
A Probabilistic Representation for Deep Learning:
Delving into The Information Bottleneck Principle

Anonymous Author(s)
Affiliation
Address
email

Abstract

The Information Bottleneck (IB) principle has recently attracted great attention to1

explaining Deep Neural Networks (DNNs), and the key is to accurately estimate the2

mutual information between a hidden layer and dataset. However, some unsettled3

limitations weaken the validity of the IB explanation for DNNs. To address these4

limitations and fully explain deep learning in an information theoretic fashion, we5

propose a probabilistic representation for deep learning that allows the framework6

to estimate the mutual information, more accurately than existing non-parametric7

models, and also quantify how the components of a hidden layer affect the mutual8

information. Leveraging the probabilistic representation, we take into account the9

back-propagation training and derive two novel Markov chains to characterize the10

information flow in DNNs. We show that different hidden layers achieve different11

IB trade-offs depending on the architecture and the position of the layers in DNNs,12

whereas a DNN satisfies the IB principle no matter the architecture of the DNN.13

1 Introduction14

Deep learning [21] has already achieved great success in numerous applications. Deep Neural15

Networks (DNNs), however, are still commonly viewed as ‘black boxes’ [32]. Considerable efforts16

have been devoted to explaining the internal mechanism of DNNs from various perspectives, such as17

mathematics [5, 14], statistics [16, 23, 28], computer vision [43, 25], etc. Recently, the Information18

Bottleneck (IB) principle has attracted attention in opening the ‘black boxes’ of DNNs [35, 38].19

Given a joint distribution P (X,Y), the IB principle posits a random variable T = f(X) obeying the20

Markov chain Y → X → T and optimizes T by the IB Lagrangian [37, 36]21

min
P (T |X)

I(X;T)− βI(Y ;T), (1)

where f(·) is an arbitrary function, I(·; ·) denotes mutual information, and the Lagrange multiplier22

β > 0 controls the IB trade-off between compressing the input X and preserving the information23

of the label Y . In the seminal work [35], Tishby et al. manifest the IB trade-off in every layer of24

DNNs = {x; t1; · · · ; tI ; ŷ} via studying I(X;Ti) and I(Y ;Ti), where Ti is the random variable of25

the ith hidden layer ti. Especially, the authors ascribe DNN generalization to the compression [34].26

In the context of deterministic DNNs, recent works reveal some limitations of the IB principle for27

explaining DNNs. Amjad et al. argue that the IB principle becomes an ill-posed optimization problem28

due to I(X;Ti) =∞ [1], and Kolchinsky et al. demonstrate that not every layer of DNNs satisfies a29

strict IB trade-off, i.e., different layers only differ in I(X;Ti) but I(Y ;Ti) keeps consistent in all30

layers [17]. In addition, Saxe et al. experimentally show that the compression does not occur in31

DNNs with non-saturating activation functions, e.g., the popular ReLU function [33], and Goldfeld32

et al. doubt the causality between the generalization of DNNs and the compression [11, 7]. These33

unsettled limitations greatly weakens the validity of the IB explanations for DNNs.34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

The key to examining the IB principle in DNNs is the accurate estimation of the mutual information.35

However, regarding DNNs as deterministic models hinders us from specifying the random variable36

Ti and the distribution P (Ti), thus it is difficult to accurately estimate I(X;Ti) and I(Y ;Ti). More37

specifically, in the absence of a clear definition of Ti, simply assuming the activations of ti as the i.i.d.38

samples of Ti induces Ti being a continuous random variable and I(X;Ti) = ∞ in deterministic39

DNNs (see Appendix C in [33]). The complicated architecture of DNNs makes it challenging to40

specify P (Ti). Therefore, most previous works have to indirectly estimate P (Ti) via non-parametric41

models [40], such as the empirical distribution [35], Kernel Density Estimation (KDE) [33], and42

Gaussian convolution [11]. However, we experimentally confirm that classical non-parametric models43

derives poor mutual information estimation [29, 26] in DNNs, and one reason is because activations44

do not satisfy the i.i.d. prerequisite of non-parametric models (see Appendix G). In summary, the45

limitations mainly stem from the lack of an explicit probabilistic representation for deep learning.46

The IB principle only formulates the information flow in DNNs = {x, t1, · · · , tI , ŷ} after training,47

and the corresponding Markov chain (see Fig. 1 in [35])48

Y → X → T1 · · · → TI → Ŷ (2)

indicates that the information of Y transfers to Ti in the forward direction and Ti receives the49

information of Y only via X . However, training DNNs by the back-propagation [30] implies that the50

information of Y transfers to Ti in the backward direction during training and retains information51

in Ti after training. Notably, Zhang et al. show that a DNN can fit labels well even using Gaussian52

noise as input to train the DNN [44], which implies that Ti can directly receive the information of Y .53

Hence, the IB principle does not comprehensively characterize the information flow in DNNs.54

To address the above limitations and comprehensively explain DNNs in an information theoretic55

fashion, we introduce the probability space (ΩTi
,F , PTi

) [6] for the ith hidden layer ti in DNNs.56

Compared to previous works, the probability space (ΩTi
,F , PTi

) enables us to: (i) accurately estimate57

I(X;Ti) and I(Y ;Ti) via specifying Ti and P (Ti), and (ii) quantify the effect of the architecture of58

ti and the back-propagation on I(X;Ti) and I(Y ;Ti) via explicitly modeling all the ingredients of ti,59

such as the activation function and the weights in a probabilistic way. To the best of our knowledge,60

this is the first time the probability space of a hidden layer in DNNs is as defined.61

Leveraging (ΩTi
,F , PTi

), we derive information theoretic explanations for DNNs as follows:62

• Two Markov chains1 characterize the information flow in DNNs = {x, t1, · · · , tI , ŷ}63

X̄ →T1 → · · · → TI → Ŷ

T1 ← · · · ← TI ← Ŷ ← Y.
(3)

• Different hidden layers manifest different IB trade-offs depending on the architecture and64

the position of hidden layers in DNNs.65

• A DNN satisfies the IB principle no matter the architecture of the DNN.66

Preliminaries. P (X,Y) = P (X)P (Y |X) is an unknown joint distribution between X and Y . A67

dataset D = {(xj , yj)|xj ∈ RM , yj ∈ Z}Jj=1 consists of J i.i.d. samples generated from P (X,Y)68

with finite L labels, i.e., yj ∈ {1, · · · , L}. In the context of supervised learning, we focus on69

feedfworad fully connected DNNs = {x, t1, · · · , tI , ŷ}, i.e., Multi-Layer Perceptions (MLPs) [8]70

for the image classification task. Without loss of generality, we use the MLP = {x, t1, t2, ŷ} with71

the cross-entropy loss `CE for most theoretical derivations. In addition, H(·) denotes entropy.72

In the MLP, t1 and t2 have N and K neurons, respectively, and t1 = {t1n = σ1[〈ω(1)
n ,x〉]}Nn=1,73

where 〈ω(1)
n ,x〉 =

∑M
m=1 ω

(1)
mn · xm + b1n is the nth dot-product given the weight ω(1)

mn and the bias74

b1n, and σ1(·) denotes an activation function, e.g., ReLU. Similarly, t2 = {t2k = σ2[〈ω(2)
k , t1〉]}Kk=1,75

where 〈ω(2)
k , t1〉 =

∑N
n=1 ω

(2)
nk · t1n + b2k. The output layer ŷ is softmax with L nodes76

ŷ = {ŷl =
1

ZY
exp[〈ω(3)

l , t2〉] =
1

ZY
exp[gl(t2(t1(x)))]}Ll=1, (4)

where 〈ω(3)
l , t2〉 =

∑K
k=1 ω

(3)
kl · t2k + byl and ZY =

∑L
l=1 exp[〈ω(3)

l , t2〉] is the partition function.77

1In which the virtual random variable X̄ has all the information of X except Y , namely H(X̄) = H(X|Y).

2

1

1

1

1

1 1

0 0

0

4×4	Input

2×2	
Feature map 1

2/3
0 0

0

0

3×3	Kernel 2

0

0

4×4	Kernel 1
1×1	

Activation 1

A convolution layer

A fully connected layer 𝒕

4×4	Kernel 2

1×1	
Activation 2

2×2	
Feature map 2

1
0 0

0

0

3×3	Kernel 1
0

0

𝑃)|+(𝝎𝟏|𝒛) 𝑃)|+(𝝎𝟐|𝒛)
𝝎𝟏 𝝎𝟐

𝒛

𝑡3 𝑡4

1/3

1/3

1/3 1/3

1/3

1/3

Figure 1: Given a 4×4 input z, a fully connected layer t is equivalent to a convolution layer with 4×4
convolution kernels. The definition of convolution (Chapter 9.1 in [12]) implies that the 4×4 weights
ω1 and ω2 define two global features, and the two activations t1, t2 indicate the cross-correlation
between ω1,ω2 and z, respectively. PT |Z(ω1|z) and PT |Z(ω2|z) measure the probability of ω1

and ω2 being recognized as the feature with the largest cross-correlation to z, respectively.

2 A probabilistic representation for deep learning78

To accurately estimate I(X;Ti) and I(Y ;Ti), in this section, we specify the probability space [6] for79

a fully connected layer and derive the probabilistic explanations of the entire MLP.80

It is known that a convolution kernel (namely the weights of convolution) defines a local feature,81

and a convolution operation derives a feature map to measure the cross-correlation between the82

local feature and input in a receptive field (Chapter 9.1 in [12]). Notably, a fully connected layer83

is equivalent to a convolution layer with the kernel size having the same dimension as input. Thus84

the weights of a neuron can be viewed as a global feature, and a fully connected layer with multiple85

neurons derives activations to measure the cross-correlation between the multiple global features and86

the input. The cross-correlation explanation for a fully connected layer is visualized in Figure 1.87

Assuming that a fully connected layer t consists ofN neurons {tn = σ[〈ωn, z〉]}Nn=1, where z ∈ RM88

is the input of t, 〈ωn, z〉 =
∑M

m=1 ωmn · zm + bn is the dot-product between z and ωn, and σ(·) is89

an activation function. Based on the cross-correlation explanation, the behavior of t is to measure90

the cross-correlations between z and the N possible features defined by the the weights {ωn}Nn=1.91

In the context of pattern recognition [39], we define a virtual random process or ‘experiment’ as t92

recognizing one of the patterns/features with the largest cross-correlation to z from the N possible93

features. The experiment characterizes the behavior of t (i.e., before recognizing the features with94

the largest cross-correlation, t must measure the cross-correlations between z and all the N possible95

features) while meets the requirement of the ‘experiment’ definition (i.e., only one outcome will96

occur on each trial of the experiment [6]). The probability space (ΩT ,F , PT) is defined as follows:97

Definition 1. (ΩT ,F , PT) consists of three components: the sample space ΩT has N possible98

outcomes (features) {ωn = {ωmn}Mm=1}Nn=1 defined by the weights2 of the N neurons; the event99

space F is the σ-algebra; and the probability measure PT is a Gibbs distribution [22] to quantify the100

probability of ωn being recognized as the feature with the largest cross-correlation to z.101

Taking into account the randomness of z, the conditional distribution PT |Z is formulated as102

PT |Z(ωn|z) =
1

ZT
exp(tn) =

1

ZT
exp[σ(〈ωn, z〉)], (5)

where Z is the random variable of z and ZT =
∑N

n=1 exp(tn) is the partition function.103

(ΩT ,F , PT) clearly explains all the ingredients of t in a probabilistic fashion. The nth neuron104

defines a global feature by the weights wn and the activation tn = σ(〈ωn, z〉) measures the cross-105

correlation between wn and z. The Gibbs distribution PT |Z indicates that if wn has the higher106

activation, i.e., the larger cross-correlation to z, it has the larger probability being recognized as107

the feature with largest cross-correlation to z. For instance, if z ∈ R16 and t includes N = 2108

neurons, then ΩT = {ω1,ω2} defines two possible outcomes (features), where ωn = {ωmn}16m=1.109

F = {∅, {ω1}, {ω2}, {ω1,ω2}} means that neither, one, or both of the features are recognized110

by t given z, respectively. PT |Z(ω1|z) and PT |Z(ω2|z) are the probability of ω1 and ω2 being111

recognized as the feature with the largest cross-correlation to z, respectively.112

2We do not take into account the scalar value bn for defining ΩT , as it not affects the feature defined by ωn.

3

(ΩT ,F , PT) explains the representation ability of deep learning. Compared to Restricted Boltzmann113

Machines (RBMs) [31] simply using binary units to indicate features being recognized or not given114

input, the Gibbs distribution3 PT |Z(ωn|z) measures the probability of ωn being recognized with115

the largest cross-correlation to z, i.e., it characterizes the relation between features and input more116

accurately. Moreover, Equation 5 shows that tn = σ(〈ωn, z〉) is the negative energy function [22] of117

the Gibbs distribution, thus PT |Z(ωn|z) can be derived as long as σ(〈ωn, z〉) are known because118

the energy function is the sufficient statistics [2] of the Gibbs distribution. That enables subsequent119

hidden layers to generate high-level features of input via directly processing the activations {tn}Nn=1,120

thus deep learning can form a hierarchical structure to represent much complex features.121

(ΩT ,F , PT) answers a fundamental question: which component of a hidden layer contains the122

information of the layer? Since ωn defines ΩT , the weights contain all the information of a layer. In123

particular, since the activation tn = σ(〈ωn, z〉) is a function of ωn, the data processing inequality124

[4] indicates that the information of tn is no more than the information of ωn. Simulations in Section125

4.2 demonstrate that if activations do not correctly characterize the cross-correlation between weights126

and input, activations contain less information than weights do.127

Based on (ΩT ,F , PT), we define the random variable T as follows:128

Definition 2. Given the fully connected layer t, we define the random variable T : ΩT → ET as129

T (ωn) , n, (6)

where the measurable space ET = {1, · · · , N}.130

Since ΩT is composed of finite N possible outcomes, T is a discrete random variable. Notably, the131

one-to-one correspondence between ωn and n indicates132

PT |Z(ωn|z) = PT |Z(n|z). (7)

If not considering the back-propagation training, the weights (namely ΩTi) of each layer are fixed.133

Thus Ti+1 entirely depends on Ti and the MLP = {x; t1; t2; ŷ} forms a Markov chain134

X → T1 → T2 → Ŷ . (8)

Based on the corresponding joint distribution P (Ŷ , T2, T1|X) = P (T1|X)P (T2|T1)P (Ŷ |T2) and135

Definition 2, we derive a probabilistic explanation for the entire MLP, which is summarized in136

Theorem 1. The detailed derivation is presented in Appendix B.137

Theorem 1. The MLP = {x; t1; t2; ŷ} formulates a conditional Gibbs distribution138

PŶ |X(l|x) =

K∑
k=1

N∑
n=1

P (Ŷ = l, T2 = k, T1 = n|X = x) =
1

ZMLP(x)
exp[gl(t2(t1(x)))], (9)

where ZMLP(x) =
∑L

l=1

∑K
k=1

∑N
n=1 PŶ ,T2,T1|X(l, k, n|x) is the partition function.139

Since PŶ |X(l|x) exactly equals the output ŷl of the MLP, namely Equation (4), we conclude that140

the entire architecture of the MLP forms a family of Gibbs distribution PŶ |X(l|x). In general, the141

back-propagation updates a weight ω based on the gradient of `CE with respect to ω,142

ω(s+ 1) = ω(s)− α · ∂`CE

∂ω(s)
= ω(s)− α · ∂KL[P (Y |X)||P (Ŷ |X)]

∂ω(s)
, (10)

where s is the index of training iteration, α is the training rate, and KL[·||·] is the KL-divergence.143

Figure 2 summarizes the probabilistic explanation for deep learning based on the MLP. In general,144

a single learning iteration, an epoch, consists of two phases: training and inference (after training).145

During inference, the MLP bridges X and Ŷ via multiple intermediate features ΩT1
, ΩT2

, and ΩŶ146

defined by weights, and formulates the statistical relation between Ŷ and X as a family of conditional147

Gibbs distribution P (Ŷ |X). During training, the back-propagation updates weights to learn optimal148

intermediate features for searching an optimal P (Ŷ |X) to accurately approximate P (Y |X).149

3Recent works about Gibbs explanations for a hidden layer are discussed in Appendix A.

4

𝝎𝟏
(𝟏)

Ω&'

𝑃(𝑌*|𝑇-)

⋮ ⋮
…

…

…

…

⋮⋮
…

…

⋮⋮
𝝎𝟐
(𝟏)

𝝎𝑵
(𝟏)𝝎𝟑

(𝟏)

𝝎𝟏
(𝟐) 𝝎𝟐

(𝟐)

𝝎𝟑
(𝟐) 𝝎𝑲

(𝟐)

𝝎𝟏
(𝟑) 𝝎𝟐

(𝟑)

𝝎𝟑
(𝟑)

𝝎𝑳
(𝟑)

𝑃(𝑇-|𝑇5)𝑃(𝑇5|𝑋)

Ω&7 Ω8*

ℓ:;
Inference

Training

𝑋

𝑌

Figure 2: The visualization of the probabilistic explanation for deep learning based on the MLP.

3 The information theoretic explanations for deep learning150

To address the limitations of existing IB explanations, this section proposes some novel information151

theoretic explanations for DNNs based on the proposed probabilistic representation.152

Proposition 1. The mutual information between a fully connected layer and dataset is finite.153

I(X;T) <∞. (11)

Proof: Definition 2 shows ET = {1, · · ·N}. Thus T is a discrete random variable and H(T) <∞,154

thereby I(X;T) ≤ H(T) <∞.155

Proposition 1 circumvents the infinite mutual information problem. In the absence of a clear definition156

T : ΩT → ET , most previous works [33, 3, 1] simply viewing the activation tn as the sample of T ,157

namely tn ∈ ET = R, implies T being continuous and gives rise to the infinite mutual information158

problem in deterministic DNNs. However, (ΩT ,F , PT) indicates that tn actually is a variable159

measuring the cross-correlation between wn and z rather than the sample of T , namely tn /∈ ET .160

Theorem 2. The information of Y flows into the MLP in the backward direction during training161

T1 ← T2 ← Ŷ ← Y. (12)

Proof: First, since ΩT is defined by ω in (ΩT ,F , PT) and Equation (10) shows that ω(s + 1) is162

determined by all the previous gradients { ∂`CE
∂ω(s)}

S
s=1, and ω(0) is randomly initialized and α is a163

constant, we can derive that ΩT is determined by ∂`CE
∂ω . Second, based on the back-propagation, the164

relation between gradients in two adjacent layers in the MLP = {x; t1; t2; ŷ} is formulated as165

∂`?CE

∂ω
(3)
kl

= [PŶ |X(l|x)−PY |X(l|x)] · t2k,

∂`�CE

∂ω
(2)
nk

=

L∑
l=1

∂`?CE

∂ω
(3)
kl

· ω(3)
kl ·

σ′2(〈ω(2)
k , t1〉)
t2k

· t1n,
∂`�CE

∂ω
(1)
mn

=

K∑
k=1

∂`�CE

∂ω
(2)
nk

· ω(2)
nk ·

σ′1(〈ω(1)
n ,x〉)
t1n

· xm.

(13)

Equation 13 shows that ∂`CE
∂ω(3) is a function of PY |X(l|x) and ∂`CE

∂ω(i) is a function of ∂`CE
∂ω(i+1) , where166

ω(3) denotes the weight of ŷ. The two points above enable us to derive that ΩTi is a function of ΩTi+1167

and ΩŶ is a function of P (Y |X). Based on Definition 2, we can further derive that Ti is a function168

of Ti+1 and Ŷ is a function of Y , i.e., T1 ← T2 ← Ŷ ← Y . (See the detailed proof in Appendix C).169

Theorem 2 is consistent with the prevailing explanation for deep learning. LeCunn et al. show that170

deep learning exploits the hierarchical property of signals [21], i.e., the layers farther from output171

learn lower-level features, such as edges, whereas the layers closer to output assemble lower-level172

features into the higher-level features corresponding to labels (see Figure 2 in [43]). Notably, since173

lower-level features commonly exist in signals with different labels (e.g., lower-level features, such174

as the edges of the vehicle frame and the circular contour of wheels, exist in both the car and the175

truck classes in the CIFAR-10 dataset [18] in Figure 2), lower-level features do not contain much176

information of labels. Therefore, the layers farther from output do not have much information of177

labels, which is consistent with the Markov chain T1 ← T2 ← Ŷ ← Y .178

5

Since all the information of Y stems from X (i.e., H(Y) = I(X;Y) proven in Appendix D),179

Theorem 2 implies that partial information of X flows into the MLP in the backward direction during180

training. Equation (2) shows the information of X flowing into the MLP in the forward direction181

during inference. Overall, the information of X flows in the backward and forward directions during182

training and inference, respectively. As a result, the Markov chain, Equation (2), proposed by recent183

works could not fully characterize the information flow of X in the MLP in each epoch. In other184

words, I(X;Ti) is not necessarily greater than I(X;Ti+1) in the MLP in each epoch.185

Equation (2) shows that Ti receives the information of Y via X during inference. Theorem 2 shows186

that Ti also directly receives information of Y during training, because the back-propagation updates187

weights (i.e., ΩTi
) based on the label Y . Thus Equation (2) cannot fully characterize the information188

flow of Y in the MLP in each epoch, when we take into account the back-propagation training.189

To fully characterize the information flow in the MLP in each epoch, we introduce Corollary 1.190

Corollary 1. The information flow in the MLP can be characterized by two Markov chains as191

X̄ →T1 → T2 → Ŷ

T1 ← T2 ← Ŷ ← Y.
(14)

The virtual random variable X̄ contains all the information of X except Y , i.e., H(X̄) = H(X|Y).192

Proof of the first Markov chain: Since X̄ does not have any information of Y , it can only flow into193

the MLP in the forward direction during inference. Again since X̄ does not have any information of194

Y , the information flow of Y during training will not affect the information flow of X̄ . Therefore,195

X̄ → T1 → T2 → Ŷ characterizes the information flow of X̄ in both training and inference phases.196

Proof of the second Markov chain: Since the weights are fixed after training, the sample space and197

the distribution of hidden layers are fixed after training. Therefore, the information of Y transferred198

into hidden layers during training will retain there after training (i.e., during inference). In addition,199

Definition 1 indicates that a fully connected layer t = {tn = σ(〈ωn, z〉)}Nn=1 measures the cross-200

correlation between ωn and z during inference, thus {ωn}Nn=1 can be viewed as a representation of201

Z. As a result, even though Z has all the information of Y , the information of Y that t can learn202

from Z is determined by how much information of Y the representation {ωn}Nn=1 has. Overall, the203

information flow of Y during inference will be the same as that during training. Based on Theorem 2,204

we conclude that T1 ← T2 ← Ŷ ← Y characterizes the information flow of Y in the MLP in both205

training and inference phases. Detailed derivations and explanations are presented in Appendix E.206

To quantify how much information of X and Y is learned by the MLP, we introduce Corollary 2.207

Corollary 2. The mutual information between dataset and the entire MLP can be expressed as208

I(X;TMLP) = I(X̄;T1) + I(Y ; Ŷ)

I(Y ;TMLP) = I(Y ; Ŷ)
(15)

where TMLP denotes a random variable corresponding to the entire architecture of the MLP.209

Proof: Since H(Y) = I(X;Y) (Appendix D), H(X) = H(X̄) + I(X;Y) = H(X̄) + H(Y).210

Hence, Corollary 2 can be derived by Corollary 1 and the chain rule. The proof is in Appendix F.211

4 Simulations212

In this section, we propose a mutual information estimator based on (ΩT ,F , PT) and demonstrate the213

probabilistic representation and information theoretic explanations for deep learning on a synthetic214

dataset with known entropy. Additional experiments on benchmark datasets are in Appendix H.215

4.1 Setup216

Mutual information estimator. Based on the definition of mutual information, we have217

I(X;Ti) = H(Ti)−H(Ti|X). (16)

Previous works simply estimate I(X;Ti) = H(Ti), because Ti is assumed to be entirely dependent218

on X in the Markov chain, Equation (2), thereby H(Ti|X) = 0. However, Corollary 1 shows that Ti219

depends on both X and Y if taking into account the training phase, thereby H(Ti|X) 6= 0.220

6

(A) (B)

Image0 (label [1,0])

(C)

Image1 (label [0,1])

(D)

Image2 (label [1,0])

(E)

Image3 (label [0,1])

1.5
1.0
0.5

0.0
0.5
1.0
1.5

1.5
1.0
0.5

0.0
0.5
1.0
1.5

1.5
1.0
0.5

0.0
0.5
1.0
1.5

1.5
1.0
0.5

0.0
0.5
1.0
1.5

1.5
1.0
0.5

0.0
0.5
1.0
1.5

Figure 3: (A) the deterministic image x̂. Image0 is generated by addingN (µ, σ2) without rotation, Image1 is
generated by rotating x̂ along the secondary diagonal direction and addingN (µ, σ2), Image2 and Image are
generated by rotating x̂ along the vertical and horizontal directions, respectively, and addingN (µ, σ2).

Table 1: The number of neurons(nodes) and the activation function in the layers of the MLPs

x t1 t2 ŷ σ(·)
MLP1 1024 (32× 32) 8 6 2 ReLU(z) = max(0, z)
MLP2 1024 (32× 32) 8 6 2 Tanh(z) = (ez − e−z)/(ez + e−z)
MLP3 1024 (32× 32) 2 6 2 ReLU

To accurately estimate I(X;Ti), we need to specify P (Ti|X) and P (Ti). Based on (ΩTi ,F , PTi),221

we formulate PTi|X(n|xj) of the three fully connected layers in the MLP as222

PT1|X(n|xj) = 1
ZF1

exp[σ1(〈ω(1)
n ,xj〉)], PT2|X(k|xj) = 1

ZF2
exp[σ2(〈ω(2)

k , t1(xj)〉)],

PŶ |X(l|xj) = 1
ZFY

exp[〈ω(3)
l , t2(t1(xj))〉].

(17)

To derive the marginal distribution P (Ti), we sum the joint distribution P (Ti, X) over x ∈ X ,223

P (Ti = n) =
∑

x∈X PX(x)PTi|X(n|x) ≈
∑

xj∈D PX(xj)PTi|X(n|xj) = 1
J

∑
xj∈D PTi|X(n|xj),

(18)

where PX(xj) is estimated by the empirical distribution 1/J givenD. Finally, we can derive I(X;Ti)224

by Equation 16, 17, and 18. Similarly, based on the definition of mutual information, we have225

I(Y ;Ti) = H(Ti)−H(Ti|Y). (19)

To estimate H(Ti|Y), we reformulate P (Ti|Y) as226

PTi|Y (n|l) =
∑

x∈X PTi|X(n|x)PX|Y (x|l) ≈ 1
N(l)

∑
xj∈D,yj=l PTi|X(n|xj), (20)

where PX|Y (xj |l) is estimated by the empirical distribution 1/N(l) and N(l) denotes the number of227

samples with the label l in D. Finally, we can derive I(Y ;Ti) by Equation 18, 19, and 20.228

Synthetic dataset. The dataset consists of 512 gray-scale 32×32 images, which are evenly generated229

by rotating a deterministic image x̂ in four different orientations and adding Gaussian noise with230

expectation µ = E(x̂) and variance σ2 = 1, namely x = r(x̂) + N (µ, σ2), where r(·) denotes231

the rotation method shown in Figure 3. The reason for adding Gaussian noise is to avoid DNNs232

directly memorizing the deterministic image. In addition, the binary labels [1,0] and [0,1] evenly233

divide the synthetic dataset into two classes. As a result, the synthetic dataset has (approximately)234

2 bits information and the labels have 1 bit information. Compared to popular benchmark dataset235

with unknown features and entropy, e.g., MNIST [19] and Fashion-MNIST [41], the features and the236

entropy of the synthetic dataset are clear and known, which enables us to examine the probabilistic237

representation and the mutual information estimator.238

Neural Networks. We train three MLPs, namely MLP1, MLP2 and MLP3, on the synthetic dataset239

by a variant of Stochastic Gradient Descent (SGD) method, namely Adam [15], over 1000 epochs240

with the learning rate α = 0.03. Table 1 summarizes the architecture of the three MLPs.241

4.2 Validating the probability space and the mutual information estimator242

We demonstrate the sample space ΩT by visualizing the weights4 of the eight neurons in t1, i.e.,243

ω
(1)
n = {ω(1)

mn}1024m=1, in 5 different epochs (i.e., 0,1,4,128,1000) in Figure 4 (Left). As training244

continues, we observe that ω(1)
n quickly learns all the spatial features of the synthetic dataset. For245

instance, ω(1)
2 has low magnitude at top-left positions and high magnitude at bottom-right positions,246

which correctly characterizes the spatial feature of Image0. Similarly, ω(1)
3 , ω(1)

4 , and ω
(1)
5 correctly247

characterize the spatial feature of Image1, Image2, and Image3 in Figure 3, respectively.248

4We only show the learned weights in MLP1 because we observe that the learned weights in MLP1 and
MLP2 are very similar, though they use different activation functions.

7

0

1

4

 1
28

(1)
1

10
00

(1)
2

(1)
3

(1)
4

(1)
5

(1)
6

(1)
7

(1)
8

0.3

0.2

0.1

0.0

0.1

0.2

0.3

100 101 102 103
0.0

0.5

1.0

1.5

2.0
I(X, T1)

H(X)
MLP1
MLP2
MLP3

Figure 4: (Left) The eight features {ω(1)
n }8n=1 learned by the weights of the eight neurons in 5 different epochs

(i.e., 0,1,4,128,1000), where ω(1)
n = {ω(1)

mn}1024m=1 are reshaped into 32× 32 to show the spatial structure. (Right)
The variation of I(X;T1) in the MLP1, MLP2, and MLP3 during 1000 epochs.

Table 2: The Gibbs probability PF1|X(ω
(1)
n |Image0) in MLP1 and MLP2 in the 1000 epoch

ω
(1)
1 ω

(1)
2 ω

(1)
3 ω

(1)
4 ω

(1)
5 ω

(1)
6 ω

(1)
7 ω

(1)
8

〈ω(1)
n ,x〉 -63.6 208.8 -181.6 45.1 -55.6 157.5 -210.0 -30.1

fReLU
1n (x) 0.0 208.8 0.0 45.1 0.0 157.5 0.0 0.0

exp[fReLU
1n (x)] 1.0 4.79e+90 1.0 3.86e+19 1.0 2.51e+68 1.0 1.0
PReLU
T1|X 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

fTanh
1n (x) -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 -1.0

exp[fTanh
1n (x)] 0.36 2.71 0.36 2.71 0.36 2.71 0.36 0.36

P Tanh
T1|X 0.037 0.272 0.037 0.272 0.037 0.272 0.037 0.037

fTanh
1n (x) = σTanh(〈ω(1)

n ,x〉) and fReLU
1n (x) = σReLU(〈ω(1)

n ,x〉) are the activations given the same 〈ω(1)
n ,x〉.

We demonstrate that P (T1|X) correctly measures the probability of {ω(1)
n }8n=1 being recognized the249

feature with the largest cross-correlation to x in Table 2. For instance, ω(1)
2 correctly characterizes250

the feature of Image0 and has the largest cross-correlation 〈ω(1)
2 ,x〉 = 190.8, thus it has the largest251

probability PReLU
T1|X (ω

(1)
2 |Image0) = 1.0 being recognized as the feature with largest cross-correlation252

to Image0. In contrast, since ω
(1)
7 incorrectly characterizes the feature of Image0 and has the lowest253

cross-correlation 〈ω(1)
7 ,x〉 = −210.0, so it has the lowest probability PReLU

T1|X (ω
(1)
7 |Image0) = 0.0254

being recognized as the feature with largest cross-correlation to Image0.255

We observe that an activation function (abbr. ACT) plays an important role in the distribution.256

Specifically, ReLU, a non-saturating (unbounded) ACT [10], preserves the positive cross-correlations257

while resets all the negative ones as zero. PReLU
T1|X (ω

(1)
2 |Image0) = 1.0 shows that ReLU derives the258

correct probability of ω(1)
2 being recognized as the feature with largest cross-correlation. In contrast,259

though ω
(1)
2 has stronger cross-correlation to Image0 than ω

(1)
4 , i.e., 〈ω(1)

2 ,x〉 > 〈ω(1)
4 ,x〉, Tanh, a260

saturating (bounded) ACT, derives fTanh
12 (x) = fTanh

14 (x) = 1.0, and makes ω(1)
4 to incorrectly have261

the same probability 0.272 to ω
(1)
2 being recognized as the feature with the largest cross-correlation262

to Image0, i.e., Tanh hinders t1 from correctly recognizing the features of input. The simulations for263

validating the probability space based on other synthetic images are presented in Appendix G.264

To validate the mutual information estimator, we follow recent works [35, 33] to train the three265

MLPs with 50 different random initialization and study the average mutual information. Figure 4266

(Right) shows that I(X;T1) quickly increases to 1.81 and keeps stable in the MLP1, i.e., t1 learns267

most information of the dataset as H(X) = 2.0. Notably, the result is consistent with the variation268

of the weights in Figure 4 (Left), which shows that the weights correctly characterize the features269

of the dataset and keeps stable after the fourth epoch. As a comparison, we observe that I(X;T1)270

keeps stable at 0.44 in the MLP2, which confirms the statement that Tanh hinders t1 from correctly271

recognizing the features of input. In addition, Figure 4 (Right) shows that I(X;T1) ≈ 0.79 in MLP3272

is smaller than I(X;T1) ≈ 1.81 in MLP1, which is consistent with Definition 1, i.e., a layer with273

fewer neurons would represent fewer possible features, thus it contains less information.274

In summary, we demonstrate the probability space (ΩT ,F , PT) and show that if an ACT cannot275

preserve the cross-correlation between weights(features) and input, it would distort the distribution276

of a layer, thereby affecting the mutual information between the layer and data/labels. In addition,277

we show that the proposed mutual information estimator outperforms the existing non-parametric278

models, e.g., empirical distribution [35] and KDE [33], based on the synthetic dataset. Especially,279

activations do not satisfy the i.i.d. prerequisite of non-parametric models is an important reason for280

non-parametric models deriving inaccurate mutual information in DNNs. Due to limited space, the281

experimental comparison and study of non-parametric models are presented in Appendix G.282

8

100 101 102 103
0.0

0.5

1.0

1.5

2.0
MLP1(8-6-2 ReLU)

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103
0.0

0.5

1.0

1.5

2.0
MLP2(8-6-2 Tanh)

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103
0.0

0.5

1.0

1.5

2.0
MLP3(2-6-2 ReLU)

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103
0.00

0.25

0.50

0.75

1.00
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

0.0

0.1

0.2 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

0.0

0.2

0.4 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103
0.00

0.25

0.50

0.75

1.00

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103
0.0

0.5

1.0

1.5

2.0

I(X; TMLP)
I(Y; TMLP)

100 101 102 103
0.0

0.5

1.0

1.5

2.0

I(X; TMLP)
I(Y; TMLP)

100 101 102 103
0.0

0.5

1.0

1.5

2.0

I(X; TMLP)
I(Y; TMLP)

Figure 5: All the x-axis index training epochs. In each column, the first three figures show I(X;Ti), I(X̄;Ti),
and I(Y ;Ti) respectively. The forth figure shows I(X;TMLP) and I(Y ;TMLP) in a MLP. The pink line denotes
H(Y) = 1.0 and the orange line denotes H(X) = 2.0.

4.3 Validating the information theoretic explanations for DNNs283

In Figure 5, we observe I(X;Ti) ≤ I(X; Ŷ) in MLP2 and MLP3, which confirms that the Markov284

chain proposed by previous works, Equation (2), cannot fully explain the information flow in MLPs,285

if taking into account the back-propagation training. As a comparison, the second and third row286

show I(X̄;T1) ≥ I(X̄;T2) ≥ I(X̄; Ŷ) and I(Y ;T1) ≤ I(Y ;T2) ≥ I(Y ; Ŷ) in all the three MLPs,287

which validates that Corollary 1, i.e., Equation (14) characterizes the information flow in MLPs.288

Figure 5 demonstrates that different hidden layers achieve different IB trade-offs depending on289

the architecture and the position of the layers in MLPs. In terms of architecture, I(Y ;T1) > 0.8290

and I(X̄;T1) > 0.75 in MLP1 indicate that t1, with ReLU, achieves a good prediction without291

much compression, whereas I(Y ;T1) < 0.5 and I(X̄;T1) < 0.1 in MLP2 show that t1, with Tanh,292

achieves a different IB trade-off. In addition, I(Y ;T1) ≈ 0.45 and I(X̄;T1) ≈ 0.25 in MLP3 show293

the effect of neuron numbers on the IB trade-off. In terms of position, I(Y ; Ŷ) = 1 and I(X̄; Ŷ) = 0294

in MLP1 means that ŷ has a different IB trade-off to t1 in MLP1.295

We demonstrate that a MLP satisfies the IB principle no matter what the architecture of the MLP296

is. Figure 5 visualizes I(X;TMLP) and I(Y ;TMLP) based on Corollary 2. It shows that all of three297

MLPs satisfy the IB principle, namely I(X;TMLP) < H(X) = 2 and I(Y ;TMLP) = H(Y) = 1,298

though they have different architectures. Importantly, in contrast to previous work [33] claiming that299

the compression not exists in DNNs with non-saturating ACT, such as ReLU, Figure 5 clearly shows300

that the compression exists in all the MLPs, no matter the activation function of MLPs.301

We further demonstrate the information theoretic explanations for DNNs on the benchmark MNIST302

and Fashion-MNIST datasets. The experiments are presented in Appendix H.303

5 Conclusion and future work304

In this work, we (1) specify the probability space for a hidden layer for (2) accurately estimating the305

mutual information and (3) clearly explaining how the components of the layer affect the mutual306

information. We take into account the back-propagation training and derive two novel Markov chains307

to characterize the information flow in DNNs. Furthermore, we demonstrate that a DNN satisfies the308

IB principle no matter the architecture of the DNN. In contrast, different hidden layers show different309

IB trade-offs depending on the architecture and the position of the layers in DNNs. A potential310

direction is to study the generalization of DNNs based on the probabilistic representation.311

9

References312

[1] Rana Ali Amjad and Bernhard Claus Geiger. Learning representations for neural network-based classi-313

fication using the information bottleneck principle. IEEE transactions on pattern analysis and machine314

intelligence, 2019.315

[2] George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.316

[3] Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. Adaptive estimators show information compres-317

sion in deep neural networks. In International Conference on Learning Representations, 2019.318

[4] Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley-Interscience, Hoboken, New319

Jersy, 2006.320

[5] Balázs Csanád Csáji et al. Approximation with artificial neural networks. Faculty of Sciences, Etvs Lornd321

University, Hungary, 24(48):7, 2001.322

[6] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.323

[7] Marylou Gabrié, Andre Manoel, Clément Luneau, Nicolas Macris, Florent Krzakala, Lenka Zdeborová,324

et al. Entropy and mutual information in models of deep neural networks. In Advances in Neural325

Information Processing Systems, pages 1821–1831, 2018.326

[8] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer perceptron)—a review of327

applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627–2636, 1998.328

[9] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.329

IEEE Transactions. on Pattern Analysis and Machine Intelligence, pages 721–741, June 1984.330

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural331

networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,332

pages 249–256, 2010.333

[11] Ziv Goldfeld, Ewout Van Den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury,334

and Yury Polyanskiy. Estimating information flow in deep neural networks. In Proceedings of the 36th335

International Conference on Machine Learning, volume 97, pages 2299–2308, 2019.336

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT337

press Cambridge, 2016.338

[13] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural Computa-339

tion, 14:1771–1800, 2002.340

[14] Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference on341

Learning Theory, pages 2306–2327. PMLR, 2020.342

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint343

arXiv:1412.6980, 2014.344

[16] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In345

International Conference on Machine Learning, pages 1885–1894. PMLR, 2017.346

[17] Artemy Kolchinsky, Brendan D Tracey, and Steven Van Kuyk. Caveats for information bottleneck in347

deterministic scenarios. arXiv preprint arXiv:1808.07593, 2018.348

[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technique Report, 2009.349

[19] Y. LeCun, BE. Boser, and JS. Denker. Handwritten digit recognition with a back-propagation network. In350

NeurIPS, pages 396–494, 1990.351

[20] Y. LeCun, L. Bottou, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings352

of the IEEE, 11:2278–2324, 1998.353

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.354

[22] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A tutorial on355

energy-based learning. MIT Press, 2006.356

[23] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha357

Sohl-Dickstein. Deep neural networks as gaussian processes. In ICLR, 2018.358

10

[24] Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work so well?359

Journal of Statistical Physics, 168(6):1223–1247, 2017.360

[25] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting them.361

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5188–5196,362

2015.363

[26] David McAllester and Karl Stratos. Formal limitations on the measurement of mutual information. In364

International Conference on Artificial Intelligence and Statistics, pages 875–884. PMLR, 2020.365

[27] Pankaj Mehta and David J. Schwab. An exact mapping between the variational renormalization group and366

deep learning. arXiv preprint arXiv:1410.3831, 2014.367

[28] Julian D Olden and Donald A Jackson. Illuminating the “black box”: a randomization approach for368

understanding variable contributions in artificial neural networks. Ecological modelling, 154(1-2):135–150,369

2002.370

[29] Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–1253,371

2003.372

[30] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-373

propagating errors. Nature, 323:533–536, October 1986.374

[31] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and375

statistics, pages 448–455. PMLR, 2009.376

[32] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial intelligence: Under-377

standing, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296, 2017.378

[33] Andrew Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Tracey, and379

David Cox. On the information bottleneck theory of deep learning. In International Conference on380

Representation Learning, 2018.381

[34] Ohad Shamir, Sivan Sabato, and Naftali Tishby. Learning and generalization with the information382

bottleneck. Theoretical Computer Science, 411(29-30):2696–2711, 2010.383

[35] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.384

arXiv preprint arXiv:1703.00810, 2017.385

[36] Noam Slonim. The information bottleneck: Theory and applications. PhD thesis, Citeseer, 2002.386

[37] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv387

preprint physics/0004057, 2000.388

[38] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015 IEEE389

Information Theory Workshop (ITW), pages 1–5. IEEE, 2015.390

[39] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,391

10(5):988–999, 1999.392

[40] Larry Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.393

[41] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking394

machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.395

[42] Sho Yaida. Non-gaussian processes and neural networks at finite widths. arXiv preprint arXiv:1910.00019,396

2019.397

[43] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European398

conference on computer vision, pages 818–833. Springer, 2014.399

[44] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep400

learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.401

11

Checklist402

1. For all authors...403

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-404

tions and scope? [Yes]405

(b) Did you describe the limitations of your work? [Yes] see Section 5406

(c) Did you discuss any potential negative societal impacts of your work? [N/A]407

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]408

2. If you are including theoretical results...409

(a) Did you state the full set of assumptions of all theoretical results? [Yes]410

(b) Did you include complete proofs of all theoretical results? [Yes]411

3. If you ran experiments...412

(a) Did you include the code, data, and instructions needed to reproduce the main experimental413

results (either in the supplemental material or as a URL)? [Yes] see the URL in Appendix G414

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?415

[Yes] see Section 4.1, Appendix G, and Appendix H416

(c) Did you report error bars (e.g., with respect to the random seed after running experiments417

multiple times)? [Yes] see Section 4418

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,419

internal cluster, or cloud provider)? [Yes] see Appendix G420

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...421

(a) If your work uses existing assets, did you cite the creators? [Yes]422

(b) Did you mention the license of the assets? [Yes]423

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] see424

Appendix H425

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-426

ing/curating? [N/A]427

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-428

tion or offensive content? [N/A]429

5. If you used crowdsourcing or conducted research with human subjects...430

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?431

[N/A]432

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)433

approvals, if applicable? [N/A]434

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on435

participant compensation? [N/A]436

12

A Recent works about Gibbs explanations for a hidden layer437

As a fundamental probabilistic graphic model, the Gibbs distribution (a.k.a., Boltzmann distribution, the energy438

based model, or the renormalization group) formulates the dependence within X by associating an energy439

E(x; θ) to each dependence structure [9].440

P (X;θ, β) =
1

Z(θ, β)
exp[−βE(x; θ)], (21)

where E(x; θ) is the energy function, θ denote the parameters of E(x; θ), β is the inverse temperature constant.441

Since β can be absorbed into θ, P (X;θ, β) can be simplified as442

P (X;θ) =
1

Z(θ)
exp[−E(x; θ)], (22)

where the partition function5 is defined as443

Z(θ) =
∑
x∈X

exp[−E(x; θ)]. (23)

The Gibbs distribution has three appealing properties. First, the deterministic energy function E(x; θ) is a444

sufficient statistics of P (X;θ). The property allows us to explain a deterministic function, e.g., a hidden layer,445

in a probabilistic way. Second, a Gibbs distribution can be easily reformulated as various probabilistic models446

via redefining E(x; θ), which allows us to clarify the complicated architecture of a hidden layer. For example,447

if the energy function is defined as the summation of multiple functions, namely E(x; θ) = −
∑

k fk(x;θk),448

the Gibbs distribution would be the Product of Experts (PoE) model, i.e., P (x;θ) = 1
Z(θ)

∏
k Fk, where449

Fk = exp[−fk(x;θk)] and Z(θ) =
∏

k Z(θk) [13]. Third, the energy minimization is a typical optimization450

for θ, namely θ∗ = arg minθ E(x; θ) [22], which allows us to explain the back-propagation training, as the451

energy minimization can be implemented by the gradient descent algorithm as long as E(x;θ) is differentiable.452

A well-known Gibbs distribution model in machine learning is the Restricted Boltzmann Machines (RBMs)453

[31, 27]. Though Yaida indirectly proves the distribution of a fully connected layer as a Gibbs distribution [42],454

and Lin et al. clarify certain advantages of DNNs based on the Gibbs distribution [24], there is few work to455

extend the Gibbs explanation to complicated hidden layers, e.g., fully connected layers and convolutional layers.456

B The marginal distribution of the MLP457

Since the entire architecture of the MLP = {x, t1, t2, ŷ} corresponds to a joint distribution458

P (Ŷ , T2, T1|X) = P (Ŷ |T2)P (T2|T1)P (T1|X), (24)

the marginal distribution P (Ŷ |X) can be formulated as459

PŶ |X(l|x) =

K∑
k=1

N∑
n=1

P (Ŷ = l, T2 = k, T1 = n|X = x)

=

K∑
k=1

N∑
n=1

PŶ |T2
(l|k)PT2|T1

(k|n)PT1|X(n|x).

(25)

Based on the definition of the Gibbs probability measure (Equation 5), we have460

PT1|X(n|x) =
1

ZT1

exp(t1n) =
1

ZT1

exp[σ1(〈ω(1)
n ,x〉)], (26)

where 〈ω(1)
n ,x〉 =

∑M
m=1 ω

(1)
mn · xm + b1n. Similarly, we have461

PT2|T1
(k|n) =

1

ZT2

exp(t2k) =
1

ZT2

exp[σ2(〈ω(2)
k , t1〉)], (27)

where 〈ω(2)
k , t1〉 =

∑N
n=1 ω

(2)
nk · t1n + b2k. Thus we have462

N∑
n=1

PT2|T1
(k|n)PT1|X(n|x)

=
1

ZT2

1

ZT1

N∑
n=1

exp[σ2(〈ω(2)
k , t1〉)]exp[σ1(〈ω(1)

n ,x〉)].

(28)

5We only consider the discrete case in the paper.

13

Since 〈ω(2)
k , t1〉 =

∑N
n=1 ω

(2)
nk · t1n + b2k is a constant with respect to n, we have463

N∑
n=1

PT2|T1
(k|n)PT1|X(n|x)

=
1

ZT2

1

ZT1

exp[σ2(〈ω(2)
k , t1〉)]

N∑
n=1

exp[σ1(〈ω(1)
n ,x〉)].

(29)

In addition,
∑N

n=1 exp[σ1(〈ω(1)
n ,x〉)] = ZT1 , thus we have464

N∑
n=1

PT2|T1
(k|n)PT1|X(n|x) =

1

ZT2

exp[σ2(〈ω(2)
k , t1〉)]. (30)

Therefore, we can simplify PŶ |X(l|x) as465

PŶ |X(l|x) =

K∑
k=1

PŶ |T2
(l|k)

N∑
n=1

PT2|T1
(k|n)PT1|X(t|x)

=

K∑
k=1

PŶ |T2
(l|k)

1

ZT2

exp[σ2(〈ω(2)
k , t1〉)].

(31)

Since PŶ |T2
(l|k) = 1

Z
Ŷ

exp[σ3(〈ω(3)
l , t2〉)] and 〈ω(3)

l , t2〉 =
∑K

k=1 ω
(3)
lk f2k + byl is a constant with respect466

to k, we can derive467

PŶ |X(l|x) = PŶ |T2
(l|k)

K∑
k=1

1

ZT2

exp[σ2(〈ω(2)
k , t1〉)]. (32)

Since ZT2 =
∑K

k=1 exp[σ2(〈ω(2)
k , t1〉)] is also constant to k,468

PŶ |X(l|x) = PŶ |T2
(l|k)

1

ZT2

K∑
k=1

exp[σ2(〈ω(2)
k , t1〉)].

= PŶ |T2
(l|k) =

1

ZFY

exp[〈ω(3)
l , t2〉].

(33)

In addition, since t2 = {t2k}Kk=1 = {σ2(〈ω(2)
k , t1〉)}Kk=1, we can extend PŶ |X(l|x) as469

PŶ |X(l|x) = PŶ |F2
(l|k) =

1

ZFY

exp[〈ω(3)
l , t2〉]

=
1

ZŶ

exp[〈ω(3)
l ,


σ2(〈ω(2)

1 , t1〉)
...

σ2(〈ω(2)
K , t1〉)

〉]. (34)

Since t1 = {t1n}Nn=1 = {σ1(〈ω(1)
n ,x〉)}Nn=1, we can further extend PŶ |X(l|x) as470

PŶ |X(l|x) =
1

ZŶ

exp[〈ω(3)
l ,



σ2(〈ω(2)
1 ,


σ1(〈ω(1)

1 ,x〉)
...

σ1(〈ω(1)
N ,x〉)

〉)
...

σ2(〈ω(2)
K ,


σ1(〈ω(1)

1 ,x〉)
...

σ1(〈ω(1)
N ,x〉)

〉)


〉]

=
1

ZMLP(x)
exp[gl(t2(t1(x)))].

(35)

Overall, we prove PŶ |X(l|x) as the Gibbs distribution expressed as471

PŶ |X(l|x) =
1

ZMLP(x)
exp[gl(t2(t1(x)))]. (36)

14

where El(x) = −gl(t2(t1(x))) is the energy function and the partition function472

ZMLP(x) =

L∑
l=1

K∑
k=1

T∑
t=1

P (Ŷ , T2, T1|X = x)

=

L∑
l=1

exp[gl(t2(t1(x)))].

(37)

C The proof of Theorem 2473

Based on the definition of the cross entropy, `CE can be formulated as474

`CE = −
L∑

l=1

PY |X(l|x)logPŶ |X(l|x). (38)

where PŶ |X(l|x) is the output of the MLP, and PY |X(l|x) is the one-hot probability of x given the label y, i.e.,475

PY |X(l|x) =

{
1 for l = y
0 for l 6= y

(39)

The derivative of `CE with respect to PŶ |X(l|x) is476

∂`CE

∂PŶ |X(l|x)
= −

PY |X(l|x)

PŶ |X(l|x)
. (40)

Since PŶ |X(l|x) can be expressed as477

PŶ |X(l|x) =
1

ZMLP(x)
exp[gl(t2t1(x))], (41)

the derivative of PŶ |X(z|x) with respect to gl(t2t1(x)) is478

∂PŶ |X(z|x)

∂gl
=

1
ZMLP

exp(gz)

∂gl
=

{
PŶ |X(l|x) · [1− PŶ |X(l|x)] for z = l
−PŶ |X(l|x) · PŶ |X(z|x) for z 6= l

. (42)

Overall, the derivative of `CE with respect to gl can be expressed as479

∂`CE

∂gl
=

L∑
z=1

∂`CE

∂PŶ |X(z|x)

∂PŶ |X(z|x)

∂gl

= −PY |X(l|x)(1− PŶ |X(l|x) +
∑
z 6=l

PY |X(z|x)PŶ |X(l|x)

= PŶ |X(l|x)− PY |X(l|x).

(43)

Since gl = 〈ω(3)
l , t2〉 =

∑K
k=1 ω

(3)
kl · t2k + byl, the derivative of `CE with respect to ω(3)

kl can be expressed as480

∂`CE

∂ω
(3)
kl

=
∂`CE

∂gl

∂gl

∂ω
(3)
kl

= [PŶ |X(l|x)− PY |X(l|x)]t2k. (44)

Similarly, the derivative of `CE with respect to 〈ω(2)
k , t1〉 can be expressed as481

∂`CE

∂〈ω(2)
k , t1〉

=

L∑
l=1

∂`CE

∂gl

∂gl
∂t2k

∂t2k

∂〈ω(2)
k , t1〉

=

L∑
l=1

[PŶ |X(l|x)− PY |X(l|x)]ω
(3)
kl σ

′
2(〈ω(2)

k , t1〉).

(45)

Since 〈ω(2)
k , t1〉 =

∑N
n=1 ω

(2)
nk · t1n + b2k, the derivative of ` with respect to ω(2)

nk can be expressed as482

∂`CE

∂ω
(2)
nk

=
∂`CE

∂〈ω(2)
k , t1〉

∂〈ω(2)
k , t1〉
∂ω

(2)
nk

=

L∑
l=1

[PŶ |X(l|x)− PY |X(l|x)]ω
(3)
kl σ

′
2(〈ω(2)

k , t1〉)t1n

(46)

15

Similarly, the derivative of `CE with respect to 〈ω(1)
n ,x〉 can be expressed as483

∂`CE

∂〈ω(1)
n ,x〉

=

K∑
k=1

∂`CE

∂〈ω(2)
k , t1〉

∂〈ω(2)
k , t1〉
∂t1n

∂t1n

∂〈ω(1)
n ,x〉

=

K∑
k=1

L∑
l=1

[PŶ |X(l|x)− PY |X(l|x)]ω
(3)
kl σ

′
2(〈ω(2)

k , t1〉)ω(2)
nk σ

′
1(〈ω(1)

n ,x〉).

(47)

Since 〈ω(1)
n ,x〉 =

∑M
m=1 ω

(1)
mn · xm + b1n, the derivative of `CE with respect to ω(1)

mn can be expressed as484

∂`CE

∂ω
(1)
mn

=
∂`CE

∂〈ω(1)
n ,x〉

∂〈ω(1)
n ,x〉

∂ω
(1)
mn

=

K∑
k=1

L∑
l=1

[PŶ |X(l|x)− PY |X(l|x)]ω
(3)
kl σ

′
2(〈ω(2)

k , t1〉)ω(2)
nk σ

′
1(〈ω(1)

n ,x〉)xm.
(48)

Overall, the derivative of `CE with respect to the weight in each layer is summarized as485

∂`CE

∂ω
(3)
kl

= [PŶ |X(l|x)− PY |X(l|x)]t2k

∂`CE

∂ω
(2)
nk

=

L∑
l=1

[PŶ |X(l|x)− PY |X(l|x)]ω
(3)
kl σ

′
2(〈ω(2)

k , t1〉)t1n

∂`CE

∂ω
(1)
mn

=

K∑
k=1

L∑
l=1

[PŶ |X(l|x)− PY |X(l|x)]ω
(3)
kl σ

′
2(〈ω(2)

k , t1〉)ω(2)
nk σ

′
1(〈ω(1)

n ,x〉)xm.

(49)

Based on the above three equations, we can reformulate the derivatives as486

∂`?CE

∂ω
(3)
kl

= [PŶ |X(l|x)− PY |X(l|x)] · t2k,

∂`�CE

∂ω
(2)
nk

=

L∑
l=1

∂`?CE

∂ω
(3)
kl

· ω(3)
kl ·

σ′2(〈ω(2)
k , t1〉)
t2k

· t1n

∂`�CE

∂ω
(1)
mn

=

K∑
k=1

∂`�CE

∂ω
(2)
nk

· ω(2)
nk ·

σ′1(〈ω(1)
n ,x〉)
t1n

· xm.

(50)

The above three equations indicates that ∂`?CE

∂ω
(3)
kl

is a function of PY |X(l|x), ∂`�CE

∂ω
(2)
nk

is a function of ∂`?CE

∂ω
(3)
kl

, and487

∂`�CE

∂ω
(1)
mn

is a function of ∂`�CE

∂ω
(2)
nk

. In addition, the back-propagation algorithm shows that488

ω(1)
mn(s+ 1) = ω(1)

mn(s)− α ∂`CE

∂ω
(1)
mn(s)

ω
(2)
nk (s+ 1) = ω

(2)
nk (s)− α ∂`CE

∂ω
(2)
nk (s)

ω
(3)
kl (s+ 1) = ω

(3)
kl (s)− α ∂`CE

∂ω
(3)
kl (s)

(51)

where α is the learning rate and s denotes the index of the sth learning iteration. Therefore, ω(s + 1) is489

determined by all the previous gradients { ∂`CE
∂ω(s)

}Ss=1 as ω(0) is randomly initialized and α is a constant.490

Definition 1 indicates that the weights define the sample space ΩTi , thus we can derive that the gradients ∂`CE
∂ω(i)491

determine ΩTi . As a result, ΩTi is a function of ΩTi+1 and ΩŶ is a function of P (Y |X). Based on Definition492

2, we can further derive that Ti is a function of Ti+1 and Ŷ is a function of Y , i.e., T1 ← T2 ← Ŷ ← Y .493

D The proof of H(Y) = I(X;Y)494

Given a training sample xj and the corresponding label yj , the target distribution PY |X(yj |xj) is commonly495

formulated as the one-hot format, i.e.,496

PY |X(l|xj) =

{
1 for l = yj

0 for l 6= yj
(52)

16

𝝎𝟑
(𝟏)𝝎𝟐

(𝟏) 𝝎𝟒
(𝟏)𝝎𝟏

(𝟏)

𝑡))
𝑡)*

𝑡)+

𝑡),
𝑡*)

𝑡*)

𝑡**

𝝎𝟏
(𝟐) 𝝎𝟐

(𝟐) 𝝎𝟑
(𝟐) 𝝎𝟏

(𝟑) 𝝎𝟐
(𝟑)

𝑡**
𝑦.)

𝑦.*
𝑡*+

𝑡)/ = 𝜎)(𝝎𝒏
(𝟏), 𝒙) 𝑡*5 = 𝜎*(𝝎𝒌

(𝟐), 𝒕𝟏) 𝑦.8 = 𝜎+(𝝎𝒍
(𝟑), 𝒕𝟐)

Figure 6: The graphical explanation for Corollary 1 based on the MLP = {x, t1, t2, ŷ}. The largest oval
represents of the input x, and each small shape indicates the representation capacity of a single feature. For
example, if t12 is the largest activation, then the feature ω(1)

2 has the largest cross-correlation to x, i.e., ω(1)
2

has largest representation capacity. Therefore, {ω(1)
n }4n=1 can be viewed as a representation of x, and the

representation capacity of {ω(1)
n }4n=1 is measured by {t1n}Nn=1, which is visualized by the left figure. The

blue ovals indicates the representation capacity of the three features {ω(2)
k }

3
k=1 generated by combining the

four features {ω(1)
n }4n=1. The two red ovals indicates the representation capacity of the two features {ω(3)

l }
2
l=1

generated by combining the three features {ω(2)
k }

3
k=1.

As a result, the conditional entropy H(Y |X) can be formulated as497

H(Y |X) = −
∑

(xj ,yj)∈D

PX,Y (xj , yj)logPY |X(yj |xj) = 0. (53)

Therefore, we can derive H(Y) = I(X;Y) because H(Y) = H(Y |X) + I(X;Y).498

E The detailed derivations and explanations for Corollary 1499

Definition 1 indicates that t1 = {t1n = σ1(〈ω(1)
n ,x〉)}Nn=1 defines N features of x, namely {ω(1)

n }Nn=1,500

thus {ω(1)
n }Nn=1 can be viewed as a representation of x. In addition, {t1n}Nn=1 measures the cross-correlation501

between {ω(1)
n }Nn=1 and x, (i.e., if ω(1)

n describes x more accurately and comprehensively, then t1n is larger.),502

thus {t1n}Nn=1 quantifies the representation capacity of {ω(1)
n }Nn=1. For example, in Figure 6 (Left), t1 defines503

4 features to describe x and t12 is the largest activation, thus ω(1)
2 has the largest representation capacity of x.504

During inference, the second hidden layer t2 will process {t1n}Nn=1, and t2k = σ2(〈w(2)
k , t1〉) can be explained505

to generating a new feature via combining all the features {ω(1)
n }Nn=1, i.e.,506

{ω(2)
1k ⊗ ω

(1)
1 , · · · , ω(2)

Nk ⊗ ω
(1)
N }. (54)

Since the new feature is the linear combination of {ω(1)
n }Nn=1, it can be simply noted as507

{ω(2)
1k , · · · , ω

(2)
Nk} = ω

(2)
k , (55)

and the representation capacity of the new feature ω(2)
k is508

t2k = ω
(2)
1k · t11 + · · ·+ ω

(2)
Nk · t1N (56)

For example, if N = 4 and K = 3, the representation capacity of the three new features is visualized by Figure509

6 (Middle). Similarly, ŷ generates L new features via combining all the features {ω(2)
k }

K
k=1.510

{ω(3)
1l ⊗ ω

(2)
1 , · · · , ω(3)

Kl ⊗ ω
(2)
K }. (57)

Since the new feature is the linear combination of {ω(2)
k }

K
k=1, it can be simply noted as511

{ω(3)
1l , · · · , ω

(3)
Kl} = ω

(3)
l , (58)

and the representation capacity of the new feature ω(3)
l is512

ŷl = ω
(3)
1l · t21 + · · ·+ ω

(3)
Kl · t2K (59)

For example, if L = 2, the representation capacity of the two new features is visualized by Figure 6 (Right).513

17

H(𝑋)
H(𝑌)

H(
𝑇'(

)|
𝑋)

I(𝑌; 𝑇'())

I(𝑋-; 𝑇'())

H 𝑌 = +

H 𝑇'() = + +
H 𝑋 = + + + I 𝑌; 𝑇'() =

I 𝑋-; 𝑇'() = 𝐼 𝑋; 𝑇'() − 𝐼 𝑌; 𝑇'() =

I 𝑋; 𝑇'() = +

Figure 7: The Venn diagram of H(X), H(Y), and I(X;TMLP).

Overall, the inference phase is a procedure of feature combination, i.e., ω(3)
l is a combination of {ω(2)

k }
K
k=1,514

and ω(2)
k is a combination of {ω(1)

n }Nn=1. Theorem 2 proves that the layer closer to output has more information515

of labels, i.e., T1 ← T2 ← Ŷ ← Y , during training. Since the weights are fixed after training, the sample space516

and the distribution of hidden layers are fixed after training. Therefore, the information of Y transferred into517

hidden layers during training will retain there after training (i.e., during inference), i.e., T1 ← T2 ← Ŷ ← Y518

characterizes the information flow of Y in the MLP in both training and inference phases.519

For example, Figure 6 (Right) shows that the representation capacity of ω(3)
1 is the weighted combination of t11,520

t12, and t13, and the representation capacity of ω(3)
2 is the weighted combination of t12, t13, and t14. Therefore,521

ω
(1)
2 and ω(1)

3 exist in both classes, i.e., the low-level features in t1 do not represent too much information of522

the labels, though we combine low-level features to generate high-level features for representing labels.523

F The proof of Corollary 2524

Based on the property of mutual information, we have525

H(X) = H(X|Y) + I(X;Y)

= H(X|Y) +H(Y) (Appendix D)

= H(X̄) +H(Y)

(60)

where X̄ is the virtual random variable containing all the information ofX except Y , namelyH(X̄) = H(X|Y).526

Therefore, I(X;TMLP) can be reformulated as527

I(X;TMLP) = I(X̄;TMLP) + I(Y ;TMLP). (61)

The Venn diagram of H(X), H(Y), and I(X;TMLP) are visualized in Figure 7. Corollary 1 indicates that all528

the information of X̄ and Y learned by a MLP retains in T1 and Ŷ , respectively. Therefore, we can derive529

I(X;TMLP) = I(X̄;T1) + I(Y ; Ŷ)

I(Y ;TMLP) = I(Y ; Ŷ)
(62)

G Studying non-parametric models for mutual information estimation530

In this section, we use the synthetic dataset to show that non-parametric models are sensitive to hyper-parameters531

for mutual information estimation. In addition, we show that the proposed mutual information estimator derives532

more accurate mutual information estimation than non-parametric models. Furthermore, we demonstrate that533

one reason for non-parametric models deriving poor mutual information estimation is because activations do not534

satisfy the i.i.d. prerequisite of non-parametric models. The experiment codes are available online6.535

G.1 Non-parametric models are sensitive to hyper-parameters536

To show non-parametric models being sensitive to hyper-parameters, we choose two commonly used non-537

parametric models, namely the empirical distribution [35] and KDE [33], to measure the information flow in538

MLP1 and MLP2 defined in Table 1 on the synthetic dataset.539

6https://github.com/Dlib-NeurIPS/Deep-Learning-Information-Theory

18

https://github.com/Dlib-NeurIPS/Deep-Learning-Information-Theory

Table 3: The hyper-parameters of empirical distributions and KDE

bs 0.001 0.01 0.1 1.0 2.0 4.0 6.0 8.0
σ2
n 0.01 0.05 0.1 1.0 2.0 4.0 8.0 16.0

The empirical distribution is defined as540

P (T = n) =
1

J
1(t, ln, rn) (63)

where J is the number of samples, n denotes the nth bin, t denotes an activation vector, ln and rn are the left541

and right boundary vectors, respectively. The indicator function 1(t, ln, rn) is defined as542

1(t, ln, rn) =

{
1 for ln ≤ t < rn
0 otherwise (64)

Given a specific range, the hyper-parameter of the empirical distribution is the bin size, namely bs = |rn − ln|.543

Based on the empirical distribution, Tishby et al. estimate I(X;Ti) and I(Y ;Ti) (see Section 3.2 in [35]).544

To estimate I(X;Ti) and I(Y ;Ti) via KDE, Saxe et al. assume that the empirical distribution of input samples545

is the true distribution and the distribution of a hidden layer is a mixture of Gaussian. In addition, Saxe et al.546

regard a hidden layer as a deterministic function of input samples, thus the Gaussian noiseN (0, σ2
n) is added547

into activations to avoid infinite mutual information, and I(X;Ti) is estimated as548

I(X;Ti) ≤ −
1

J

∑
j

log
1

J

∑
j′

exp(−
‖t(i)j − t

(i)

j′ ‖
2
2

2σ2
n

) (65)

where J is the number of samples, t(i)j denote the activations vector of the ith hidden layer in response to the549

input sample xj (see Appendix B.1 in [33]). Therefore, the hyper-parameter of KDE is the noise variance σ2
n.550

Leveraging the same training method in Section 4.1, we achieves 100% training accuracy in MLP1 and MLP2551

on the synthetic dataset. We specify 8 different values for each hyper-parameter, namely bs and σ2
n, in Table 3,552

and use the empirical distribution and KDE to estimate I(X;Ti) during training MLP1 and MLP2.553

Figure 8 and 9 show that the empirical distribution is sensitive to the hyper-parameter, namely the bin size bs.554

Figure 8 shows that I(X;Ti) in different hidden layers of MLP1 converges to 1.5 as bs increases from 0.001 to555

8.0. Figure 9 shows that I(X;T1), I(X;T2), and I(X; Ŷ) in MLP2 converge to 1.2, 0.8, and 0.7, respectively,556

as bs increases from 0.001 to 8.0. Notably, since the synthetic dataset only has 2 bits information, I(X;Ti)557

must be smaller than H(X) = 2 bits. However, we observe that if bs < 1.0, the empirical distribution derives558

I(X;Ti) > 2.0 in both MLP1 and MLP2, thus the empirical distribution cannot correctly estimate I(X;Ti) in559

MLP1 and MLP2 on the synthetic dataset when bs < 1.0.560

100 101 102 103

bs = 0.001

5.9

6.0

6.1

6.2

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 0.010

5.00

5.25

5.50

5.75

6.00

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 0.100

3

4

5

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 1.000

1.00

1.25

1.50

1.75

2.00

2.25

2.50

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 2.000

0.50

0.75

1.00

1.25

1.50

1.75

2.00

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 4.000

0.0

0.5

1.0

1.5

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 6.000

0.0

0.5

1.0

1.5

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 8.000

0.00

0.25

0.50

0.75

1.00

1.25

1.50

I(X; T1)
I(X; T2)
I(X; Y)

Figure 8: The estimation of I(X;Ti) in MLP1 on the synthetic dataset via the empirical distribution with 8
different bs. All the x-axis index training epochs.

19

100 101 102 103

bs = 0.001

1

2

3

4

5

6 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 0.010

1

2

3

4

5

6 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 0.100

1

2

3

4 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 1.000

0.8

1.0

1.2

1.4

1.6 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 2.000

0.8

1.0

1.2

1.4
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 4.000

0.8

1.0

1.2

1.4
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 6.000

0.8

1.0

1.2

1.4
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

bs = 8.000

0.8

1.0

1.2

1.4
I(X; T1)
I(X; T2)
I(X; Y)

Figure 9: The estimation of I(X;Ti) in MLP2 on the synthetic dataset via the empirical distribution with 8
different bs. All the x-axis index training epochs.

Similarly, Figure 10 and 11 show that KDE is also sensitive to the hyper-parameter, namely the noise variance561

σ2
n. Figure 10 shows that I(X;Ti) in different hidden layers of MLP1 converges to 2.0 as σ2

n increases from562

0.01 to 16.0. Figure 11 shows that KDE derives different I(X;T1) and I(X;T2) in MLP2 given different563

σ2
n, except I(X; Ŷ) converges to 1.0, as bs increases from 0.01 to 16.0. Again, since the synthetic dataset564

only has 2 bits information, I(X;Ti) must be smaller than H(X) = 2. However, we also observe that KDE565

derives I(X;Ti) > 2.0 when σ2
n < 1.0. Overall, different σ2

n make KDE to derive different mutual information566

estimations for I(X;Ti) in MLP1 and MLP2 on the synthetic dataset, especially KDE does not correctly567

estimate I(X;Ti) in MLP1 and MLP2 when σ2
n < 1.0.568

In summary, the two non-parametric models are sensitive to hyper-parameters for mutual information estimation.569

Especially, since the entropy of the synthetic dataset is known, we can determine which hyper-parameter is570

appropriate to estimate the mutual information. However, if the entropy of dataset is unknown, it is very difficult571

to choose an appropriate hyper-parameter for non-parametric models to estimate the mutual information.572

G.2 Comparison to non-parametric models on the synthetic dataset573

In this section, we compare the proposed mutual information estimator to the empirical distribution and KDE574

in MLP1 and MLP2 on the synthetic datset, and demonstrate that the proposed mutual information estimator575

derives more accurate mutual information estimation than non-parametric models. Based on Appendix G.1,576

we choose bs = 2.0 and σ2
n = 2.0 as the optimal hyper-parameters for the empirical distribution and KDE to577

estimate I(X;Ti) and I(Y ;Ti). All the training methods are the same as Section 4.1.578

100 101 102 103

2
n = 0.010

2

3

4

5

6

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 0.050

2.0

2.5

3.0

3.5

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 0.100

1.5

2.0

2.5

3.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 1.000

0.50

0.75

1.00

1.25

1.50

1.75

2.00

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 2.000

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 4.000

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 8.000

0.0

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 16.000

0.0

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

Figure 10: The estimation of I(X;Ti) in MLP1 on the synthetic dataset by KDE with 8 different σ2
n. All the

x-axis index training epochs.

20

100 101 102 103

2
n = 0.010

1.5

2.0

2.5
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 0.050

1.2

1.4

1.6

1.8

2.0

2.2
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 0.100

1.2

1.4

1.6

1.8

2.0 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 1.000

0.8

1.0

1.2

1.4

1.6

1.8 I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 2.000

0.6

0.8

1.0

1.2

1.4

1.6

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 4.000

0.4

0.6

0.8

1.0

1.2

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 8.000

0.2

0.4

0.6

0.8

1.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

2
n = 16.000

0.2

0.4

0.6

0.8

1.0

I(X; T1)
I(X; T2)
I(X; Y)

Figure 11: The estimation of I(X;Ti) in MLP2 on the synthetic dataset by KDE with 8 different σ2
n. All the

x-axis index training epochs.

100 101 102 103

Empirical distribution (bs=2.0)

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

KDE (2
n = 2.0)

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

Gibbs distribution

0.0

0.5

1.0

1.5

2.0

I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

Empirical distribution (bs=2.0)

0.0

0.2

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103

KDE (2
n = 2.0)

0.0

0.2

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103

Gibbs distribution

0.0

0.2

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

Figure 12: The estimation of I(X;Ti) and I(Y ;Ti) in MLP1 based on the three mutual information estimators.
All the x-axis index training epochs.

Figure 12 shows the estimation of I(X;Ti) and I(Y ;Ti) in MLP1 derived by the three methods, namely the579

empirical distribution (bs = 2.0), KDE (σ2
n = 2.0), and the Gibbs distribution. Since ŷ only has two nodes,580

the maximal information of X that ŷ can have is 1 bit, i.e., I(X; Ŷ) ≤ 1, based on Definition 1. However,581

we observe that the empirical distribution derives I(X; Ŷ) > 1.5 and KDE derives I(X; Ŷ) = 2.0, thus the582

empirical distribution and KDE do not accurately estimate I(X; Ŷ). In addition, since MLP1 correctly predicts583

all the labels of synthetic images, it should have all the information of the labels. However, we observe that the584

empirical distribution estimates I(Y ;Ti) = 0.7 bits, which contradicts the fact. As a comparison, the proposed585

method based on Gibbs distribution accurately estimate the information flow in MLP1.586

Figure 13 shows the estimation of I(X;Ti) and I(Y ;Ti) in MLP2 derived by the three methods. As shown in587

Figure 4, MLP2 quickly learns all the features of the synthetic dataset, thus I(X;Ti) should have an increasing588

trend as training epochs increases. However, I(X;Ti) estimated by the empirical distribution shows a decreasing589

trend, which contradicts the variation of the weights shown in Figure 4. Therefore, the empirical distribution590

does not accurately estimate I(X;Ti) in MLP2. In addition, Section 4.2 shows that Tanh hinders t1 from591

correctly recognizing the features of input, thus t1 in MLP2 does not contain too much information of X , i.e.,592

I(X;T1) is small. However, KDE estimates I(X;T1) > 1.5, i.e., t1 in MLP2 has most information of X .593

Therefore, KDE does not correctly measures the effect of activation functions on the mutual information.594

21

100 101 102 103

Empirical distribution (bs=2.0)

0.8

1.0

1.2

1.4

1.6
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

KDE (2
n = 2.0)

0.6

0.8

1.0

1.2

1.4

1.6
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

Gibbs distribution

0.0

0.5

1.0

1.5

2.0
I(X; T1)
I(X; T2)
I(X; Y)

100 101 102 103

Empirical distribution (bs=2.0)

0.0

0.2

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103

KDE (2
n = 2.0)

0.0

0.2

0.4

0.6

0.8

1.0

I(Y; T1)
I(Y; T2)
I(Y; Y)

100 101 102 103

Gibbs distribution

0.0

0.2

0.4

0.6

0.8

1.0
I(Y; T1)
I(Y; T2)
I(Y; Y)

Figure 13: The estimation of I(X;Ti) and I(Y ;Ti) in MLP2 based on the three mutual information estimators.
All the x-axis index training epochs.

G.3 Activations do not satisfy the i.i.d. prerequisite of non-parametric models595

In this section, we demonstrate that one reason for non-parametric models deriving poor mutual information596

estimation is because activations do not satisfy the i.i.d. prerequisite of non-parametric models.597

Given an input x ∈ RM , we define the corresponding multivariate random variable as X = [X1, · · · , XM],598

whereXm is the scalar-valued random variable of xm. In the context of frequentist probability, all the parameters599

of MLPs are viewed as constants, thus the random variable of 〈ω(1)
n ,x〉 =

∑M
m=1 ω

(1)
mn · xm + b1n is defined600

as G1n =
∑M

m=1 ω
(1)
mnXm + b1n, and the random variable of the activation t1n = σ1(〈ω(1)

n ,x〉) is defined601

as T1n = σ1(G1n). Therefore, the multivariate random variable of t1 = [t11, · · · , t1N] can be defined as602

T1 = [T11, · · · , T1N]. Similarly, we define the multivariate random variable of t2 as T2 = [T21, · · · , T2K] and603

the multivariate random variable of ŷ as Ŷ = [Ŷ1, · · · , ŶL].604

Samples being i.i.d. is the prerequisite of applying non-parametric models, e.g. the empirical distribution and605

KDE, to model the true distribution of a random variable [40]. In the context of MLPs, most previous works606

regard the activations of a layer as the samples of the random variable of the layer, and use non-parametric607

models to simulate the distribution of the layer. As a result, activations must be i.i.d. samples.608

Since the necessary condition for samples being i.i.d. is the samples being uncorrelated, we can use the sample609

correlation to examine if activations being i.i.d.. More specifically, given two i.i.d. input samples xj and xj ′,610

the two activation vectors of the ith hidden layers are tji and tj
′

i . If tji and tj
′

i are i.i.d. samples of Ti, the sample611

correlation R(tji , t
j′

i) must be zero, namely612

R(tji , t
j′

i) =

∑N
n=1(tjin − t̄

j
i)(t

j′

in − t̄
j′

i)√∑N
n=1(tjin − t̄

j
i)

2∑N
n=1 (tj

′
in − t̄

j′
i)

2
= 0, (66)

where t̄ji = 1
N

∑N
n=1 t

j
in, and N is the number of neurons in ti.613

To study the sample correlation between activations given different samples, we use the Adam to train a MLP on614

the MNIST dataset [20] over 200 epochs with the learning rate α = 0.0005. Since the dimension of each image615

is 28× 28, the number of the input nodes is M = 784. In addition, t1, t2, and ŷ have N = 96, K = 32, and616

L = 10 neurons/nodes, respectively. All the activation functions are Tanh.617

After training, we derive R(tji , t
j′

i) on 5000 training samples {xj}5000j=1 and show the result in Figure 14. In618

particular, we rearrange the order of {xj}5000j=1 such that images with the same label have consecutive index, i.e.,619

images with the label l has the index [l × 500, (l + 1)× 500), thus we can easily check the sample correlation620

between activations with the same label. Figure 14 shows that the sample correlation between activations with621

the same label becomes larger as the layer is closer to the output. In other words, activations are not i.i.d..622

Therefore, it is invalid to apply non-parametric models to model the true distribution of all the layers of the MLP,623

because activations do not satisfy the i.i.d. prerequisite of non-parametric models.624

22

0 1K 2K 3K 4K 5K

0

1K

2K

3K

4K

5K

R(xj, xj ′)

0 1K 2K 3K 4K 5K

0

1K

2K

3K

4K

5K

R(t j
1, t j ′

1)

0 1K 2K 3K 4K 5K

0

1K

2K

3K

4K

5K

R(t j
2, t j ′

2)

0 1K 2K 3K 4K 5K

0

1K

2K

3K

4K

5K

R(yj, yj ′)

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

rdiff(xj, xj ′)
rsame(xj, xj ′)
train_acc

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

rdiff(t j
1, t j ′

1)
rsame(t j

1, t j ′
1)

train_acc

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

rdiff(t j
2, t j ′

2)
rsame(t j

2, t j ′
2)

train_acc

0 50 100 150 200
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

rdiff(yj, yj ′)
rsame(yj, yj ′)
train_acc

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Figure 14: The first row shows that sample correlation between different samples/activations in each layer of
the MLP after training. The second row shows the variation of the average sample correlation between different
activations with different labels and with the same labels in each layer during training.

More specifically, Figure 14 shows that the sample correlation between each pair of training samples {xj}5000j=1625

is very small, thus i.i.d. can be viewed as a valid assumption for the input samples {xj}5000j=1 . However, we626

observe an ascending trend for the sample correlation between different activations with the same label as the627

layer is closer to the output. For instance, the pixels at the top-left corner of R(tji , t
j′

i) becomes lighter as the628

layer is closer to the output, i.e., the sample correlation between the activations with the label 0 becomes larger.629

In addition, the second row of Figure 14 also show the ascending trend, i.e., r̄same(t
j
1, t

j′

1), r̄same(t
j
2, t

j′

2), and630

r̄same(ŷ
j , ŷj′) converge to 0.55, 0.79, and 0.84, respectively, where r̄same(t

j
i , t

j′

i) denotes the average sample631

correlation of {tji}
5000
j=1 with the same label in the ith hidden layer.632

As a comparison, Figure 14 shows that the sample correlation of activations with different labels being relatively633

stable in different layers, because r̄diff(t
j
1, t

j′

1), r̄diff(t
j
2, t

j′

2), and r̄diff(ŷ
j , ŷj′) converge to 0.29, 0.27, and 0.33,634

respectively, where r̄diff(t
j
i , t

j′

i) denotes the average sample correlation of {tji}
5000
j=1 with different labels.635

In summary, the sample correlation of activations with the same label becomes larger as the layer is closer to the636

output, thus activations being i.i.d. is not valid for all the layers of the MLP. As a result, non-parametric models,637

e.g., the empirical distribution and KDE, cannot correctly simulate the true distribution of all the layers, thus638

they are invalid for estimating the mutual information between each layer and dataset.639

H Experiments on benchmark dataset640

To further demonstrate the information theoretic explanations for DNNs, we design more complicated neural641

networks and conduct experiments on the bechmark MNIST and Fashion-MNIST (abbr. FMNIST) dataset. The642

experiment codes are also available online7.643

H.1 Experiments on the MNIST dataset644

We design three MLPs, namely MLP4, MLP5, and MLP6, and summarize the architectures of the three MLPs in645

Table 4. We train the three MLPs on the MNIST dataset by Adam [15] over 500 epochs with the learning rate646

α = 0.0005. Based on the mutual information estimator proposed in Section 4.1, we measure the information647

flow in the three MLPs during 500 training epochs.648

In Figure 15, we observe that the information flow of X in the three MLPs does not satisfy the Markov chain,649

namely Equation (2), proposed by previous works, i.e., we further confirm that Equation (2) does not fully650

characterize the information flow of X , especially when taking into account of the back-propagation training.651

Moreover, the second and the third row of Figure 15 show I(X̄;T1) ≥ I(X̄;T2) ≥ I(X̄; Ŷ) and I(Y ;T1) ≤652

I(Y ;T2) ≥ I(Y ; Ŷ) in all the three MLPs, which further validate that Corollary 1, i.e., Equation (14), correctly653

characterizes the information flow in MLPs.654

The last row of Figure 15 shows that I(X;TMLP) > H(Y) and I(Y ;TMLP) = H(Y) for most epochs in all the655

three MLPs. Though H(X) is unknown for the MNIST dataset, we still can conclude that the three MLPs form656

three compressed representations of the data while preserve all the information of the labels. Hence, Figure 15657

further confirms that a MLP satisfies the IB principle no matter what the architecture of the MLP is.658

7https://github.com/Dlib-NeurIPS/Deep-Learning-Information-Theory

23

https://github.com/Dlib-NeurIPS/Deep-Learning-Information-Theory

Table 4: The number of neurons(nodes) and the activation function in MLP4 - MLP6

x t1 t2 ŷ σ(·)
MLP4 784 (28× 28) 96 32 10 ReLU(z) = max(0, z)
MLP5 784 (28× 28) 96 32 10 Tanh(z) = (ez − e−z)/(ez + e−z)
MLP6 784 (28× 28) 32 96 10 ReLU

0 100 200 300 400 500
0

1

2

3

4

MLP4(96-32-10 ReLU)

I(X; T1)
I(X; T2)
I(X; Y)

0 100 200 300 400 500
0

1

2

3

MLP5(96-32-10 Tanh)
I(X; T1)
I(X; T2)
I(X; Y)

0 100 200 300 400 500
0

1

2

3

4
MLP6(32-96-10 ReLU)

I(X; T1)
I(X; T2)
I(X; Y)

0 100 200 300 400 500
0

1

2

3
I(X; T1)
I(X; T2)
I(X; Y)

0 100 200 300 400 500
0.0

0.1

0.2
I(X; T1)
I(X; T2)
I(X; Y)

0 100 200 300 400 500
0

1

2

I(X; T1)
I(X; T2)
I(X; Y)

0 100 200 300 400 500
0

1

2

3 I(Y; T1)
I(Y; T2)
I(Y; Y)

0 100 200 300 400 500
0

1

2

3 I(Y; T1)
I(Y; T2)
I(Y; Y)

0 100 200 300 400 500
0

1

2

3

I(Y; T1)
I(Y; T2)
I(Y; Y)

0 100 200 300 400 500
0

2

4

6

I(X; TMLP)
I(Y; TMLP)

0 100 200 300 400 500
0

2

4

6

I(X; TMLP)
I(Y; TMLP)

0 100 200 300 400 500
0

2

4

6

I(X; TMLP)
I(Y; TMLP)

Figure 15: The information flow in MLP4, MLP5, and MLP6 on the MNIST dataset. All the x-axis index
training epochs. In each column, the first three figures show I(X;Ti), I(X̄;Ti), and I(Y ;Ti) respectively. The
forth figure shows I(X;TMLP) and I(Y ;TMLP) in a MLP. The pink line denotes H(Y) = log210.

H.2 Experiments on the Fashion-MNIST dataset659

We design three MLPs, namely MLP7, MLP8, and MLP9, and summarize the architectures of the three MLPs in660

Table 5. Compared to the MLPs on the MNIST dataset, the three MLPs has one more hidden layer and each661

hidden layer has more neurons, i.e., the MLPs are more complicated. Similarly, we train the three MLPs by662

Adam [15] over 500 epochs with the learning rate α = 0.0005. Based on the mutual information estimator663

proposed in Section 4.1, we measure the information flow in the three MLPs during 500 training epochs.664

Figure 16 shows similar results as Section 4.3 and Section H.1, thus it further confirms the information theoretic665

explanations for DNNs.666

Table 5: The number of neurons(nodes) and the activation function in MLP7 - MLP9

x t1 t2 t3 ŷ σ(·)
MLP7 784 (28× 28) 256 128 96 10 ReLU(z) = max(0, z)
MLP8 784 (28× 28) 256 128 96 10 Tanh(z) = (ez − e−z)/(ez + e−z)
MLP9 784 (28× 28) 96 128 256 10 ReLU

24

0 100 200 300 400 500
0

2

4

MLP7(256-128-96-10 ReLU)

I(X; T1)
I(X; T2)
I(X; T3)
I(X; Y)

0 100 200 300 400 500
0

1

2

3

MLP8(256-128-96-10 Tanh)

I(X; T1)
I(X; T2)
I(X; T3)
I(X; Y)

0 100 200 300 400 500
0

1

2

3

4

MLP9(96-128-256 ReLU)

I(X; T1)
I(X; T2)
I(X; T3)
I(X; Y)

0 100 200 300 400 500
0

1

2

3
I(X; T1)
I(X; T2)
I(X; T3)
I(X; Y)

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4
I(X; T1)
I(X; T2)
I(X; T3)
I(X; Y)

0 100 200 300 400 500
0

1

2
I(X; T1)
I(X; T2)
I(X; T3)
I(X; Y)

0 100 200 300 400 500
0

1

2

3 I(Y; T1)
I(Y; T2)
I(Y; T3)
I(Y; Y)

0 100 200 300 400 500
0

1

2

3 I(Y; T1)
I(Y; T2)
I(Y; T3)
I(Y; Y)

0 100 200 300 400 500
0

1

2

3 I(Y; T1)
I(Y; T2)
I(Y; T3)
I(Y; Y)

0 100 200 300 400 500
0

2

4

6

I(X; TMLP)
I(Y; TMLP)

0 100 200 300 400 500
0

2

4

6

I(X; TMLP)
I(Y; TMLP)

0 100 200 300 400 500
0

2

4

6

I(X; TMLP)
I(Y; TMLP)

Figure 16: The information flow in MLP7, MLP8, and MLP9 on the MNIST dataset. All the x-axis index
training epochs. In each column, the first three figures show I(X;Ti), I(X̄;Ti), and I(Y ;Ti) respectively. The
forth figure shows I(X;TMLP) and I(Y ;TMLP) in a MLP. The pink line denotes H(Y) = log210.

25

	Introduction
	A probabilistic representation for deep learning
	The information theoretic explanations for deep learning
	Simulations
	Setup
	Validating the probability space and the mutual information estimator
	Validating the information theoretic explanations for DNNs

	Conclusion and future work
	Recent works about Gibbs explanations for a hidden layer
	The marginal distribution of the MLP
	The proof of Theorem 2
	The proof of H(Y) = I(X;Y)
	The detailed derivations and explanations for Corollary 1
	The proof of Corollary 2
	Studying non-parametric models for mutual information estimation
	Non-parametric models are sensitive to hyper-parameters
	Comparison to non-parametric models on the synthetic dataset
	Activations do not satisfy the i.i.d. prerequisite of non-parametric models

	Experiments on benchmark dataset
	Experiments on the MNIST dataset
	Experiments on the Fashion-MNIST dataset

