
Sequential Automated Machine Learning: Bandits-driven
Exploration using a Collaborative Filtering Representation.
Maxime Heuillet, Benoit Debaque and Audrey Durand
Institute Intelligence and Data, Laval University, Canada
maxime.heuillet.1@ulaval.ca

1. Motivation
Existing CF-based frameworks [1, 2] adopt an
off-line setting that requires the generation
a large benchmarking of pipeline performances
used as the training matrix:

• the training matrix R is costly to generate
and is immutable

• information C(t) from current dataset t and
from recommendation kt is wasted

Figure 1: Information waste in off-line setting.

Instead, we adopt a sequential setting where the in-
formation from each recommendation request is lever-
aged to improve the performance of the framework over
time.

• an exploration policy collects the information
C(t) about the current dataset t

• R(t) is updated after each request with informa-
tion C(t) and recommendation kt

Figure 2: The sequential setting.

2. Proposed method
Problem formulation: consider K pipelines available for recommendation. The goal is to maximize the
performance of the recommended pipelines over a sequence of datasets. For a new dataset, we want to
recommend a good pipeline by trying only c pipelines on this dataset (where c is small compared to K).

Our method: a Collaborative Filtering (CF) latent representation updated at each dataset (akin to a step)
is leveraged in order to drive efficiently the exploration and the recommendation of pipelines over time:

1. Obtain a latent representation of R(t− 1): extract a latent representation P, Q(t− 1) by decom-
posing the (possibly sparse) knowledge matrix R(t− 1) with a matrix factorization [3].

2. LinUCB exploration policy: at episode t, LinUCB [4] selects the set of top-c C(t) pipelines by
using as context the latent representation P (t− 1) factorized from the knowledge R(t− 1).

3. Recommendation policy: recommend the pipeline kt with the best observed performance from the
set of selected pipelines C(t), i.e kt = arg maxk∈C(t) rt,k.

4. Update the training matrix with the collected knowledge: create a new empty row in R(t−1),
append C(t) and rt,kt

obtained from recommendation kt resulting in matrix R(t).

Practical consideration: since LinUCB requires a stationary context, we use a buffered replicate of P (t),
denoted P̃ (t), updated after every s episodes instead of every s episode. We wait s steps before the first
update (burn-in phase) during which pipelines in C(t) are selected uniformly at random.

4. Results
Figure 3 shows the cumulative regret averaged over
10 folds. Rows correspond to the exploration bud-
gets c and columns correspond to exploration policies.

Take-home messages:

• the performance of CF-based frameworks is highly
influenced by the exploration policy.

• recommending the best pipelines over C(t) (blue &
green dotted lines) always achieves the best perfor-
mance indicating that recommendations should not
be based on inference (blue & green plain lines).

• the gap between the KNN-based (current stan-
dard in the literature [1, 5]) and the LinUCB-
based strategies narrows as c is increased (although
still low). This is impressive because the KNN-
based approach uses a dense knowledge matrix of
140×175 = 24.5k observations, while the LinUCB-
based approach uses a sparse knowledge of at most
c× t observations for a decision at time t.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

Cu
m

ul
at

iv
e

Re
gr

et
 ±

 S
E

Random Exploration (c = 2 / 175)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
KNN Exploration (c = 2 / 175)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
LinUCB Exploration (c = 2 / 175, = 0.1)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
LinUCB Exploration (c = 2 / 175, = 0.01)

0 100 200 300 400 500
Episode number (dataset)

0

10

20

30

40

50

60

Cu
m

ul
at

iv
e

Re
gr

et
 ±

 S
E

Random Exploration (c = 6 / 175)

0 100 200 300 400 500
Episode number (dataset)

0

10

20

30

40

50

60
KNN Exploration (c = 6 / 175)

0 100 200 300 400 500
Episode number (dataset)

0

10

20

30

40

50

60
LinUCB Exploration (c = 6 / 175, = 0.1)

0 100 200 300 400 500
Episode number (dataset)

0

10

20

30

40

50

60
LinUCB Exploration (c = 6 / 175, = 0.01)

Best given MF-Bias inference
Best given Neural-CF inference

Best of C(t) (MF-Bias latent rep.)
Best of C(t) (NeuralCF latent rep.)

Best of C(t) (no latent rep.)

Figure 3: Cumulative regret averaged over a 10-folds cross validation with the resulting standard error. Parameter s = 10 steps
between updates. Lower is better. Based on UCR time-series repository [6].
We consider 3 exploration policies: (i) Random: c pipelines are sampled uniformly (without replacement) among the K pipelines on
episode t; (ii) LinUCB: see Section 2; (iii) KNN: the agent benefits from the knowledge of an exhaustive pipelines benchmarking
evaluated on additional 140 datasets, this is a brute brute-force version of the exploration policy from [1, 5] (current standard).
We consider 2 recommendation policies: (i) Best over C(t) i.e recommend the best pipeline in C(t) and (ii) Best given inference:
i.e based on C(t) infer with CF the performance of the other pipelines and then recommend.

5. Resources
Code: https://github.com/MaxHeuillet/
sequentialAutoML
Acknoledgements MITACS Accelerate Re-
search grant (IT17584) and Thales Research and
Technology (Canada).

[1] Fusi et al. Probabilistic matrix factorization for
automated machine learning. NIPS’18, 2018.

[2] Chengrun Yang, Yuji Akimoto, Dae Won Kim,
and Madeleine Udell. Oboe. SIGKDD, 2019.

[3] Koren et al. Matrix factorization techniques for
recommender systems. 2009.

[4] Li et al. A contextual-bandit approach to per-
sonalized news article recommendation. WWW
’10, 2010.

[5] Feurer et al. Efficient and robust automated
machine learning. In NeurIPS. 2015.

[6] Dau et al. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica.

https://github.com/MaxHeuillet/sequentialAutoML
https://github.com/MaxHeuillet/sequentialAutoML

