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Abstract

Endowing large language models (LLMs) with
continual learning (CL) capacities is practically
important, which enables them to dynamically ac-
quire new knowledge over time. Although many
effective methods have been proposed for CL of
LLMs, they did not consider online scenarios,
thereby sharing a common problem: information
leakage (IL), where the task-related information
of learned tasks is accessed or reused again. IL
not only imposes potential risks on data privacy
protection but also significantly hinders the de-
ployment of LLMs in real-world scenarios. To
avoid IL while maintaining outstanding CL perfor-
mance, we propose a novel CL method for LLMs,
which first characterizes a parameter-efficient fine-
tuning (PEFT) block by a presentative feature
distribution, and then dynamically selects the ap-
propriate PEFT blocks for each instance based on
its similarity with the presentative feature distri-
butions. Extensive experiments validate the effec-
tiveness of our method on the CL of LLM, show-
casing its potential to enhance both privacy and
adaptability in practical applications. Our source
code is available at https://github.com/ZERO-
9215/0Online-CL-LLMs.

1. Introduction

In recent years, large language models (LLMs) (Brown et al.,
2020; Raffel et al., 2020; Touvron et al., 2023; Achiam et al.,
2023) have made remarkable progress in their ability to ad-
dress a variety of problems. At the same time, LLMSs need
to be updated regularly to accurately reflect the evolving
knowledge, needs, and values of humanity (Biesialska et al.,
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2020; Ouyang et al., 2022). However, updates to LLMs
typically involve adding new data and retraining the model,
which is highly inefficient and inflexible. Therefore, en-
dowing LL.Ms with continual learning (CL) (Lopez-Paz &
Ranzato, 2017; Chaudhry et al., 2019; Wu et al., 2021; Ke
& Liu, 2022; Wang et al., 2023a; Chen et al., 2023; Zhao
et al., 2024; Wu et al., 2024) capabilities is crucial for their
deployment in real-world scenarios, which enables them
to dynamically adapt to new tasks and acquire additional
knowledge over time (Luo et al., 2023; Zhai et al., 2023).

The vast number of parameters in LLMs imposes a signifi-
cant computational burden on CL (Wu et al., 2024), render-
ing traditional CL methods unsuitable for direct application.
To avoid exorbitant training overhead, recent research has
begun exploring CL for LLMs using parameter-efficient fine-
tuning (PEFT) (Houlsby et al., 2019; Lester et al., 2021; Hu
et al., 2021). A mainstream approach is parameter isolation-
based methods (Rusu et al., 2016; Fernando et al., 2017;
Zhao et al., 2024). These methods allocate a new PEFT
block for each new task to capture task-specific knowledge,
which ensures that the parameters learned by each task do
not interfere with each other and are reorganized later. Al-
though many effective CL methods for LLMs using PEFT
have been proposed, they are not designed for online learn-
ing scenarios where tasks arrive in a stream, meaning that
accessing or reusing task-related information (e.g., training
data and task identifiers) from previously learned tasks is not
allowed. Consequently, previous methods share a common
problem: Information Leakage (IL) from previously learned
tasks to downstream tasks.

Many CL methods (McCloskey & Cohen, 1989; Kirkpatrick
et al., 2017; Kotha et al., 2024) simplify the CL setting to
avoid forgetting by assuming that the task identity of test
instances (i.e., which task they come from) is known during
testing. However, in the real world, we typically have access
only to model weights, and often it is unclear which tasks
have been learned, let alone which tasks the test instances
come from. Some other methods (Lopez-Paz & Ranzato,
2017; Shin et al., 2017; Isele & Cosgun, 2018; Yin et al.,
2022; Scialom et al., 2022; Mok et al., 2023; Feng et al.,
2024) to mitigate catastrophic forgetting assume that the
model can access and reuse the training data of learned
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L‘SuperNI Benchmark ‘Long Sequence Benchmark

Avoid I
| SAPT TaSL | SAPT  TaSL

X | 5154 5301 | 8202 84.33

v | 1112 2743 | 10.18 72.29
Gaps | -4042 -2558 |  -71.84  -12.04

Table 1: The performance of the two best-performing CL
methods (SAPT and TaSL) using the T5-Large model on
two CL benchmark (SuperNI Benchmark and Long Se-
quence Benchmark). X indicates methods with IL, while ¢/
signifies methods without IL.

tasks, for example, by regularly replaying this data during
training. These assumptions not only require overhead for
storing data from learned tasks, but also necessitate periodic
computational costs for replay, which pose scalability chal-
lenges for CL. Furthermore, these assumptions also hinder
the application of CL in scenarios involving data-sensitive
or specialized tasks, where accessing data-related informa-
tion is not allowed. In table 1, we show that even for the
current state-of-the-art CL methods, there is a performance
gap ranging from about 12.04% to 71.84% between with
and without IL. Therefore, developing more effective online
CL methods for LLMs avoiding IL is crucial for the safe
and effective application and deployment of CL for LLMs.

To address the problem of IL, we propose a novel on-
line method exploiting presentative feature distributions
for parameter-efficient CL of LLMs. Our method first lever-
ages the feature representation capability of well-developed
pre-trained LLMs trained on large-scale data to encode data
domain information of tasks into a presentative feature dis-
tribution. This presentative feature distribution is used to
characterize learned PEFT blocks relevant to the task. Then,
we calculate the similarity between instances and the stored
presentative feature distributions, using this similarity to dy-
namically select the associated PEFT blocks. During train-
ing, these blocks are treated as prior knowledge to learn new
tasks, while during testing, the selected PEFT blocks will
be combined to predict. At all times, our method only ac-
cesses the high-dimensional and human-incomprehensible
presentative feature distributions statistically derived from
the pre-trained LLMs, hence it ensures that no information
is leaked. Moreover, because the presentative feature dis-
tribution is only associated with the pre-trained LLMs and
the related PEFT block, our method demonstrates strong
expandability. It allows learned PEFT blocks and presenta-
tive feature distributions on different tasks using the same
model framework to be directly expanded without additional
training. Without IL, our method achieves state-of-the-art
performance, approaching or even surpassing the perfor-
mance of methods with IL.

Our contributions to CL can be summarized as follows:

» We empirically found significant performance differences
between previous CL methods with and without IL and
identified the cause of this difference as the introduction
of a new risk of forgetting during the selection process.

* We propose a simple and effective online CL method for
LLMs, which utilises the feature representation capabili-
ties of pre-trained LLMs to characterize each PEFT block
by encoding a presentative feature distribution.

* Based on our proposed method, we provide an extension
that is able to combine PEFT blocks and presentative
feature distributions learned by our method using the
same model architecture without additional training.

Extensive experiments validate that our method avoids IL
while maintaining outstanding CL performance.

2. Background
2.1. Continual Learning

Let 7 = {(=z;,y:)}}_, be the target task with the size of
n, and each example (x;,y;) € X x ) is assumed to be
sampled from an unknown data distribution with probabil-
ity density p(x,y). The goal of continual learning (CL)
(Wu et al., 2024) is to train a single model f to adapt a
sequence of tasks {71, 72, ... Tk } that arrive in a stream-
ing fashion, where model f can only access the k-th task
T = {(x¥,yF)}7*, in the k-th time step. Then, the opti-
mal objective of CL is the following:

K
m?XZkzl IE:p(mk,yk) logp(yk|wk7f) (D

Previous CL research posits that an effective CL method
should address two primary challenges: 1) Catastrophic
Forgetting (CF) (McCloskey & Cohen, 1989; Kirkpatrick
et al., 2017; Kotha et al., 2024), where the performance on
learned tasks significantly deteriorates when learning new
tasks; and 2) Knowledge Transfer (KT), which includes both
forward transfer and backward transfer. Forward transfer
refers to the ability to leverage knowledge from learned tasks
to achieve better performance on a new task. Backward
transfer refers to the ability of learned tasks to benefit from
the knowledge acquired while learning new tasks, thereby
improving their performance.

2.2. Parameter-Efficient Fine-Tuning

Pre-trained LLMs developed using large-scale pre-training
datasets have become a powerful foundation for address-
ing a variety of target tasks. When faced with a specific
downstream task, pre-trained LLMs can be adapted to effec-
tively solve the task through parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019; Lester et al., 2021; Li & Liang,
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2021; He et al., 2021; Ding et al., 2022; Zaken et al., 2022).
Low-Rank Adaptation (LoRA) (Hu et al., 2021) is the most
popular PEFT method. It assumes that when the pre-trained
model is adapted to the new target task, the changes in model
parameters reside within a low-rank space. Consequently,
we only need to update the low-rank weights associated with
the parameters during adaptation, eliminating the need to
update all parameters. Specifically, for a pre-trained weight
matrix W € R“* and an input feature h(z) € R™,
LoRA adds a low-rank decomposition block BA for output
Wh(z) as follows:

Wh(z) = Wh(zx) + BAh(x), 2)

where A € RI¥in. B ¢ RoUXd and the rank d <
min(in, out). During weight updates, the pre-trained
weight matrix W remains fixed, and only the LoRA block
A and B are updated.

2.3. Continual Learning for LLMs with PEFT

Large language models (LLMs) with billions of parame-
ters impose a significant computational burden on CL (Wu
et al., 2024). To avoid exorbitant training overhead, recent
research has begun exploring CL for LLMs using PEFT.

A key technique is knowledge isolation-based method,
which requires the model to learn new knowledge with-
out modifying what has already been learned. Orthogonal
Low-Rank Adaptation (O-LoRA) (Wang et al., 2023a) en-
forces that the LoRA parameters learned for new tasks are
orthogonal to the existing LoRA parameters. TaSL (Feng
et al., 2024) decomposes LoRA blocks into d sub-blocks
and selectively updates these sub-blocks when learning new
tasks to avoid conflicts with learned tasks.

Another important technique is parameter isolation-based
methods (Rusu et al., 2016; Fernando et al., 2017), which
allocate a new PEFT block for each new task. SAPT (Zhao
et al., 2024) designed a shared attention framework to dy-
namically learn and select LoRA blocks. However, this
framework introduces new shared parameters (Query Pro-
jection), which still poses a risk of forgetting. To address
this issue, Zhao et al. (2024) further proposed a data replay
method using pseudo-samples.

3. Proposed Method

In this section, we first reflect on why previous CL methods
show performance differences with and without IL. We then
propose a novel and expandable method that avoids IL while
maintaining outstanding CL performance.

Notations. In this paper, we use LoRA fine-tuning as

our main PEFT implementation. For a given pre-trained
n

model f and a target task 7, = {(z¥, y¥)}*,, we denote

W' € RowtXin a5 the weight matrix for layer | of model
fand use Al € R and B! € Ro“*4 (o represent the
LoRA blocks learned for task 7T, in layer [.

3.1. Revisiting the Causes of Performance Differences

For parameter-based isolation CL methods, the CL process
can be divided into two stages: 1) Selection: choosing
relevant PEFT blocks for the instance, and 2) Merging:
combining the selected PEFT blocks. The state-of-the-art
parameter-based isolation method, SAPT (Zhao et al., 2024),
designs a shared attention framework to learn how to select
and merge LoRA blocks. However, this shared attention
framework introduces new trainable parameters, known as
query projections, which may also introduce a new for-
getting problem. In Figures 1.(a) and 1.(b), we show the
heatmap of SAPT selecting LoRA blocks with and without
IL using query projection. We can observe that without IL,
SAPT extremely selects the LoRA of the last task for all task
instances, indicating the occurrence of forgetting, which val-
idates our hypothesis. Although SAPT uses a reflection
module to replay the pseudo-samples in order to mitigate
the new forgetting, this can also lead to IL. To solve the prob-
lem, we should avoid introducing new trainable parameters
in the selection stage.

Inspired by the technique of fine-tuning (Howard & Ruder,
2018; Kumar et al., 2022; Parthasarathy et al., 2024), zero-
shot (Radford et al., 2021; Kojima et al., 2022), in-context
learning (Dong et al., 2022) and pre-training model initial-
ization (Touvron et al., 2023; Dubey et al., 2024), where
well-developed pre-trained LLMs are repurposed, we can
similarly leverage pre-trained LLMs for selection without
introducing new trainable parameters. Following this idea,
we propose a novel online CL method, which leverages the
feature representation capabilities of pre-trained LLMs to
characterize each PEFT block by encoding a presentative
feature distribution. This method mainly consists of three
key components: Feature Distribution Module, Similarity
Module, and Dynamic Selection Module. The overall archi-
tecture of our proposed method is illustrated in Figure 2.

3.2. Feature Distribution Module

We assume that pre-trained LLMs trained on a large-scale
general dataset already possess robust feature representation
capability, which has been demonstrated in zero-shot, few-
shot, and in-context learning. Therefore, the feature space
of the pre-trained LLMs itself can be utilized to distinguish
and categorize different tasks and knowledge, such that we
do not need to train a new classifier. Specifically, we denote
by D! the presentative feature distribution of task 7j, at
layer [, and DL is computed as follows:

D}, = Ep(gr o) [W'AH(2")], 3)
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Figure 1: The heatmap demonstrates the selection of LoRA on the SuperNI Benchmark across 15 tasks. Figures (a) and (b)
illustrate the results of the state-of-the-art parameter-based isolation CL method, SAPT, with and without IL, utilizing the
query projection for selecting LoRA. Figures (c) and (d) display the results of our proposed method using L2 distance and
dot product similarity for selecting LoRA (averaged across all model layers). For all results, we scaled the values by a factor
of 100 and highlighted the highest value in each row with a yellow box.

where h!(z*) denotes the hidden state input of instance ="

in layer [. The presentative feature distribution DL primarily
depends on the weight matrix W' of the pre-trained LLMs
and the data distribution p(z*, y*). Since the weight matrix
W is frozen during LoRA fine-tuning, the presentative fea-
ture distribution DL varies only with the data distribution,
thereby being regarded as a mapping of the data distribution
by the pre-trained LLMs. Additionally, based on parameter-
based isolation techniques, we allocate a new LoRA block
for each streaming arrival task. Consequently, the presenta-
tive feature distribution can also be used to characterize the
corresponding LoRA block.

3.3. Similarity Module

For a reliable presentative feature distribution D} and an
arbitrary instance x, if x is related (e.g., instruction or
knowledge) to task 7T, then the feature of x at layer [ (i.e.,
W!hl(x*)) will be close to D!, that is, with greater simi-
larity. Building on this idea, we denote the similarity be-
tween instance x and presentative feature distribution ch
as O(x, fo) In this paper, we explore the following two
classic methods for computing the similarity:

* Negative Ly Euclidean Distance:

@y, (@, D) = —/|[Wiki(z) - Dy[% ()

* Dot Product Similarity:

Winl(x) - D!
Ppet(x, D)) = ———F———F S
e D) = =

where out! donates the output dimension of layer [.

3.4. Dynamic Selection Module

Using the feature distribution and similarity module, we
can easily obtain the dynamically selected and merged out-

put for instance x of k-th task in layer [ by normalizing
the similarities of instance x with existing LoRA blocks
{BYAL,BLAL .. .BLAL}. The output W'hl(z) of in-
stance « at layer [ is given as follows:

exp(®(z. D})/T)
Sum(exp(®/T))

Winl(z) + Z

Jj=1

BiAlbl(z),  (6)

where Sum(exp(®/T)) = YF_ exp(® (e, D})/T) and T
is the temperature coefficient used to control normalization.
During the training for the k-th task 7, only the LoRA
blocks AL, B! and presentative feature distribution D},
associated with the current task 7 are updated, while the
other parameters (learned task-specific LoORA blocks Aé-,
Bé» and presentative feature distributions D', and the pre-
trained model matrix W') remain frozen. It is worth noting
that the update of the presentative feature distribution Di
is accomplished statistically as described in Eq. 3, without
introducing any additional trainable parameters, thus not
introducing a new forgetting problem. Additionally, the
dynamic selection module can selectively activate some
LoRA blocks rather than activating all of them, as shown in
the Top-K selection method below:

exp(®(x, DY)/T)

JCTop (@ (2,0) Sum(exp(®/T), Top-K)

LAyl
B AR (),

where Sum(exp(®/T'), Top-K) = 3_, crop i (a(,01)) €XP
(®(x, D!)/T). Selective activation can filter out some ir-
relevant LoRA blocks and focus on the most relevant ones.
We will discuss the selection of Top-K in the following
experiments section.

Through feature distribution, similarity, and dynamic selec-
tion modules, our method achieves online CL for LLMs,
effectively avoiding IL while addressing two key challenges
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Figure 2: The overall architecture of our proposed method. We assume that tasks 1 and 2 have already been learned, and we
are currently learning task 3. The central part of the figure illustrates the continual learning process of our proposed method:
1) The features of the input instances first pass through the frozen weight matrix of the pre-trained LLMs to obtain hidden
states, which are then used to update the presentative feature distribution relevant to Task 3; 2) The resulting hidden states
are compared with existing feature distributions to calculate similarity; 3) Based on the calculated similarity, LoORA blocks
are dynamically selected and output is obtained. The rightmost part of the figure shows the expansion of LoRA blocks and
feature distributions across different trained models with the same architecture.

that affect CL performance. 1) IL: During both training and
testing, our method only accesses the presentative feature
distributions and LoRA blocks, completely avoiding access
to any data information from learned tasks, including pseudo
or synthesized data. Furthermore, the presentative feature
distributions are high-dimensional and incomprehensible to
humans. Moreover, presentative feature distributions rep-
resent averaged information across populations and cannot
reconstruct individual information, ensuring that no related
information is exposed. 2) CL: our method is a parame-
ter isolation-based method. It ensures that task-relevant
knowledge is fully retained while dynamically selecting ap-
propriate knowledge to prevent forgetting. Additionally, our
method does not introduce any new trainable parameters,
as the presentative feature distribution is derived statisti-
cally, thereby avoiding new forgetting issues. 3) KT: For
forward transfer, when learning a new task, our method can
effectively learn the new task by selecting relevant learned
task knowledge as prior knowledge through the dynamic
selection module. During testing, our method compares the
features of instances with the presentative feature distribu-
tions to extract knowledge relevant to the test instance. This
enables learned tasks to benefit from the knowledge gained
in new tasks, achieving backward transfer.

3.5. Flexible Expansion Advantage

Our proposed method characterizes each LoRA block with
the presentative feature distribution based on the robust
feature representation capability of the well-developed pre-
trained LLMs, retaining only the presentative feature distri-
butions and the LoRA blocks. Because the feature represen-
tation capability is similar for identical pre-trained LLMs.
This allows for the expansion of any trained presentative
feature distributions and LoRA blocks using the same model
architecture on our proposed method simply by putting them
together, regardless of who carried out the training. Notably,
this expansion requires no additional training, meaning that
the model gains associated knowledge simply by integrating
the feature distributions and LoRA blocks. This expansion
not only achieves plug-in continual learning but also pro-
motes the development of the open-source community. We
illustrate this flexible expansion in Figure 2, and we will
further validate the effectiveness of the expansion in the
subsequent experiments section.

4. Experiments

In this section, we provide extensive experiments to demon-
strate the effectiveness of our proposed method.
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Table 2: The test performance (%) on two continual learning benchmarks using the LLaMA-2-7B model. X indicates
methods with IL, while ¢ signifies methods without IL. All evaluation metrics are reported after the training on the last
task of the benchmarks. In methods without IL, the best performances are highlighted in bold. The last column Avg. is the

average of the performance on the two benchmarks.

SuperNI Benchmark Long Sequence Benchmark

Methods APt  FRa, FWTt BWT{ | APt FRal FwTt Bwrt | V&l
Replay X | 3948 1486  0.19 2647 | 7143 1364 097  -1273 | 55.46
ProgPrompt X | 4054 005 -1418 00 | 7064 00  -1472 0.0 55.59
SAPT-LoRA X | 5623 107 081 065 | 81.75 281 109 253 | 68.99
SeqLoRA v | 2865 2821 -0.18 -27.73 | 2680 6053 2.1  -60.48 | 27.73
ProgPrompt ¢ | 1434 28.12  -14.18 2807 | 10.67 6425 -1472 -6425 | 12.51
LFPT5 v | 3871 1681 032  -1542 | 7031 563 051 432 | 5451
EPI v . - - - 7227 504 312 -0.50 -

O-LoRA v | 3717 1901 008  -18.88 | 5447 2665  -3.03  -26.63 | 45.82
SAPT-LoRA v | 3028 2697 074 2697 | 708 8215 005  -82.12 | 18.68
TASL-LoRA ¢ | 42.00 . - 75.00 - . - 58.50
Ours-Dot v | 5410 147 004 066 | 81.13 311 077 -2.86 | 67.62
Ours-L2 v | 5560 023 008  -014 | 8301 057 -1.07 -041 | 69.31

4.1. Experimental Setup

Datasets. We conducted experiments on two CL bench-
marks, including SuperNI Benchmark (Wang et al., 2022a)
and Long Sequence Benchmark (Razdaibiedina et al., 2023).

The SuperNI Benchmark is a comprehensive benchmark
of various NLP tasks, with instructions crafted by experts.
It encompasses tasks like dialogue generation, information
extraction, question answering, summarization, and senti-
ment analysis, and is used to evaluate the performance of
the model in general scenarios. Following previous CL set-
tings (Zhao et al., 2024), we selected three tasks from each
category, creating a total of 15 task sequences for evaluation.
For training, 1,000 instances are randomly sampled from
the dataset for each task, with an additional 100 instances
selected for validation and testing.

The Long Sequence Benchmark is a CL benchmark compris-
ing 15 classification tasks. Following previous CL settings
(Razdaibiedina et al., 2023; Wang et al., 2023a), we selected
1,000 random samples for training in each task and reserved
500 samples per category for validation and testing.

Evaluation Metrics. We denote the testing performance
on the j-th task after training on the i-th task as a;;, us-
ing Accuracy for classification tasks and Rouge-L (Lin,
2004) for other tasks. Following previous CL studies, we
use widely adopted CL evaluation metrics: Average Per-
formance (AP) (Chaudhry et al., 2018) evaluates the av-
erage performance of all tasks after training on the last
task, i.e., % Zjil axj, which is the most important met-
ric for evaluating CL methods; Forgetting Rate (F.Ra)

(Chaudhry et al., 2018) measures how much knowledge
has been for}gotten across the stream of incoming tasks,
ie., = Y% N (max® "' a,; — ak;); Forward Transfer
Co BT 25=1 q=j “aj — “Kj)s

(FWT) (Lopez-Paz & Ranzato, 2017) evaluates how much
knowledge from previous tasks transfers to a new task, i.e.,
1 K

=2 =1 @jj — aoj, where ag; refers to the performance of
training task j individually; Backward Transfer (BWT) (Ke
& Liu, 2022) measures how much learned tasks benefit from

. K—1
newly learned tasks, i.e., ﬁ ijl aKj — ajj.

Compared Methods. We evaluate our method alongside
the following PEFT-based CL methods: 1) Replay mitigates
forgetting by periodically replaying samples from previ-
ously learned tasks, but it has the risk of IL; 2) SeqLoRA
sequentially trains the LoRA on the task orders. 3) LFPTS5
(Wang et al., 2022b) continuously trains a soft prompt for
each task using generative replay and an auxiliary loss; 4)
ProgPrompt (Razdaibiedina et al., 2023) trains a sequence of
prompts in the order tasks arrive. Assumes the task-related
ID is known during testing, allowing for direct selection of
the corresponding prompt for evaluation. We evaluated the
performance of ProgPrompt with and without IL. 5) EPI
(Wang et al., 2023b) trains a prompt for each task and se-
lects the prompt based on the distance between the input
and the distributions of different classifier task labels; 6) O-
LoRA (Wang et al., 2023a) ensures the newly learned LoRA
components for each task are orthogonal to the previously
learned ones to prevent interference with already acquired
knowledge. 7) SAPT (Zhao et al., 2024) uses an attentive
reflection module and a shared attention framework to adjust
PEFT block learning and selection. However, the attentive
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Table 3: The test performance (%) on two continual learning benchmarks using the LLaMA-2-13B model. X indicates
methods with IL, while ¢ signifies methods without IL. All evaluation metrics are reported after the training on the last
task of the benchmarks. In methods without IL, the best performances are highlighted in bold. The last column Avg. is the

average of the performance on the two benchmarks.

Methods SuperNI Benchmark Long Sequence Benchmark Avg.t
APt FRal FWTT BWTYT APT FRal FWTT BWTY? &
Replay X | 4399 11.64 0.72 -9.75 76.63 7.92 0.02 -14.86 | 60.31
ProgPrompt b 4 38.93 0.35 -17.35 0.0 72.43 0.0 -14.39 0.0 55.68
SAPT-LoRA X | 56.95 1.39 0.81 -0.56 82.32 1.98 0.78 -1.57 69.64
SeqLoRA v | 30.07 28.50 -0.03 -28.06 | 50.76  35.96 -2.65 -35.80 | 40.42
ProgPrompt v | 1123 30.03 -17.35  -29.68 8.08 68.95 -1439  -68.95 9.66
LFPT5 v | 4126 14.67 -0.52 -12.31 | 71.61 6.51 -1.34 -3.78 56.44
EPI v - - - - 76.66 491 -0.09 -1.03 -
O-LoRA v | 4449 1228 -0.65 -11.94 | 57.34  28.23 -3.13 -28.22 | 50.92
SAPT-LoRA v/ | 3553  23.00 0.66 -22.93 | 31.37 5772 -0.05 -57.72 33.45
Ours-Dot v | 5528 2.54 0.65 -1.77 82.83 2.35 -1.32 -2.11 69.06
Ours-L2 v | 5647 0.27 0.05 0.16 84.75 0.39 -0.98 -0.34 70.61

reflection module poses a risk of IL. 8) TaSL (Feng et al.,
2024) identifies task-related areas through grouped skill lo-
calization and consolidates them to prevent forgetting. More
complete experiments such as different models, different
task orders and visualisations are provided in Appendix C.

Implementation Details. Following previous CL settings
(Zhao et al., 2024), all methods are performed with instruc-
tion tuning (Wei et al., 2021; Ouyang et al., 2022) to lever-
age the task instruction provided in the two benchmarks.
To validate the effectiveness of our proposed method, we
considered pre-trained LLMs with two architectures: the
encoder-decoder T5-large and the decoder-only LLaMA-
2-7B and LLaMA-2-13B models, with model parameters
ranging from 770M to 13B. To ensure a fair comparison, we
use LoRA fine-tuning to train each task individually as ag
for all methods. For each transformer layer, we only count
the feature distributions of Q and V components. For the
temperature coefficient 7" in the softmax function, we set all
to 1.0 following previous studies (Zhao et al., 2024). For
Top-K activation in the dynamic selection module, we set
K to 1 In Table 2 and Table 3, while for the remainder of
the experiments, K was set to the total number of tasks. It
is important to note that the values of K during training and
testing do not have to be identical. For simplicity, we chose
to keep them the same. Detailed implementation details you
can find in the Appendix B.

4.2. Experimental Results

Performance on Continual Learning Benchmarks. Ta-
ble 2 and Tabel 3 show the comparison results of our
proposed method and recent continual learning methods

for LLMs with PEFT (LoRA: SAPT-LoRA, SeqL.oRA, O-
LoRA, TASL; Prompt: ProgPrompt, LFPTS5, EPI) on two
popular CL benchmarks. We use the Top-1 strategy to
select LoRA blocks. It can be observed that our method
significantly outperforms other baselines without IL. For
instance, in the SuperNI Benchmark, Ours-Dot and Ours-
L2 achieve average performances of 54.10% and 55.60%,
respectively, which are approximately 12.85% higher than
the best method without IL, TaSL. Furthermore, compared
to methods with IL, our proposed method achieves similar
or even better CL performance. In the SuperNI Benchmark,
our method is only 0.63% lower than the SOTA CL method
with IL, SAPT-LoRA, while in the Long Sequence Bench-
mark, our method surpasses it by 1.26%. Moreover, in the
comprehensive evaluation across the two benchmarks, our
method establishes a new SOTA with 69.31% average per-
formance. These results validate the effectiveness of our
method for CL of LLMs. By comparing the experimen-
tal results in Table 2 and Table 3, it can be observed that
the average performances of Ours-Dot and Ours-L2 using
LLaMA-2-13B are 69.06% and 70.61%, respectively, both
higher than the 67.62% and 69.31% achieved using LLaMA-
2-7B. This indicates that more powerful models can achieve
stronger CL performance.

Performance of Zero-shot on Unseen Tasks. Following
previous studies (Zhao et al., 2024), we further select 3
tasks from five types of problems (Dialog, IE, QA, Sum,
and SA) to evaluate the cross-task generalization ability
of CL methods. Detailed information on task selection
can be found in Appendix A.1. In Table 4, we can see the
performance of our method and some CL methods on unseen
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Table 4: The test performance (%) on the unseen task using the LLaMA-2-7B and LLaMA-2-13B model. X indicates
methods with IL, while ¢ signifies methods without IL. The best performances are highlighted in bold.

Methods LLaMA-2-7B LLaMA-2-13B

Dialog IE QA Sum SA Avg. | Dialog IE QA Sum SA Avg
ProgPrompt X/ | 7.16 6.65 17.69 9.86 434 9.14 | 792 636 1691 1464 9.0 10.97
SAPT-LoRA X | 1222 31.70 4135 15.65 63.24 32.84| 1232 29.24 4136 15.53 67.57 33.20
SAPT-LoRA v/ | 1242 3431 49.11 18.24 58.33 34.48 | 11.84 35.89 47.52 19.80 72.16 37.45
SeqLoRA v 444 40.78 36.10 10.50 57.98 2996 | 6.58 35.84 40.44 7.81 41.07 26.35
O-LoRA v 743 46.71 28.65 11.22 60.31 30.87| 6.46 38.39 57.75 1430 47.82 32.95
Ours-Dot v 9.52 4055 4994 21.32 59.57 36.18 | 12.37 3291 55.27 20.32 6531 37.24
Ours-L2 v | 11.54 5350 57.82 21.46 6699 42.26 | 12.00 45.76 61.31 23.20 71.25 42.70
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Figure 3: The performance (average performance 1 and forgetting rate |) of our method for the LLaMA-2-7B and LLaMA-
2-13B on SuperNI Benchmark and Long Sequence Benchmark as the number of model layers being used increases. Since
the number of layers in different models varies, the scales are not strictly aligned.

tasks using LLaMA-2-7B and LLaMA-2-13B. According
to these experimental results, we observe that our method
achieves higher performance compared to other methods,
whether using dot product similarity or L2 distance. This
is attributed to the fact that our method uses a dynamic
selection of modules to choose the appropriate knowledge
(i.e., LoRA blocks) for each test instance. These results
validate that our method possesses strong generalization
capabilities to handle more realistic scenarios.

Performance of Model Layer Usage. For LoRA-based
methods, we add LoRA blocks to the Query and Key com-
ponents of the attention module at each layer. Consequently,
our method requires analysis of the feature distribution in the
Query and Key components at every layer. In Figure 3, we
present the performance changes of our method, equipped
with L2 distance, as the number of utilized layers increases.
It can be observed that as more layers of the model are
adopted, both the average performance and forgetting rate
improve. Moreover, good results can be achieved with only
a small number of layers being used. This indicates the
potential of leveraging pre-trained models for feature ex-
traction and validates the effectiveness of our method. In
addition, our method only needs to increase the parameters
for the LLaMA-2-7B model by 0.03% (including the LoRA

block) even with all layers, compared to 0.04% for SAPT.

Comparison of Similarity Calculation. In Figure 4, we
present the results of two similarity calculation methods (L2
distance and dot product similarity) under different dynamic
selection strategies (selecting the top-k most relevant). We
observe that L2 distance consistently outperforms dot prod-
uct similarity in terms of both performance and stability.
This may be because the results of the dot product similarity
are too close to each other. As shown in the visualization
in Figure 1.(c) and 1.(d), while the dot product can iden-
tify the most relevant LoRA block, its values are relatively
similar. As a result, the performance of the dot product sim-
ilarity improves noticeably as top-k decreases. Moreover,
our method surpasses the best baseline without DL in most
cases, further validating the effectiveness of our method.

Performance of Expansion. In Table 5, we present the
results of expansion feature distributions and LoRA blocks
trained on two benchmarks. It is evident that models trained
on a single benchmark can acquire knowledge when inte-
grated with the presentative feature distributions and LoRA
blocks trained on another benchmark, thanks to our dynamic
selection module. Additionally, the combined performance
of non-continual training is slightly worse than that of con-



Exploiting Presentative Feature Distributions for Parameter-Efficient Continual Learning of Large Language Models

Table 5: The test performance (%) on two continual learning benchmarks using the LLaMA-2-7B model and LLaMA-2-
13B model with different LORA blocks and feature distributions. ”SuperNI”” and "Long Sequence” indicate the average

performance on the benchmarks using our method, where

”+” denotes the expansion of LoRA blocks and presentative

feature distributions as introduced in Section 3.5. ”Continual” refers to each task within the benchmark being trained in a
continual learning manner. ”"Non-Continual” refers to each task within the benchmark being trained independently rather

than in a continual learning manner.

LoRAs and Distributions LLaMA-2-7B LLaMA-2-13B

" SuperNI  Long Sequence Avg. SuperNI  Long Sequenc Avg.
Continual SuperNI 54.33 29.41 41.87 56.52 31.93 44.23
+ Non-Continual Long Sequence 53.70 (-0.63) 72.78 (+43.37) 63.24 (+21.37)| 55.78 (-0.74) 78.10 (+46.17) 66.94 (+22.71)
Continual Long Sequence 28.75 79.82 54.29 37.09 82.53 59.81
+ Non-Continual SuperNI 52.12 (+23.37) 78.49 (-1.33) 65.31 (+11.02)|54.88 (+17.79) 81.73 (-0.80) 68.31 (+8.50)

Continual SuperNI + Long Sequence‘ 53.47

78.30

6589 | 5534 81.72 68.53
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Figure 4: The performance (average performance 1) of our method for the LLaMA-2-7B and LLaMA-2-13B on SuperNI
Benchmark and Long Sequence Benchmark varies with the top-k selections of the dynamic selection module.

tinual training on two benchmarks separately and then com-
bined. This is because the LoRA blocks trained indepen-
dently do not have the capacity to utilize prior knowledge,
which also validates the effectiveness of our method.

5. Conclusion

In this paper, we studied a critical problem in continual
learning (CL) for large language models (LLMs) called
Information Leakage (IL), which not only imposes poten-
tial risks on data privacy protection but also significantly
hinders the deployment of LLMs in real-world online sce-
narios. In order to solve this problem, we first reconsidered
the reasons for performance differences with and without
IL in previous CL methods, mainly introducing new learn-
able parameters that brought about new forgetting. Second,
we utilized well-developed pre-trained LLMs trained on
large-scale data and proposed a novel online method exploit-
ing presentative feature distributions for parameter-efficient
continual learning of large language models. Finally, we
provided an expansion to our method that allows LoRA
blocks and presentative feature distributions using the same
model architecture trained on different tasks to be integrated

directly without additional training, achieving plug-in CL
for LLMs. Our method avoids IL while achieving outstand-
ing CL performance. We hope that our in-depth study on IL
in CL will inspire further research to consider this important
problem, thereby facilitating the better deployment of LLMs
with CL capabilities in real-world online scenarios.
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A. Details of Benchmark
A.1. SuperNI Benchmark

The Natural-Instructions project (Mishra et al., 2022; Wang et al., 2022a) is a high-quality NLP benchmark designed to
assess a ability of model to generalize to unseen tasks. This generalization relies on understanding and reasoning based
on natural language instructions, which describe a task clearly and comprehensively. A model capable of "understanding”
language instructions can successfully tackle any unseen task once provided with the task instructions. Following previous
setting (Zhao et al., 2024), we selected three tasks from each of five categories within the Natural-Instructions project:
dialogue generation (Dialog) (Zhang, 2018; Zang et al., 2020; Peskov & Cheng, 2020), information extraction (IE) (Santus
et al., 2015; Nye et al., 2018; Mostafazadeh et al., 2020), question answering (QA) (Dasigi et al., 2019; Talmor et al., 2018),
summarization (Sum) (Narayan et al., 2018; Gliwa et al., 2019; Kim et al., 2019), and sentiment analysis (SA) (Socher et al.,
2013; Saravia et al., 2018), creating a total of 15 tasks. For each task, we randomly selected 1,000 instances for training and
100 instances for evaluation and testing. In Table 6, we show the details of the 15 tasks that are selected. In addition, we
show the details of several different streaming orders in table 7, and all our experiments in the main text use Order 1.

Dataset name Task Metric

task639_multi_woz_user_utterance_generation dialogue generation Rouge-L
task1590_diplomacy_text_generation dialogue generation Rouge-L
task1729_personachat_generate_next dialogue generation Rouge-L
task181_outcome_extraction information extraction Rouge-L
task748_glucose_reverse_cause_event_detection information extraction Rouge-L
task1510_evalution_relation_extraction information extraction Rouge-L
task002_quoref_answer_generation question answering Rouge-L
task073_commonsenseqa_answer_generation question answering Rouge-L
task591 _sciq_answer_generation question answering Rouge-L
task511_reddit_tifu_long_text_summarization summarization Rouge-L
task1290_xsum_summarization summarization Rouge-L
task1572_samsum_summary summarization Rouge-L
task363_sst2_polarity_classification sentiment analysis accuracy
task875_emotion _classification sentiment analysis accuracy
task1687_sentiment140_classification sentiment analysis accuracy

Table 6: The details of selected 15 datasets in the SuperNI Benchmark

Order Task Sequence
task1572 — task363 — task1290 — task181 — task002 —
1 task1510 — task639 — task1729 — task073 — task1590 —

task748 — task511 — task591 — task1687 — task875

task748 — task073 — task1590 — task639 — task1572 —
2 task1687 — task591 — task363 — task1510 — task1729 —
task181 — task511 — task002 — task1290 — task875

Table 7: The streaming orders of selected 15 datasets in the SuperNI Benchmark

In order to evaluate the performance of the learned model in terms of cross-task generalisation ability on the unseen task,
we also selected three more tasks from the previous five types of problems; Dialog (Wei et al., 2018; Cho & May, 2020;
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Aliannejadi et al., 2021), IE (Schmitz et al., 2012; Zlabinger et al., 2020; Nan et al., 2020), QA (Levy et al., 2017; Zhang
et al., 2018; Min et al., 2020), Sum (Henderson et al., 2014; Syed et al., 2020; Hasan et al., 2021), and SA (Sheng & Uthus,
2020; Lowphansirikul et al., 2020) for evaluation. The details of the selected unseen tasks are provided in table 8.

Dataset name Task Metric

task360_spolin_yesand_response_generation Dialogue Generation Rouge-L
task574_air_dialogue_sentence_generation Dialogue Generation Rouge-L
task1714_convai3_sentence_generation Dialogue Generation Rouge-L
task180_intervention_extraction Information Extraction Rouge-L.
task678_ollie_actual relationship_answer_generation Information Extraction Rouge-L.
task1410_dart_relationship_extraction Information Extraction Rouge-L.
task339_record_answer_generation Question Answering Rouge-L
task670_ambigqa_question_generation Question Answering Rouge-L
task1327_qa_zre_answer_generation_from_question Question Answering Rouge-L
task522_news_editorial_summary Summarization Rouge-L.
task1356_xlsum_title_generation Summarization Rouge-L.
task 1499 _dstc3_summarization Summarization Rouge-L
task421_persent_sentence_sentiment_classification Sentiment Analysis Accuracy
task833_poem_sentiment_classification Sentiment Analysis Accuracy
task929_products_reviews_classification Sentiment Analysis Accuracy

Table 8: The details of 15 unseen datasets in the SuperNI Benchmark

A.2. Long Sequence Benchmark

The Long Sequence benchmark is a benchmark constructed by selecting five tasks (AG News, Amazon reviews, Yelp
reviews, DBpedia and Yahoo Answers) from the standard CL benchmark (Zhang et al., 2015), four tasks (MNLI, QQP, RTE,
SST2) from the GLUE benchmark (Wang, 2018), five tasks (WiC, CB, COPA, MultiRC, BoolQ) from the SuperGLUE
benchmark (Wang et al., 2019) and the IMDB movie reviews dataset (Maas et al., 2011).

Dataset name Category Task Domain Metric

Yelp CL Benchmark Sentiment Analysis Yelp reviews Accuracy
Amazon CL Benchmark Sentiment Analysis Amazon reviews Accuracy
DBpedia CL Benchmark Topic Classification Wikipedia Accuracy
Yahoo CL Benchmark Topic Classification Yahoo Q&A Accuracy
AG News CL Benchmark Topic Classification News Accuracy
MNLI GLUE Natural Language Inference Various Accuracy
QQP GLUE Paragraph Detection Quora Accuracy
RTE GLUE Natural Language Inference News, Wikipedia Accuracy
SST-2 GLUE Sentiment Analysis Movie Reviews Accuracy
WiC SuperGLUE Word Sense Disambiguation Lexical Databases Accuracy
CB SuperGLUE Natural Language Inference Various Accuracy
COPA SuperGLUE Question and Answering Blogs, Encyclopedia Accuracy
BoolQA SuperGLUE Boolean Question and Answering Wikipedia Accuracy
MultiRC SuperGLUE Question and Answering Various Accuracy
IMDB SuperGLUE Sentiment Analysis Movie Reviews Accuracy

Table 9: The details of selected 15 datasets in the Long Sequence Benchmark

To evaluate the stability of the method under different task orders, we provide two task orders in Table 10.
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Order Task Sequence
| mnli — cb — wic — copa — qqp — boolga — rte — imdb —
yelp — amazon — sst-2 — dbpedia — ag — multirc — yahoo
) yelp — amazon — mnli — cb — copa — qqp — rte — imdb —
sst-2 — dbpedia — ag — yahoo — multirc — boolqa — wic
Table 10: The streaming orders of selected 15 datasets in the SuperNI Benchmark
Tob-K LLaMA-2-7B LLaMA-2-13B

P AP} BWT? FRal FWT{ AP} F.Ral FWT¢ BWT?
| Dot 80.04 4.43 0.14 -4.16 82.72 247 -0.56 -2.14
L2 83.13 0.42 -0.32 -0.35 84.59 0.36 -1.93 -0.32

3 Dot 75.22 9.10 -1.84 -8.89 79.91 4.98 -2.46 -4.76
L2 81.94 1.87 -0.40 -1.54 84.21 0.65 -2.05 -5.88

5 Dot 68.60 16.22 -1.82 -16.01 75.28 9.73 -2.56 -9.62
L2 81.47 2.37 -1.84 -2.19 83.45 1.68 -2.05 -1.41

7 Dot 66.69 18.01 -1.98 -17.87 73.00 12.74 -2.52 -12.11
L2 80.61 3.32 -1.82 -3.13 82.91 2.24 -2.15 -1.87

9 Dot 64.35 20.55 -1.95 -20.42 69.97 15.52 -2.48 15.38
L2 79.92 4.05 -1.84 -3.85 82.97 1.72 -2.34 -1.62

1 Dot 61.72 23.46 -1.90 -23.28 69.00 16.74 -2.38 -16.54
L2 79.91 4.13 -1.80 -3.91 82.87 2.29 -1.94 -2.16

13 Dot 60.81 24.40 -1.92 24.24 67.76 18.09 -2.36 -17.89
L2 79.46 4.63 -1.79 -4.40 82.58 2.33 -2.28 -2.10

15 Dot 59.90 25.33 -0.42 -25.13 67.74 17.85 -1.01 -17.71
L2 79.77 4.08 -0.42 -3.84 82.51 2.52 -2.17 229

Table 11: The test performance (%) on the Long Sequence Benchmark using the LLaMA-2-7B and LLaMA-2-13B model
with different top-k selections of the dynamic selection module. All evaluation metrics are reported after the training on the
last task of the benchmarks.

B. Implementation Details

For our proposed method, we utilize the AdamW optimizer to train the models. Specifically, we employ a learning rate of
3e-4 for the T5-Large model, and 5e-5 for both the LLaMA-2-7B and LLaMA-2-13B models. For each transformer layer,
we only count the feature distributions of () and V' components. For the T5-Large model, we only consider the statistical
encoder.

The T5-Large model is trained on a single NVIDIA Tesla A100 GPU, with a batch size of 32 and a low-rank parameter r set
to 8. We train the model 100 epochs on the SuperNI benchmark and 10 epochs on the Long Sequence benchmarks.

For the LLaMA-2-7B and LLaMA-2-13B models, training is conducted on 8 NVIDIA Tesla A100 GPUs utilizing the
DeepSpeed repository. The total batch size is 32, and both benchmarks use a low-rank parameter r of 4. We train the model
50 epochs on the SuperNI benchmark and 20 epochs on the Long Sequence benchmarks.

The primary experiments reported in the paper are the averages obtained from two different orders in Table 10, while other
experiments showcase results based on order 1.

For the temperature coefficient 7" in the dynamic selection module of our method, we set all to 1.0. For the methods we
compared, we reimplemented their method based on the open source code of SAPT (Zhao et al., 2024), which makes their
results potentially better than what they reported in their original paper. For TASL (Feng et al., 2024), we directly extracted
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SuperNI Benchmark Long Sequence Benchmark
Methods Order AP} BWT+  ERal  FWTt AP} FRa, FWT{  BWT?t
Ours-Do 1 53.98 1.52 -0.06 -0.72 80.04 443 0.14 -4.16
2 54.30 1.42 0.14 -0.60 82.22 1.78 -1.68 -1.56
Oure.ln 1 55.82 0.22 0.27 -0.17 83.13 0.42 -0.32 -0.35
55.38 0.24 -0.12 0.22 82.89 0.72 -1.83 -0.47

Table 12: The test performance (%) on the Long Sequence Benchmark using the LLaMA-2-7B model with different task

order. All evaluation metrics are reported after the training on the last task of the benchmarks.

SuperNI Benchmark Long Sequence Benchmark
Methods Order AP} BWT+  FERal  FWTt AP} FRa, FWT{  BWTt
Ours-Do 1 55.55 2.56 0.73 -1.56 82.72 2.47 -0.56 2.14
urs-o 2 55.01 2.51 0.56 -1.97 82.93 222 2.07 -1.93
Oure.L2 1 56.71 0.05 0.13 0.33 84.59 0.36 -0.39 20.32
urs- 2 56.22 0.49 -0.03 -0.02 84.91 0.42 -1.57 0.36

Table 13: The test performance (%) on the Long Sequence Benchmark using the LLaMA-2-13B model with different task
order. All evaluation metrics are reported after the training on the last task of the benchmarks.

the results they reported in their paper.

C. Additional Results
C.1. Complete Results on LLaMA-2-7B

For LLaMA-2-7B model, the main experiments are provided in Table 2. In order to verify the effectiveness of our method
under different task orders, we provide the results of our method under two orders in Table 12. It can be seen that there is no
significant difference in our method under different orders, which indicates the stability of our method.

C.2. Complete Results on LLaMA-2-13B

In Table 3, we show the comparison results of our method and recent continual learning methods for LLMs with PEFT
(LoRA: SAPT-LoRA, SeqLoRA, O-LoRA; Prompt: Prog-Prompt, LFPTS5, EPI) on two popular CL benchmarks, using the
LLaMA-2-13B model. Our method uses a Top-1 strategy to select LoRA blocks. As illustrated in the table, our method
consistently outperforms other baselines without IL, regardless of the similarity method used. Notably, when using L2
distance, our method achieves the best average performance across these two benchmarks, which is the same as what we
found in the main text. We also show in Table 13 how our method performs under different task orders, and these results
again demonstrate the effectiveness of our method.

C.3. Complete Results on T5-Large

In Table 14, we show the comparison results of our method and recent continual learning methods for LLMs with PEFT
(LoRA: SAPT-LoRA, SeqLoRA, O-LoRA, TASL-LoRA; Prompt: Prog-Prompt, LFPT5, EPI, L2P) on two popular CL.
benchmarks, using the T5-Large model. Our method uses a Top-1 strategy to select LoORA blocks. As illustrated in the
table, our method achieves good performance on the SuperNI Benchmark over other baselines without IL and close to the
performance of the method with IL. On the Long Sequence Benchmark, although there is not much difference with other
methods without IL, the overall average performance is still the best without IL, which also validates the effectiveness of our
method in different frameworks.
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SuperNI Benchmark Long Sequence Benchmark

Methods APt  FRa, FWT{ BWT} | APt  FRal FwTt Bwrp | V&7
Replay X | 3537 1692  -135  -1579 | 7128  13.05 128  -12.18 | 5333
SAPT.LoORA X | 5150 091 1.88 057 | 8202 150 1.86 1.25 66.76
TASL-LoRA X | 53.01 - - 081 | 8433 - - 098 | 68.67
SeqLoRA v | 643 3339  -1358 3094 | 972 7861 08I 7337 | 8.08
L2P v | 1273 1187  -19.14 795 | 5798 2249 136  -16.63 | 35.36
ProgPrompt ¢ | 334 3557 329 3318 | 798 7155 263 6671 | 5.6
LFPTS v | 3437 1580  -046  -1447 | 6701 1389 248  -12.80 | 50.69
EPI v - ; - ; 7515 161 0.77 -1.42 -

O-LoRA v | 2589 2637  -0.14 2459 | 6924  7.00  -8.15 405 | 4757
SAPTLoRA v | 11.12 4283 070  -4044 | 10.18 7845 193 7322 | 10.65
TASL-LoRA ¢ | 2743 - - 1691 | 72.29 - - 204 | 49.86
Ours-Dot v | 4925 289 043 256 | 7050 9.6l 1.86 953 | 59.88
Ours-L2 v | 5188 048 0.05 026 | 7005 9.6l 1.87 953 | 60.97

Table 14: The test performance (%) on two continual learning benchmarks using the T5-Large model. X indicates methods
with IL, while ¢ signifies methods without IL. All evaluation metrics are reported after the training on the last task of the
benchmarks. In methods without IL, the best performances are highlighted in bold. The last column Avg. is the average of
the performance on the two benchmarks.

T SuperNI Benchmark Long Sequence Benchmark Avet
AP? FRa| FWT1 BWT? AP? FRa| FWT1 BWT? &
1.0 54.20 1.86 0.66 -1.26 79.77 4.08 -0.42 -3.84 66.99
0.6 53.99 1.30 -0.01 -0.76 81.67 2.36 -1.62 -2.21 67.83
0.2 54.75 0.58 0.43 -0.42 83.06 0.95 -1.74 -0.59 68.91

Table 15: The test performance (%) on two continual learning benchmarks with temperature 7" changes using the LLaMA-2-
7B model equipped L2 distance. All evaluation metrics are reported after the training on the last task of the benchmarks
with Order 1. The last column Avg. is the average of the performance on the two benchmarks.

SuperNI Benchmark Long Sequence Benchmark

T APt FRal FWT{  BWT} APt Fra, FwrTt Bwrt | Avel
1.0 | 5647 1.16 0.52 20.36 82.51 2.52 2.17 2.29 69.49
06 | 56.67 0.92 0.36 0.03 83.81 1.10 2.08 -0.98 70.24
02 | 5696 0.29 0.46 0.24 84.67 0.64 -1.74 0.43 70.82

Table 16: The test performance (%) on two continual learning benchmarks with temperature 7' changes using the LLaMA-2-
13B model equipped L2 distance. All evaluation metrics are reported after the training on the last task of the benchmarks
with Order 1. The last column Avg. is the average of the performance on the two benchmarks.

C.4. Hyperparameter

In the dynamic selection module, we use the softmax function that includes a inherent temperature hyperparameter 7.
Following previous studies (Zhao et al., 2024), we fix this coefficient to 1.0. We add additional experiments concerning the
impact of the temperature coefficient in Table 15 and Table 16. In fact, the temperature coefficient and the / have similar
usage, as they both adjust the scaling of weights. When the 7" methodes 0, it effectively corresponds to setting K to 1.
Therefore, it is not necessary to simultaneously adjust multiple parameters externally. We can only adjust one of them. In
addition, we provide experimental results for different LoRA ranks in Table 17.
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d SuperNI Benchmark Long Sequence Benchmark Avg.t
APT FRa| FWT1 BWT?t APt FRa| FWTY BWT?t &
2 54.03 1.23 -0.63 -0.85 79.84 4.46 -1.77 -4.01 66.94
4 54.20 1.86 0.66 -1.26 79.77 4.08 -0.42 -3.84 66.99
6 54.49 1.40 0.77 -1.06 79.75 4.36 -1.87 -4.00 67.12

Table 17: The test performance (%) on two continual learning benchmarks with LoRA rank d changes using the LLaMA-2-
7B model equipped L2 distance. All evaluation metrics are reported after the training on the last task of the benchmarks
with Order 1. The last column Avg. is the average of the performance on the two benchmarks.

Methods Memory] Training Time]

O-LoRA 2.097M (0.03%) 37:04
Ours 2.359M (0.03%) 10:47
SAPT 2.928M (0.04%) 13:52

Table 18: The report on memory usage (for LLaMA-7B, rank=4) and training time (on the last task in Long Sequence
benchmark) for the three methods.

C.5. Similarity Measurement

In the main text, we discussed two similarity measurement methods: Negative L2 euclidean distance and dot product
similarity. We also considered the results of using cosine similarity for similarity measurement in Table 19 and Table 20.
Actually, this also means that our proposed method does not rely on a specific similarity measure, which makes our method
more flexible with plug-in similarity measures.

C.6. Memory and time

In Table 18, we provide a comparison of memory and training time. While our method stores additional feature distributions
compared with O-LoRA, these distributions are represented as lightweight vectors. Even when stored across all layers, they
introduce only 0.262M additional parameters. As shown in Figure 3, retaining feature distributions for only a subset of
layers achieves strong CL performance while further reducing memory overhead.

SAPT and our method incur only a small increase in lightweight computations during training. However, the parameters
added by SAPT require gradient updates and replay data, resulting in slower training speed for SAPT. In contrast, O-
LoRA necessitates calculating the square difference between LoRA parameters during loss computation, which introduces
substantial computational overhead and leads to the slowest training speed.

C.7. Additional dynamic selection experiments

We provide the average performance of our method under different Top-k strategies for dynamic selection in Figure 4.
In order to provide details on other metrics, we provide detailed experimental results in Table 11. As the Top-K value
decreases, we observe noticeable improvements across various metrics, indicating that our method effectively identifies the
most relevant LoRA blocks. It is important to note that selecting the Top-1 does not imply that our method relies on only
a single LoRA block for prediction. This is because our method is implemented at each transformer layer, allowing for
different selections across layers. Therefore, even when using the Top-1 selection, our method fully leverages the knowledge
from different LoRA blocks.

C.8. Visualisation experiments

In Figure 1, we present visualizations of the LoRA block selection results, which are averaged across all layers. To offer a
more detailed view, we further provide the results for each individual layer in Figure 5, Figure 6, Figure 7 and Figure 8. We
can observe that in the shallow layers, there are no particularly prominent weights, indicating that the presentative feature
distributions in the earlier layers are relatively similar, and the model is likely capturing more superficial features. As the
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Methods SuperNI Benchmark Long Sequence Benchmark Avgt
APT FRal FWT{t BWT?T AP? FRal FWT{t BWT?T &
Ours-Cosine 54.29 0.98 0.34 -0.82 83.02 0.83 -1.78 -0.59 68.66
Ours-Dot 53.98 1.52 -0.06 -0.72 80.04 4.43 0.14 -4.16 67.01
Ours-L2 55.82 0.22 0.27 -0.17 83.13 0.42 -0.32 -0.35 69.48

Table 19: The test performance (%) on two continual learning benchmarks (Top-k=1) using the LLaMA-2-7B model. All
evaluation metrics are reported after the training on the last task of the benchmarks with Order 1. The last column Avg. is
the average of the performance on the two benchmarks.

SuperNI Benchmark Long Sequence Benchmark

Methods AP} FRal FWT} BWTI | APt FRa, Fwrt Bwrt | V&l
Ours-Cosine | 56.65  0.94  0.44 0.7 | 8450 043 171  -032 | 70.58
Ours-Dot 5555 256 073 156 | 8272 247 056 214 | 69.14
Ours-L2 5671 005  0.13 033 | 8459 036  -039  -032 | 70.65

Table 20: The test performance (%) on two continual learning benchmarks (Top-k=1) using the LLaMA-2-13B model. All
evaluation metrics are reported after the training on the last task of the benchmarks with Order 1. The last column Avg. is
the average of the performance on the two benchmarks.

layers deepen, there is a clear tendency in the weights, with the model capturing distinctive features based on characteristics,
whether they be in @ or V. Although the trends of @ and V' are the same, there are still differences between them. For
example, Q seems to have larger weights compared to V, but both are able to identify the most relevant LoRA blocks. These
visualization results further validate the effectiveness of our method.
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