the latent representation P (t) of the knowledge R(t) is a highly non-
stationary context due to the matrix R(t) being updated at each episode t. Unfortunately,
LinUCB assumes that the context space is stationary. In order to preserve an illusion of
stationarity, we therefore use for the exploration policy a buffered replicate of P (t), de-
noted P̃ (t), that is updated after every s episodes. We therefore wait s steps before the first
update, which corresponds to a burn-in phase during which pipelines in C(t) are selected
uniformly at random. This reduces instabilities in the latent representation. The resulting
procedure is detailed in the Algorithm 1 of Appendix A.

5. Experiment

We now conduct experiments in order to investigate the impact of the exploration policy
on the pipeline recommendation performance using different Collaborative Filtering (CF)
algorithms for learning latent representations in the sequential AutoML problem1.

5.1 Methods

We consider two CF-based algorithms for learning latent representations: a bias aware Ma-
trix Factorization (MF-bias, see Koren et al. (2009)) and a non-linear Matrix Factorization
(NeuralCF, see He et al. (2017)).

We consider three exploration policies for the selection of C(t): (i) Random: c pipelines
are sampled uniformly (without replacement) among the K pipelines on episode t; (ii) Lin-
UCB: see Section 4; (iii) KNN: the agent benefits from the knowledge of an exhaustive

1. The code is available on Github: https://github.com/MaxHeuillet/AutoML-ICML2021.

4

https://github.com/MaxHeuillet/AutoML-ICML2021


benchmark of all available pipelines evaluated on additional 140 datasets, allowing to iden-
tify the best pipeline for each of these datasets. A set of normalized meta-features (see
Appendix C) is computed on each dataset. For a new dataset dt, the KNN exploration
policy computes the set of meta-features on dt. The c best (unique) pipelines are then se-
lected based on the nearest-neighbor order (L1-distance on meta-features). This is a brute
brute-force version of the exploration policy from Feurer et al. (2015, 2020); Fusi et al.
(2018).

We consider two recommendation strategies for selecting kt: (i) Best of C(t): recommend
the pipeline with the best observed performance from the set of selected pipelines C(t),
i.e kt = arg maxk∈C(t) rt,k. (ii) Best given CF inference: compute a latent representation
P ′(t) and Q′(t) from R′(t), and infer a dense knowledge matrix R̄′(t) = 〈P ′(t), Q′(t)〉, and
recommend kt = arg maxk∈{1,...,K} r̄t,k, where r̄t,k is the predicted performance of pipeline
k on dataset dt.

5.2 Evaluation

We articulated a sequential AutoML problem using 666 datasets obtained from the UCR
uni-dimensional time series repository (Dau et al., 2019). We considered 175 pipelines,
where each pipeline was a combination of a data preparation technique (among 4) with
one predictive model (among 7) and different hyper-parameters. The selected pipelines
and datasets are described in Appendix B. Hyper-parameters are given in Appendix C. We
consider exploration budgets c ∈ {2, 6}, which correspond to the 1% exploration order.

Each strategy (evaluation policy combined with a recommendation policy) was evaluated
by computing its cumulative regret (Equation 1) on a 10-folds cross-validation, where each
fold corresponds to a sequence of 526 datasets (sampled from the 666), the remaining subset
of 140 datasets being used by the KNN exploration policy. Note that the sequence ordering
for a given fold is the same for all strategies in the same fold.

5.3 Results

Figure 1 shows the cumulative regret averaged over the 10 folds for every combinations of
exploration and recommendation policies. Rows correspond to the exploration budgets c
and columns correspond to exploration policies.

We first observe that the performance of recommendation policies based on CF inference
(plain lines) is highly influenced by the exploration policy. Although the random exploration
policy provides a uniform representation of the decision space, the matrix factorization
fails to recommend the most efficient pipelines, leading to the worst performance. Best
performances with these recommendation policies are always obtained using the LinUCB
exploration policy.

We also observe that the best performance is achieved when exploring with the KNN
policy and recommending the observed pipeline in C(t) with the highest performance (sec-
ond column, black dotted line). However, the KNN approach benefits from the additional
knowledge of an exhaustive benchmark of the 175 available pipelines over 140 datasets. This
corresponds to much more knowledge and computing resources compared with the 2nd best
approach, which corresponds to exploring with LinUCB and recommending the observed
pipeline in C(t) with the highest performance (columns 3-4, blue dotted line). More im-
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Figure 1: Cumulative regret averaged over a 10-folds cross validation with the resulting
standard error. Parameter s = 10. Lower is better.

portantly we notice that the gap between the KNN-based and the LinUCB-based strategies
narrows as c is increased (although still low). This indicates that latent representations
are efficient for guiding exploration. This is impressive considering that the KNN-based
approach uses a dense knowledge matrix of 140 × 175 = 24.5k observations, while the
LinUCB-based approach uses a sparse knowledge matrix of at most c × t observations for
making a decision at time t.

Finally, the highest performances being always achieved by recommending the best
pipelines over C(t) suggests that inference may bring additional noise hurting the recom-
mendation. Recommending directly from C(t) is subject to the noise in the C(t) selection,
but then is based on the actual performances.

6. Conclusion

We introduced the sequential AutoML problem, where the goal is to learn to recommend
efficient ML pipelines sequentially from a succession of datasets. Our approach based on
the LinUCB bandit algorithm leverages the latent representations of matrix factorization
(MF) algorithms. We show that the exploration policy impacts the recommendation per-
formance and that MF-based latent representations are more useful for exploration than
for recommendation. Several future directions remain open. Using a non-stationary bandit
algorithm based for instance on Markov decision processes (Whittle, 1988) instead of Lin-
UCB, is straighforward. The exploration policy could be more efficient if it would leverage
information about the run-time of each pipeline (Yang et al., 2020).
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Algorithm 1: LinUCB exploration policy for sequential AutoML

Input: Exploration budget c, knowledge R(0) (empty, i.e. 0 rows), α ∈ R+, s size
of burn-in phase and update step

1 A(0)k ← IK (identity) and b(0)k ← 0K,1 for each pipeline k = 1...K ;

2 Set P̃ (0) ∈ RL×K at random ;
3 for each episode t = 1, . . . , T do
4 if t ≤ s (burn-in phase) then
5 C(t)← select pipelines uniformly at random
6 end
7 else
8 for each pipeline k = 1, . . . ,K do

9 θk ← A(t− 1)−1k b(t− 1)k;

10 UCB(t)k ← 〈P̃·,k(t− 1), θk(t)〉+ α
√
P̃·,k(t− 1)>A(t− 1)−1k P̃·,k(t− 1);

11 end
12 C(t)← select the top-c pipelines with the largest UCB(t)k ;

13 end
14 R′(t)← R(t− 1) with added t-th row ;
15 for each pipeline k ∈ C(t) do
16 Observe rt,k and store it in R′(t) ;
17 end
18 kt,← select using recommendation policy;
19 if kt /∈ C(t) then
20 R(t)← update R′(t) with rt,kt ;
21 end
22 else
23 R(t)← R′(t)
24 end
25 if t mod s = 0 (update step) then

26 P̃ (t)← matrix factorization of R(t)
27 end
28 else

29 P̃ (t)← P̃ (t− 1)
30 end
31 for k ∈ C(t) ∪ {kt} do
32 A(t)k ← A(t− 1)k + P̃·,k(t)P̃·,k(t)> ;

33 b(t)k ← b(t− 1)k + rt,kP̃·,k(t) ;

34 end

35 end
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Appendix B. Experiments benchmark

B.1 Datasets

Among the datasets listed below, we transformed those with multi-class classification tasks
into multiple binary classification tasks. This augmentation resulted into 666 datasets. We
keep 140 datasets apart for the KNN exploration policy. In the end, we use a sequence of
526 datasets for these experiments.

List of datasets selected from UCR repository (Dau et al., 2019): ACSF1, Adiac, Arrow-
Head, BME, Beef, BeetleFly, BirdChicken.csv, CBF, Car, Chinatown.csv, ChlorineConcen-
tration, CinCECGTorso, Coffee, Computers, CricketX, CricketY, CricketZ, Crop, Diatom-
SizeReduction, DistalPhalanxOutlineAgeGroup, DistalPhalanxTW, ECG200, ECG5000,
ECGFiveDays, EOGHorizontalSignal, EOGVerticalSignal, Earthquakes, FaceAll, FaceFour,
FacesUCR, FiftyWords, Fish, FreezerRegularTrain, FreezerSmallTrain, Fungi’, GunPoint,
GunPointAgeSpan, GunPointMaleVersusFemale, GunPointOldVersusYoung, Ham, Hap-
tics, Herring, HouseTwenty, InlineSkate, InsectEPGRegularTrain, InsectEPGSmallTrain,
InsectWingbeatSound, ItalyPowerDemand, LargeKitchenAppliances, Lightning2, Lightning7,
Mallat, Meat, MedicalImages, MiddlePhalanxOutlineAgeGroup, MiddlePhalanxTW, Non-
InvasiveFetalECGThorax1, NonInvasiveFetalECGThorax2, OSULeaf, OliveOil, Phoneme,
PigAirwayPressure, PigArtPressure, PigCVP, Plane, PowerCons.csv, ProximalPhalanx-
OutlineAgeGroup, ProximalPhalanxTW, RefrigerationDevices, ScreenType, SemgHand-
GenderCh2, SemgHandMovementCh2, SemgHandSubjectCh2, ShapeletSim, ShapesAll, Smal-
lKitchenAppliances, SmoothSubspace, SonyAIBORobotSurface1, SonyAIBORobotSurface2,
Strawberry, SwedishLeaf, Symbols, SyntheticControl, ToeSegmentation1, ToeSegmentati
Trace,TwoLeadECG, UMD, UWaveGestureLibra Wine, WordSynonyms, Worms, WormsT-
woClass

B.2 Pipelines

In order to obtain a ground truth required for computing the cumulative regret (Equation 1),
we evaluated the PRAUC performance of each pipeline on each dataset using a 5-folds cross-
validation. A exhaustive list of the pipelines included in available in Table 1.

B.3 Description of the obtained benchmark

The descriptive statistics in Figure 2 are obtained from the exhaustive benchmark of the
175 pipelines (see Section B.2) over the 666 datasets (see Section B.1).

We observe that the datasets included in the benchmarking have heterogeneous charac-
teristics (sub-figures 6-8). The datasets include a number of observations and a number of
features ranging from less than 100 to more than 1000 (sub-figure 6 and 7). A majority of
datasets have an important imbalance ratio, with a proportion of the minority class below
0.1 (sub-figure 8).

The descriptive statistics in sub-figures 1-5 reveal the existence of pipeline clusters. We
see from sub-figure 1 that the most successful pipelines belong to the group Weighted Loss
which corresponds to applying a weighted loss to mitigate the imbalance ratio of the dataset.
Almost 50% of the datasets find at least one pipeline with a PRAUC performance higher
than 0.85 (sub-figure 2). Sub-figure 4 shows that 50% of the datasets have a smallest re-
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Component Algorithm Hyper-parameters

Imbalance Management

Random Over Sampling
Random Under Sampling
Weighted Loss
None

the 2 labels are sampled equally (50% each)
the 2 labels are sampled equally (50% each)
proportion of each label in the training set
None

Classifier

Gradient Boosting

Support Vector Machine

K-Nearest Neighbor

Radius Neighbor

Random Forest

Logistic Regression

Multi Layers Perceptron

n estimators(100)
learning rate(0.1)
subsample(0.5, 0.7, 0.9)
max depth(3, 4, 5)

C(0.01, 1, 10, 1000)
kernel(linear, rbf)

leaf size(3,10,50,100)

radius(0.8, 1, 1.2)
leaf size(10, 30, 50)
outlier label(’most frequent’)

n estimator(100)
max depth(3, 5, 10, 50, 100)

regularization(L1)
alpha(0.0001, 0.01, 0.1, 0.5, 0.8)

layer1(100)
layer2(50)

Table 1: Pipeline Decision Space
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Figure 2: Descriptive Statistics obtained from the exhaustive benchmarking of 175 pipelines
over the 666 datasets. [1] counts how many time each of the 175 pipeline is the
optimal one, [2] shows the distribution of the optimal PRAUC performance, [3]
shows to the distribution of the largest regrets, [4] shows to the distribution of
the smallest regrets, [5] is a map of the PRAUC performance over all the datasets
and pipelines, [6] depicts the number of observations per dataset, [7] depicts the
number of features per dataset, [8] shows the distribution of the imbalance ratio
(proportion of the minority class).

gret equal to 0 (difference in PRAUC between the best performing pipeline and its closest
pipeline in PRAUC performance). Hence, the optimal performance is reached by at least 2
different pipelines in 50% of the cases. This suggests that most of the time the recommen-
dation policy can identify at least 2 well performing pipelines close to the optimum, which
makes the pipeline optimization task easier. However, sub-figure 3 indicates that in 50%
of the datasets, the largest regret (difference in PRAUC between the best and worst per-
forming pipeline) is larger or equal to 0.6. This suggest important performance amplitudes
between the 175 available pipelines. Finally, the performance map over all the datasets
and pipelines (sub-figure 5) confirms the existence of clusters of pipelines with equivalent
performances. For most of the datasets, there exists groups of pipelines with equivalent per-
formances. Some pipelines are prone to perform equally on the same dataset because they
use the same model and are not sensitive to resampling operations (for instance, KNN); or
because the set of hyper-parameters between 2 pipelines based on the same model are very
close.
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Figure 3: Cumulative regret averaged over a 10-folds cross validation with the resulting
standard error. Parameter s = 100. Lower is better.

Appendix C. Parameter setting used in the Experiments

C.1 LinUCB

Recall that the burn-in phase and the update step (see Section 4) size are controled by the
same parameter s. We tested for different levels s ∈ {10, 100}. In Figure 1 (Section 5.3) we
show the results for s = 10 since it led to better performance compared to the case s = 100
showcased in the Figure 3. We consider different values of optimism α ∈ {0.1, 0.01}.

C.2 Matrix factorization latent representations

For each matrix factorization algorithm, we set the number of latent dimensions to L = 40.
The latent matrices Q̃(0) and P̃ (0) are initialized at random. As for the regularization
parameters, a grid search including values ranging from 0.1 to 0.00001 lead us to choose λQ =
λP = 0.01 because it shown satisfying results. The gradient of each weight is individually
clipped so that its norm is not higher than 1 (the default value on Tensorflow 2.0). The
learning rate of the stochastic gradient descent is set to the default value on Tensorflow 2.0
γ = 0.01. Each algorithm uses 75 epochs for the training.

C.3 Meta-features used in the KNN exploration policy

The list of meta features used in the KNN exploration policy is: Size of the file (Mb),
Number of classes (2), Number of observations (time-series), log (Number of observations),
Number of features(timesteps), log (Number of features), ratio Number of Obsevations
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/ Number of Features, Entropy of the label, Skewness (Mean, Standard-deviation, Mini-
mum, Maximum), Kurtosis (Mean, Standard-deviation, Minimum, Maximum), Standard
Deviation (Mean, Standard-deviation, Minimum, Maximum), Variation Coefficient (Mean,
Standard-deviation, Minimum, Maximum).
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