
Published as a conference paper at ICLR 2024

IMPLICITSLIM AND HOW IT IMPROVES
EMBEDDING-BASED COLLABORATIVE FILTERING

Ilya Shenbin & Sergey Nikolenko
St. Petersburg Department of the Steklov Mathematical Institute of the RAS
St. Petersburg, Russia
ilya.shenbin@gmail.com, sergey@logic.pdmi.ras.ru

ABSTRACT

We present ImplicitSLIM, a novel unsupervised learning approach for sparse
high-dimensional data, with applications to collaborative filtering. Sparse linear
methods (SLIM) and their variations show outstanding performance, but they are
memory-intensive and hard to scale. ImplicitSLIM improves embedding-based
models by extracting embeddings from SLIM-like models in a computationally
cheap and memory-efficient way, without explicit learning of heavy SLIM-like
models. We show that ImplicitSLIM improves performance and speeds up con-
vergence for both state of the art and classical collaborative filtering methods.
The source code for ImplicitSLIM, related models, and applications is available
at https://github.com/ilya-shenbin/ImplicitSLIM.

1 INTRODUCTION

Learnable embeddings are a core part of many collaborative filtering (CF) models. Often they are
introduced and learned explicitly: e.g., matrix factorization (MF) models express feedback as a
product of two embedding matrices (Mnih & Salakhutdinov, 2007; Bell et al., 2007), autoencoders
map user feedback to embeddings via neural networks or other parameterized functions (Sedhain
et al., 2015; Liang et al., 2018; Lobel et al., 2019; Shenbin et al., 2020; Mirvakhabova et al., 2020),
while graph convolutional networks (GCN) (Wang et al., 2019; He et al., 2020) perform a diffusion
process between user and item embeddings starting from some initial values. In this work, we
propose an approach able to improve a wide variety of collaborative filtering models with learnable
embeddings.

Item-item methods, including kNN-based approaches (Sarwar et al., 2001) and sparse linear meth-
ods (SLIM) (Ning & Karypis, 2011), are making predictions based on item-item similarity. Previous
research shows that the item-item weight matrix learned by SLIM-like models can become a part of
other collaborative filtering models; e.g., RecWalk uses it as a transition probability matrix (Niko-
lakopoulos & Karypis, 2019). In this work, we reuse the item-item weight matrix in order to enrich
embedding-based models with information on item-item interactions. Another motivation for our
approach stems from nonlinear dimensionality reduction methods (e.g., VAEs) applied to collabo-
rative filtering (Shenbin et al., 2020). We consider a group of manifold learning methods that aim
to preserve the structure of data in the embedding space, that is, they force embeddings of similar
objects to be similar. A related idea has already been used in collaborative filtering models, e.g.
by Rao et al. (2015).

We propose an approach called ImplicitSLIM that performs nonlinear unsupervised learning of em-
beddings that can be further used for making recommendations. The name ImplicitSLIM means that
it allows to extract useful data from SLIM-like models without explicitly training SLIM itself and
does not refer to models with explicit or implicit feedback (however, we consider only the case of
implicit feedback). ImplicitSLIM learns item or user embeddings with closed form solutions that do
not require computationally intensive operations. The resulting embeddings can be used for initial-
ization or regularization of item and/or user embeddings for a wide variety of other methods, from
matrix factorization to autoencoder-based approaches and models based on graph convolutional net-
works, and also for RNN- or Transformer-based sequential models. In most cases, we find that
ImplicitSLIM improves the final recommendation results, often very significantly. By adding Im-

1

https://github.com/ilya-shenbin/ImplicitSLIM

Published as a conference paper at ICLR 2024

plicitSLIM to nonlinear VAEs such as RecVAE (Shenbin et al., 2020) and H+Vamp(Gated) (Kim &
Suh, 2019), we have been able to improve state of the art results on the MovieLens-20M and Netflix
Prize datasets.

Our method builds upon two known approaches. First, we consider locally linear embeddings (LLE)
(Roweis & Saul, 2000), a nonlinear manifold learning method which is surprisingly well suited for
our idea. LLE consists of two linear steps. The first step is very similar to SLIM, that is, it learns the
weights for optimal reconstruction of data samples from their nearest neighbours, and on the second
step low-dimensional embeddings are extracted from learned weights. In ImplicitSLIM, we modify
this procedure as follows: first, extracted embeddings are obtained given some prior embeddings,
that is, we turn LLE into a procedure that consistently improves embeddings; second, we compress
the two-step procedure into a single step without explicit computation of the intermediate weight
matrix, which significantly reduces the costs in both computation and memory. Another approach
that we use in our method is EASE (Steck, 2019). It is a slightly simplified case of SLIM with a
closed form solution. A later empirical study by Steck et al. (2020) showed that features of SLIM that
are dropped in EASE do not significantly improve performance in case of a large number of users.
In this work, we consider ImplicitSLIM based only on EASE, but we note upfront that the proposed
approach could also be based on some other variations of SLIM with a closed-form solution, e.g.,
full-rank DLAE or EDLAE (Steck, 2020). Although the proposed method learns low-dimensional
embeddings, we do not aim to construct a low-rank approximation of SLIM, as do, e.g., Jin et al.
(2021) and Kabbur et al. (2013), but aim to improve other existing models with SLIM.

Below, Section 2 shows the necessary background, Section 3 develops ImplicitSLIM, Section 4 inte-
grates it into various collaborative filtering models, Section 5 introduces the baselines and presents
our experimental evaluation, Section 7 reviews related work, and Section 8 concludes the paper.

2 PRELIMINARIES

In this section we describe the approaches that provide the background and motivation for Implic-
itSLIM; for a survey of other related work see Section 7. Consider an implicit feedback matrix
X ∈ {0, 1}U×I , where Xui = 1 if the u-th user positively interacted with (liked, watched etc.) the
i-th item (movie, good etc.) and Xui = 0 otherwise, and U and I are the numbers of users and items
respectively. For low-rank models, we denote the embedding dimension by L.

Sparse Linear Methods (SLIM) is a family of item-based approaches originally proposed by Ning
& Karypis (2011) and further extended by Christakopoulou & Karypis (2014; 2016); Steck et al.
(2020), and Steck (2020). The core idea of SLIM is to learn to reconstruct user feedback for a
given item as a linear combination of feedback from the same user for other items. We focus on
Embarrassingly Shallow Autoencoders (EASE) (Steck, 2019), a special case of SLIM that, critically
for our approach, admits a closed form solution. EASE can be trained by solving the following
optimization task:

B̂ = argminB ∥X−XB∥2F + λ∥B∥2F s.t. diagB = 0, (1)
where ∥ · ∥F is the Frobenius norm and diagB is the diagonal of B; the constraint forbids the trivial
solution B̂ = I. Problem (1) can be solved exactly with Lagrange multipliers, getting

B̂ = I− P̂diagMat(1⊘ diag P̂), (2)

where P̂
def
= (X⊤X + λI)−1, diagMat(x) is a diagonal matrix with vector x on the diagonal, 1

is a vector of ones, and ⊘ denotes element-wise division; see Steck (2019) for detailed derivations.
SLIM has impressive performance but quadratic space complexity and nearly cubic time complexity.
Elements of B̂ that are close to zero can be zeroed, which leads to a highly sparse matrix and can
partially solve the memory issue, but it will not reduce memory costs during training.

Locally Linear Embeddings (LLE) is a nonlinear dimensionality reduction method (Roweis &
Saul, 2000; Saul & Roweis, 2003; Chojnacki & Brooks, 2009; Ghojogh et al., 2020). For consis-
tency, we introduce LLE in modified notation; Appendix A.1 links it to the original. We denote the
i-th data sample as X∗i and the set of indices for nearest neighbors of the i-th sample by NN(i). LLE
works in two steps. First, it finds the matrix of local coordinate vectors B̂ as

B̂ = argminB
∑

i
∥X∗i −

∑
j∈NN(i)

X∗jBji∥22 s.t. B⊤1 = 1, (3)

2

Published as a conference paper at ICLR 2024

where B̂ji = 0 if j /∈ NN(i). The matrix B̂ is invariant to scaling, orthogonal transformations, and
translations of data samples; note that translation invariance is a result of the sum-to-one constraint.

On the second step, LLE finds the embedding matrix V̂ given the sparse matrix B̂:

V̂ = argminV ∥V −VB̂∥2F s.t. VV⊤ = nI, V1 = 0. (4)

The first constraint forbids the zero solution; the second removes the translational degree of freedom.

Regularization of embeddings plays an important role for collaborative filtering models, could be
performed with uninformative priors on embeddings (Mnih & Salakhutdinov, 2007), context infor-
mation (McAuley & Leskovec, 2013; Ling et al., 2014), or information on item-item interactions to
regularize item embeddings (or, symmetrically, user embeddings). Liang et al. (2016) and Nguyen
et al. (2017) learn matrix factorization embeddings jointly with item embeddings obtained from the
cooccurrence matrix with a word2vec-like approach. Rao et al. (2015) use graph regularization,
minimizing the distance between item embeddings that are similar according to a given adjacency
matrix Ã, i.e., optimizing the following penalty function:

LGRAPH REG(Q) = tr
(
QLQ⊤) =∑

i,j
Ãij∥Q∗i −Q∗j∥22, (5)

where L is the graph Laplacian matrix corresponding to adjacency matrix Ã and Q is the L×I item
embedding matrix. We will return to regularization of item embeddings in Section 4.

3 PROPOSED APPROACH

3.1 SLIM AS LLE

Consider the first step of LLE defined in (3). We propose to use the neighborhood function NN(i) =
{1, 2, . . . , I}\{i}; we can rewrite (3) as

B̂ = argminB ∥X−XB∥2F , s.t. B⊤1 = 1, diagB = 0.

Due to this choice of the neighborhood function, we obtain a simpler closed-form solution for this
optimization problem (compared to the general solution from LLE), which will make it possible to
perform the main trick in Section 3.2. Moreover, now this problem is very similar to the EASE
optimization task (1), but with an additional constraint that columns of B sum to one and without a
Frobenius norm regularizer on B. The latter was claimed to be an important feature of SLIM (Steck,
2019); a similar regularizer was proposed by the authors of LLE (Saul & Roweis, 2003). Therefore,
we propose to bring it back, computing B̂ as follows:

B̂ = argminB ∥X−XB∥2F + λ∥B∥2F s.t. B⊤1 = 1, diagB = 0. (6)

See Appendix A.2 for the solution of this optimization task. Thus, we have introduced a new form
of LLE and shown that EASE can be considered as the first step of LLE without the sum-to-one con-
straint. Now we can extract item embeddings with LLE using a first step inspired by EASE: (i) first
compute B̂ with (6) using EASE with the sum-to-one constraint, then (ii) find the embeddings by
solving (4). We call this approach SLIM-LLE. The same procedure with the transposed feedback
matrix X⊤ will extract user embeddings instead of item embeddings. However, SLIM-LLE is com-
putationally intensive, not memory efficient, and cannot use available embeddings as priors. In what
follows, we fix these drawbacks.

3.2 IMPLICITSLIM

We now revisit the second step of LLE (4). Suppose that we want to obtain embeddings close to
a given matrix of item embeddings Q. Instead of (4), we introduce the following unconstrained
optimization problem:

V̂ = argminV ∥V −VB̂∥2F + α∥(V −Q)A⊤∥2F , (7)

where α is a nonnegative regularization coefficient and A is an auxiliary weight matrix whose key
purpose will be exposed at the end of this subsection. As we will see below, this problem has a

3

Published as a conference paper at ICLR 2024

unique nonzero solution, hence constraints from the second step of LLE are not necessary here. The
sum-to-one constraint in the first step of LLE (3) implicitly ensures the sum-to-zero constraint of the
second step of LLE (4), but we have redefined the second step (7) as an unconstrained optimization
problem, so now there is no technical need in the sum-to-one constraint; it also provides translational
invariance, but we do not have a good reason why it could be useful here. Hence we drop the sum-
to-one constraint to obtain a simpler closed form solution for the first step, i.e., we use the EASE
problem (1) directly as the first step of LLE (Appendix E.2 examines this choice empirically). The
ultimate reason for dropping the sum-to-one constraint is that the resulting form of the first step will
allow us to avoid explicitly calculating the matrix B̂, as we will show below in this section.

We can now find a closed form solution for (7):

V̂ = αQA⊤A
(
(B̂− I)(B̂− I)⊤ + αA⊤A

)−1

. (8)

Now we can substitute here the first step solution (2), which further (drastically) simplifies the
calculations. Recall from (2) that B̂ = I − P̂D−1

P̂
, where DP̂

def
= diagMat(diag P̂), i.e., DP̂ is

equal to P̂ with zeroed non-diagonal elements. Also recall that P̂ def
= (X⊤X+ λI)−1, where λ was

introduced in (1), so P̂ is symmetric. Therefore,

V̂ = αQA⊤A
(
P̂D−2

P̂
P̂+ αA⊤A

)−1

. (9)

We now see that (7) actually has a unique nonzero solution if P̂ is full-rank, which is true if λ
from (1) is positive. To compute it, we have to invert I × I matrices twice, which is the main
computational bottleneck here. Using the Woodbury matrix identity, we rewrite (9) as

V̂ = αQA⊤A
(
R−1 −R−1A⊤ (α−1I+AR−1A⊤)−1

AR−1
)
, (10)

where R is introduced to abbreviate the formulas and is defined as

R
def
= P̂D−2

P̂
P̂, i.e., R−1 = (X⊤X+ λI)D2

P̂
(X⊤X+ λI). (11)

The most troublesome multiplier here is DP̂; we approximate it as (see Appendix A.3 for deriva-
tions)

DP̂ ≈ D−1

P̂−1
= diagMat(1⊘ diag(X⊤X+ λI)). (12)

Assuming A is an L × I matrix with L ≪ I , and using the approximation shown above, we avoid
the inversion of I × I matrices in (10) by reducing it to inverting L×L matrices. Moreover, we can
avoid even storing and multiplying I × I matrices with a closer look at (10). First, we expand the
brackets in (10) and (11), and calculate AR−1, which we denote as F def

= AR−1:

F = AX⊤XD2
P̂
X⊤X+ λAD2

PX
⊤X+ λAX⊤XD2

P̂
+ λ2AD2

P̂
. (13)

Now we can rewrite (10) as

V̂ = αQA⊤(F− FA⊤(α−1I+ FA⊤)−1F) =

= αQA⊤(F− (I− (I+ αFA⊤)−1)F).
(14)

In (13) and (14), any intermediate result is at most an L ×max(U, I) matrix, which makes Implic-
itSLIM much more computationally and memory efficient than explicit computation of (2) and (8).
Now we are dealing only with matrices of moderate size, whose number of elements depends lin-
early on the number of items or users in the worst case, except for the sparse feedback matrix X.
Note that we have introduced the auxiliary weight matrix A in (7) and then assumed that it is an
L × I matrix with L ≪ I , but we still have not specified the matrix A. We propose to set it equal
to Q, so the regularizer ∥VQ⊤ −QQ⊤∥2F from (7) could be considered as approximate pairwise
distance. Appendix E.2 compares it empirically with a more natural-looking regularizer ∥V−Q∥2F .

Overall, in this section we have motivated and introduced ImplicitSLIM, a method inspired by SLIM
and LLE; we have shown how it can be derived and efficiently implemented. We also showed a
predecessor of ImplicitSLIM, SLIM-LLE, which is a special case of LLE.

4

Published as a conference paper at ICLR 2024

4 IMPLICITSLIM WITH OTHER MODELS

4.1 GENERAL SCENARIO

ImplicitSLIM is not a standalone approach. Below, we show how embeddings obtained with Implic-
itSLIM can be applied to existing models. First, the item embeddings matrix Q of a given model
can be initialized with ImplicitSLIM or SLIM-LLE. Since ImplicitSLIM itself requires an embed-
ding matrix as input, which could be initialized either randomly (e.g., from the standard normal
distribution), with the output of ImplicitSLIM/SLIM-LLE (improving the embeddings iteratively),
or with an external model. Moreover, when we are training a collaborative filtering model we can
send its embeddings matrix Q to ImplicitSLIM and replace it with the result (V̂ in Section 3.2)
immediately before the update of Q (not necessarily every update). This procedure may be less
stable than minimizing the distance between Q and ImplicitSLIM output but requires fewer calls to
ImplicitSLIM.

4.2 SLIM REGULARIZATION

In this section we first briefly suspend the discussion of ImplicitSLIM to introduce and motivate the
SLIM regularizer, and then show how we can take advantage of it in an efficient way via Implicit-
SLIM. Inspired by LLE, specifically by its second step (4), we define the SLIM regularizer as

LSLIM REG(Q) = ∥Q−QB̂∥2F =
∑

i
∥Q∗i −

∑
j
Q∗jB̂ji∥22, (15)

where B̂ is the item-item similarity matrix from SLIM. This penalty function forces each item
embedding to be close to the linear combination of other embeddings with coefficients learned by
SLIM. Unfortunately, using this regularizer could be computationally costly and, moreover, it needs
a precomputed matrix B̂, which takes away scalability. We emphasize that LSLIM REG is equal to the
graph regularizer (5) for certain matrices B̂, e.g. for one obtained from SLIM with the sum-to-one
constraint (6); see Appendix A.4 for details.

Let LCF(Θ,Q) be the loss function of some collaborative filtering model, where Q is the embedding
matrix and Θ represents other model parameters. Adding the SLIM regularizer, we get the following
loss function:

LCF + SLIM REG(Θ,Q) = LCF(Θ,Q) + LSLIM REG(Q) (16)
We propose to optimize the resulting loss function by alternating optimization of both terms. In
order to perform this optimization, we relax LCF + SLIM REG as

LRELAXED
CF + SLIM REG(Θ,Q,V) = LCF(Θ,Q) + LSLIM REG(V) + α · d(Q,V),

where d(Q,V) is the distance between two embedding matrices Q and V such that
LCF + SLIM REG(Θ,Q) = LRELAXED

CF + SLIM REG(Θ,Q,Q). Now we can update the loss function w.r.t. (Θ,Q)
and V alternately. Let d(Q,V) = ∥(V −Q)A⊤∥2F ; then

V̂ = argminV LRELAXED
CF + SLIM REG(Θ,Q,V) = argminV ∥V −VB̂∥2F + α∥(V −Q)A⊤∥2F ,

which is the same as (7), so V̂ is equal to the embeddings extracted with ImplicitSLIM. This means
that we can compute V̂ efficiently and even without an explicit computation of B̂ by using the results
of Section 3.2.

5 EXPERIMENTAL EVALUATION

For experiments, we follow the basic evaluation setup by Liang et al. (2018). We test the pro-
posed approaches on three datasets: MovieLens-20M1 (Harper & Konstan, 2015), Netflix Prize
Dataset2 (Bennett et al., 2007), and Million Songs Dataset3 (Bertin-Mahieux et al., 2011), com-
paring models in terms of the ranking metrics Recall@k and NDCG@k. Experiments are con-
ducted in the strong generalization setting (Marlin, 2004): users in the training, validation, and test

1https://grouplens.org/datasets/movielens/20m/
2https://www.netflixprize.com/
3http://millionsongdataset.com/

5

https://grouplens.org/datasets/movielens/20m/
https://www.netflixprize.com/
http://millionsongdataset.com/

Published as a conference paper at ICLR 2024

subsets are disjoint. We also perform additional benchmarking in the setup by He et al. (2020)
on Yelp2018 (Wang et al., 2019) and MovieLens-1M4 (Harper & Konstan, 2015) datasets. There
datasets are split into train/test subsets along the ratings, i.e., according to the weak generalization
setting. Moreover, we test our approach in the setup by Sun et al. (2019) on the MovieLens-1M and
MovieLens-20M datasets discussed above. Here the last and the penultimate feedback of every user
are used as test and validation data respectively, while the remaining feedback is used as training
data. In this setting, sampled metrics are employed in order to speed up computation. The choice of
these three setups is determined by the models to which we apply the proposed method. In order to
achieve a fair comparison of the results, we inherited dataset splits, metrics, and evaluation strategies
from the corresponding setups.

We have selected a number of different models as baselines: (1) matrix factorization (MF); we con-
sider MF trained with ALS with uniform weights (Hu et al., 2008), which is a simple and compu-
tationally efficient baseline, and also weighted matrix factorization (WMF) (Hu et al., 2008) trained
with eALS (He et al., 2016); (2) MF augmented with regularization based on item-item interac-
tions; here we selected CoFactor (Liang et al., 2016), which combines MF and word2vec, and
GRALS (Rao et al., 2015) that employs graph regularization; (3) linear models; we have chosen
full-rank models SLIM (Ning & Karypis, 2011) and EASE (Steck, 2019) and a low-rank model
PLRec (Sedhain et al., 2016) (we use only I-Linear-FLow); (4) nonlinear autoencoders; here we
consider the shallow autoencoder CDAE (Wu et al., 2016), variational autoencoder MultVAE (Liang
et al., 2018), and its successors: RaCT (Lobel et al., 2019), RecVAE (Shenbin et al., 2020), and
H+Vamp(Gated) (Kim & Suh, 2019). Details on the implementation and evaluation of baselines are
provided in Appendix B.

ImplicitSLIM is not a standalone approach; thus, we have chosen several downstream models to
evaluate it. As MF and PLRec are simple and lightweight models, we used them as downstream
models for extended experiments with ImplicitSLIM and SLIM-LLE. There are lots of ways to uti-
lize embeddings from ImplicitSLIM in downstream models, but for the experimental section we have
selected several that are most demonstrative and effective. Apart from MF evaluation in its vanilla
form, we use the following setups for MF as a downstream model: (1) ImplicitSLIM init+reg,
where item embeddings are regularized by ImplicitSLIM and initialized by ImplicitSLIM that gets a
sample from the standard normal distribution as input; (2) SLIM-LLE init and ImplicitSLIM init,
where item embeddings are initialized respectively by SLIM-LLE and by applying ImplicitSLIM
repeatedly several times; in both cases, the corresponding loss function is minimized to obtain user
embeddings at the validation/test stage only, i.e., there is no training phase, only hyperparameter
search; We use similar setups for PLRec-based experiments. PLRec has two item embedding ma-
trices, W and Q; the first one is fixed, and the latter is learnable. When using PLRec with setups
defined above, initialization applies only to W: it is meaningless to initialize Q since we have a
closed form solution for Q; on the other hand, regularization is applied only to Q since W is fixed.
Other differences are that the SLIM-LLE init setup applied to PLRec has a training phase which
is a single update of Q, and in ImplicitSLIM init+reg it is initialized by applying ImplicitSLIM
repeatedly.

We also have applied ImplicitSLIM to other methods. WMF is hard to scale, so we tested it only with
small embedding dimensions in the ImplicitSLIM init+reg setup. Among nonlinear autoencoders
we selected the most successful ones, namely RecVAE and H+Vamp(Gated), to evaluate them with
ImplicitSLIM as regularizer. Unlike MF and PLRec, these models are trained using stochastic gra-
dient descent (SGD), so we need a different scenario of applying ImplicitSLIM. Namely, we have
found that the best performing procedure for models of this kind is to feed current item embeddings
to ImplicitSLIM and update them with the resulting embeddings.

We did not apply ImplicitSLIM to CoFactor and GRALS since both have their own regularization
techniques that utilize item-item interaction. We also did not apply ImplicitSLIM to SLIM and EASE
since our approach can be applied to embedding-based models only.

In addition, we consider UltraGCN (Mao et al., 2021), which is a state of the art GCN-influenced
embedding-based model according to Zhu et al. (2022). It has trainable embeddings for both users
and items, and the same users are considered in both train and test time. This allows us to ap-
ply ImplicitSLIM not only for item embeddings but also for user embeddings. In both cases we

4https://grouplens.org/datasets/movielens/1m/

6

https://grouplens.org/datasets/movielens/1m/

Published as a conference paper at ICLR 2024

64 128 256 512 1024 2048 4096

0.38

0.40

0.42
MF MovieLens-20M

64 128 256 512 1024 2048 4096

0.35

0.36

0.37

0.38

0.39
MF Netflix Prize Dataset

64 128 256 512 1024 2048 4096
0.15

0.20

0.25

0.30

0.35

MF Million Songs Dataset

64 128 256 512 1024 2048 4096
0.39

0.40

0.41

0.42

PLRec MovieLens-20M

64 128 256 512 1024 2048 4096

0.36

0.37

0.38

0.39
PLRec Netflix Prize Dataset

64 128 256 512 1024 2048 4096

0.20

0.25

0.30

0.35

PLRec Million Songs Dataset

vanilla ImplicitSLIM init + reg ImplicitSLIM init SLIM-LLE init

Figure 1: ImplicitSLIM and SLIM-LLE applied to MF and PLRec (setups defined in Section 5); the
X-axis shows embedding dimensions, the Y-axis shows NDCG@100.

20 40 60 80 100
0.01
0.02
0.03
0.04
0.05
0.06

Y
el

p
20

18

UltraGCN
UltraGCN + ImplicitSLIM

20 40 60 80 100
0.40
0.41
0.42
0.43
0.44
0.45
0.46

M
L

-2
0M

RecVAE
RecVAE + ImplicitSLIM

50 100 150 200 250 300
0.36
0.37
0.38
0.39
0.40
0.41

N
et

fli
x

H+Vamp (Gated)
+ ImplicitSLIM

Figure 2: Sample convergence plots for state of the art models with ImpicitSLIM; the X-axis shows
training epochs; Y-axis, NDCG@20 metric on Yelp2018, NDCG@100 metric on other datasets.

update embeddings once in several epochs, similarly to nonlinear autoencoders. We also consider
BERT4Rec (Sun et al., 2019) as a popular sequential model with strong performance. See Ap-
pendix D for a detailed description of experimental setups and pseudocode.

6 RESULTS

Figure 1 presents the results of applying ImplicitSLIM and its variations to matrix factorization
(MF) and PLRec for different embedding dimensions (X-axis). Using ImplicitSLIM for both initial-
ization and regularization yields the best results in most cases. More interestingly, initialization by
ImplicitSLIM shows nearly equivalent performance, which means that embeddings obtained with
ImplicitSLIM are good enough to not have to update them with alternating least squares. Thus, Im-
plicitSLIM is not only more computationally efficient than other models but also performs better in
terms of prediction scores. The performance of SLIM-LLE varies greatly depending on the dataset
and downstream model, and in some cases outperforms ImplicitSLIM, but it lacks scalability (results
shown for SLIM-LLE are limited in embedding dimensions due to high computational costs).

Table 1 shows that MF and PLRec regularized by ImplicitSLIM are approaching EASE in perfor-
mance, especially in high dimensions, but are computationally cheaper and more memory-efficient
in most cases. Fig. 3 shows when ImplicitSLIM is preferable in terms of wall clock time and mem-
ory usage compared to vanilla MF and EASE (see Appendix E.1 for running time details). Note,
however, that EASE has only one hyperparameter while ImplicitSLIM and MF together have five.

7

Published as a conference paper at ICLR 2024

Table 1: Experimental results. The best results are highlighted in bold.

Model
MovieLens-20M Netflix Prize Dataset Million Songs Dataset

Recall Recall NDCG Recall Recall NDCG Recall Recall NDCG
@20 @50 @100 @20 @50 @100 @20 @50 @100

Matrix factorization

MF 0.367 0.498 0.399 0.335 0.422 0.369 0.258 0.353 0.314
+ImplicitSLIM 0.392 0.524 0.423 0.362 0.445 0.390 0.309 0.403 0.366

WMF 0.362 0.495 0.389 0.321 0.402 0.349 —
+ImplicitSLIM 0.372 0.502 0.400 0.326 0.409 0.365

Matrix factorization with item embeddings regularization

CoFactor 0.369 0.499 0.394 0.327 0.406 0.357 —
GRALS 0.376 0.505 0.401 0.335 0.416 0.365 0.201 0.275 0.245

Linear regression

SLIM 0.370 0.495 0.401 0.347 0.428 0.379 —
EASE 0.391 0.521 0.420 0.362 0.445 0.393 0.333 0.428 0.389

PLRec 0.394 0.527 0.426 0.357 0.441 0.390 0.286 0.383 0.344
+ImplicitSLIM 0.391 0.522 0.423 0.358 0.440 0.390 0.310 0.406 0.364

Nonlinear autoencoders

CDAE 0.391 0.523 0.418 0.343 0.428 0.376 0.188 0.283 0.237
MultVAE 0.395 0.537 0.426 0.351 0.444 0.386 0.266 0.364 0.316
RaCT 0.403 0.543 0.434 0.357 0.450 0.392 0.268 0.364 0.319

RecVAE 0.414 0.553 0.442 0.361 0.452 0.394 0.276 0.374 0.326
+ImplicitSLIM 0.419 0.559 0.447 0.365 0.455 0.398 0.291 0.391 0.342

H+Vamp(Gated) 0.413 0.551 0.445 0.377 0.463 0.407 0.289 0.381 0.342
+ImplicitSLIM 0.417 0.555 0.450 0.378 0.464 0.410 0.292 0.386 0.347

Table 2: Experimental results for GCN-based models.

Model Yelp2018 MovieLens-1M
Recall@20 NDCG@20 Recall@20 NDCG@20

LightGCN 0.0649 0.0530 0.2576 0.2427
UltraGCN 0.0683 0.0561 0.2787 0.2642

UltraGCN + ImplicitSLIM (users) 0.0689 0.0568 0.2778 0.2648
UltraGCN + ImplicitSLIM (items) 0.0692 0.0573 0.2790 0.2659

Table 3: Experimental results for BERT4Rec.

Model # of MovieLens-1M MovieLens-20M

epochs Recall Recall NDCG Recall Recall NDCG
@5 @10 @10 @5 @10 @10

BERT4Rec 30 0.612 0.729 0.511 0.895 0.952 0.780
BERT4Rec + ImplicitSLIM 0.660 0.765 0.549 0.904 0.959 0.789

BERT4Rec 200 0.645 0.758 0.545 0.901 0.953 0.790
BERT4Rec + ImplicitSLIM 0.671 0.771 0.564 0.910 0.961 0.798

Table 1 also shows that ImplicitSLIM significantly improves performance (by the one-tailed test at
the 95% confidence level) compared to all corresponding baselines except H+Vamp(Gated) on the
Netflix Prize dataset in terms of Recall@k. Another valuable result is that deep models trained with
ImplicitSLIM need about half as much time to achieve the best scores of deep models trained as is.
By combining ImplicitSLIM with nonlinear variational autoencoders, RecVAE and H+Vamp(Gated),
we have been able to improve over state of the art results on the MovieLens-20M and Netflix Prize
datasets. Note that ImplicitSLIM together with RecVAE (or H+Vamp(Gated)) performs better on
these datasets than both RecVAE and H+Vamp(Gated) and EASE. RecVAE with ImplicitSLIM per-
forms on par with improved MF on the Million Songs Dataset, but with a much smaller embedding

8

Published as a conference paper at ICLR 2024

dimension. Figure 2 shows sample convergence plots of UltraGCN and RecVAE with and without
ImplicitSLIM for three select cases; periodic drops on the plots correspond to epochs when item
embeddings were updated with ImplicitSLIM.

In our experiments, using user embeddings from ImplicitSLIM has not led to performance improve-
ments, but this may be due to the strong generalization setting employed in most experiments.

Further, we have applied ImplicitSLIM to UltraGCN (Mao et al., 2021), a state-of-the-art GCN-
based model, in the setup by He et al. (2020). Table 2 shows that we have succeeded in improving
the performance by applying ImplicitSLIM to user embeddings, although ImplicitSLIM applied to
item embeddings shows a significantly larger improvement. We note that both ImplicitSLIM and
GCN-related models rely significantly on the diffusion of embeddings, so it is actually a bit sur-
prising (albeit very encouraging) that ImplicitSLIM has been able to improve the performance of
UltraGCN. Finally, we have applied ImplicitSLIM to BERT4Rec (Sun et al., 2019), a sequential
model. Table 3 shows that although ImplicitSLIM does not take order into account, it can still be
useful for sequential models. Namely, ImplicitSLIM allows BERT4Rec to achieve its best results
in significantly fewer iterations, which is important for such heavy-weight models, and also im-
proves its final performance. Appendix E shows our evaluation study in more details, including a
detailed evaluation of specific models, runtime statistics, influence of ImplicitSLIM on unpopular
items, convergence plots etc.

7 RELATED WORK

Matrix factorization (MF) (Mnih & Salakhutdinov, 2007; Bell et al., 2007; Koren & Bell, 2011)
is a standard but still competitive CF baseline. Simple but high-performing alternative approaches
include Sparse Linear Methods (SLIM) (see Section 2); they are difficult to scale so there exist
low-rank variations such as factored item similarity models (FISM) (Kabbur et al., 2013). Other
approaches reduce the problem to low-dimensional regression (Sedhain et al., 2016) (see Section 5)
and perform low-dimensional decompositions of SLIM-like models (Jin et al., 2021). Nonlinear
generalizations include autoencoder-based models that learn to map user feedback to user embed-
dings instead of learning the embedding matrix explicitly. Early approaches used shallow autoen-
coders (Sedhain et al., 2015; Wu et al., 2016), and recently variational autoencoders have led to
better models (Liang et al., 2018; Lobel et al., 2019; Kim & Suh, 2019; Shenbin et al., 2020; Mir-
vakhabova et al., 2020). LRR (Jin et al., 2021) appears to be the model most similar to ours; it first
computes the item-item similarity matrix and then performs its low-rank approximation, avoiding
explicit computation of the similarity matrix by reducing the inversion of a large matrix to comput-
ing top eigenvectors; we reduce it to inverting a low-dimensional matrix. However, ImplicitSLIM
has a different motivation than LRR and different usage. Graph convolutional networks (GCN)
are relatively new in collaborative filtering; NFCF (Wang et al., 2019) and LightGCN (He et al.,
2020) were computationally heavy, and recent approaches such as GF-CF (Shen et al., 2021) and
UltraGCN (Mao et al., 2021) improved both performance and computational efficiency. Related
approaches that regularize embeddings based on item-item interactions are discussed in Section 4.
Dimensionality reduction methods can be either linear (e.g., PCA) or nonlinear, e.g., LLE (Roweis
& Saul, 2000; Ghojogh et al., 2020) and ISOMAP (Tenenbaum et al., 2000)/ Modern nonlinear
dimensionality reduction with VAEs (Kingma & Welling, 2014) has been successfully applied to
collaborative filtering, but in a different way than the use of LLE in this work.

8 CONCLUSION

In this work, we have presented ImplicitSLIM, a novel approach based on the EASE and LLE models
that can be used to initialize and/or regularize item and user embeddings for collaborative filtering
models. We have shown that ImplicitSLIM can improve many existing models in terms of both per-
formance and computational efficiency. We have applied ImplicitSLIM to MF, autoencoder-based,
and graph-based models, and in most cases shown consistent improvements over the corresponding
basic versions, achieving new state of the art results on classical datasets when applied to nonlinear
autoencoder-based models. We propose ImplicitSLIM as a generic approach able to improve many
collaborative filtering models.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

All datasets used in our paper are publicly available, either together with scripts that split
datasets into train/validation/test subsets (MovieLens-20M, Netflix Prize Dataset, and Million
Songs Dataset) or already available divided into train/test subsets (Yelp2018 and Movielens-1M).
Source code for the implementation of ImplicitSLIM sufficient to reproduce the most impor-
tant results of this paper is submitted as supplementary materials. The source code is available
on GitHub: https://github.com/ilya-shenbin/ImplicitSLIM. Furthermore, pseu-
docode of downstream methods is presented in Appendix D. The hyperparameter search process is
described in Appendix C, and all necessary derivations are presented in Appendix A.

ACKNOWLEDGMENTS

This work was performed at the Saint Petersburg Leonhard Euler International Mathematical In-
stitute and supported by the Ministry of Science and Higher Education of the Russian Federation
(Agreement no. 075-15-2022-289, dated 06/04/2022).

REFERENCES

Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at multiple scales to improve
accuracy of large recommender systems. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 95–104, 2007.

James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and workshop,
volume 2007, pp. 35. New York, 2007.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In Proceedings of the 12th International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

Wojciech Chojnacki and Michael J Brooks. A note on the locally linear embedding algorithm.
International Journal of Pattern Recognition and Artificial Intelligence, 23(08):1739–1752, 2009.

Evangelia Christakopoulou and George Karypis. Hoslim: Higher-order sparse linear method for top-
n recommender systems. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 38–49. Springer, 2014.

Evangelia Christakopoulou and George Karypis. Local item-item models for top-n recommendation.
In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 67–74, 2016.

Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Locally linear embedding and
its variants: Tutorial and survey. arXiv preprint arXiv:2011.10925, 2020.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factorization for
online recommendation with implicit feedback. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval, pp. 549–558, 2016.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets.
In 2008 Eighth IEEE international conference on data mining, pp. 263–272. Ieee, 2008.

Ruoming Jin, Dong Li, Jing Gao, Zhi Liu, Li Chen, and Yang Zhou. Towards a better understanding
of linear models for recommendation. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 776–785, 2021.

10

https://github.com/ilya-shenbin/ImplicitSLIM

Published as a conference paper at ICLR 2024

Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity models for top-n
recommender systems. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 659–667, 2013.

Daeryong Kim and Bongwon Suh. Enhancing vaes for collaborative filtering: flexible priors &
gating mechanisms. In Proceedings of the 13th ACM Conference on Recommender Systems, pp.
403–407, 2019.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Yehuda Koren and Robert M. Bell. Advances in collaborative filtering. In Francesco Ricci, Lior
Rokach, Bracha Shapira, and Paul B. Kantor (eds.), Recommender Systems Handbook, pp. 145–
186. Springer, 2011. ISBN 978-0-387-85819-7. URL http://dblp.uni-trier.de/db/
reference/rsh/rsh2011.html#KorenB11.

Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. Factorization meets the item
embedding: Regularizing matrix factorization with item co-occurrence. In Proceedings of the
10th ACM conference on recommender systems, pp. 59–66, 2016.

Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational autoencoders
for collaborative filtering. In Proceedings of the 2018 world wide web conference, pp. 689–698,
2018.

Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a combined approach to rec-
ommend. In Proceedings of the 8th ACM Conference on Recommender systems, pp. 105–112,
2014.

Sam Lobel, Chunyuan Li, Jianfeng Gao, and Lawrence Carin. Ract: Toward amortized ranking-
critical training for collaborative filtering. In International Conference on Learning Representa-
tions, 2019.

Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He. Ultragcn: Ultra
simplification of graph convolutional networks for recommendation. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp. 1253–1262, 2021.

Benjamin Marlin. Collaborative filtering: A machine learning perspective. University of Toronto
Toronto, 2004.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pp.
165–172, 2013.

Leyla Mirvakhabova, Evgeny Frolov, Valentin Khrulkov, Ivan Oseledets, and Alexander Tuzhilin.
Performance of hyperbolic geometry models on top-n recommendation tasks. In Fourteenth ACM
Conference on Recommender Systems, pp. 527–532, 2020.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. Advances in neural
information processing systems, 20, 2007.

ThaiBinh Nguyen, Kenro Aihara, and Atsuhiro Takasu. Collaborative item embedding model for
implicit feedback data. In International Conference on Web Engineering, pp. 336–348. Springer,
2017.

Athanasios N Nikolakopoulos and George Karypis. Recwalk: Nearly uncoupled random walks
for top-n recommendation. In Proceedings of the twelfth ACM international conference on web
search and data mining, pp. 150–158, 2019.

Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender systems. In
2011 IEEE 11th International Conference on Data Mining, pp. 497–506. IEEE, 2011.

11

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://dblp.uni-trier.de/db/reference/rsh/rsh2011.html#KorenB11
http://dblp.uni-trier.de/db/reference/rsh/rsh2011.html#KorenB11

Published as a conference paper at ICLR 2024

Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python, 2014. URL https://github.com/fmfn/BayesianOptimization.

Aleksandr Petrov and Craig Macdonald. A systematic review and replicability study of bert4rec
for sequential recommendation. In Proceedings of the 16th ACM Conference on Recommender
Systems, pp. 436–447, 2022.

Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Collaborative filtering
with graph information: Consistency and scalable methods. Advances in neural information
processing systems, 28, 2015.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on World Wide
Web, WWW ’01, pp. 285–295, New York, NY, USA, 2001. Association for Computing Machin-
ery. ISBN 1581133480. doi: 10.1145/371920.372071. URL https://doi.org/10.1145/
371920.372071.

Lawrence K Saul and Sam T Roweis. Think globally, fit locally: unsupervised learning of low
dimensional manifolds. Journal of machine learning research, 4(Jun):119–155, 2003.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders
meet collaborative filtering. In Proceedings of the 24th international conference on World Wide
Web, pp. 111–112, 2015.

Suvash Sedhain, Hung Bui, Jaya Kawale, Nikos Vlassis, Branislav Kveton, Aditya Krishna Menon,
Trung Bui, and Scott Sanner. Practical linear models for large-scale one-class collaborative filter-
ing. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
pp. 3854–3860, 2016.

Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B Khaled Letaief, and Dongsheng
Li. How powerful is graph convolution for recommendation? In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 1619–1629, 2021.

Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I Nikolenko. Recvae:
A new variational autoencoder for top-n recommendations with implicit feedback. In Proceedings
of the 13th International Conference on Web Search and Data Mining, pp. 528–536, 2020.

Harald Steck. Embarrassingly shallow autoencoders for sparse data. In The World Wide Web Con-
ference, pp. 3251–3257, 2019.

Harald Steck. Autoencoders that don’t overfit towards the identity. Advances in Neural Information
Processing Systems, 33:19598–19608, 2020.

Harald Steck, Maria Dimakopoulou, Nickolai Riabov, and Tony Jebara. Admm slim: Sparse recom-
mendations for many users. In Proceedings of the 13th International Conference on Web Search
and Data Mining, pp. 555–563, 2020.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. In Proceedings
of the 28th ACM international conference on information and knowledge management, pp. 1441–
1450, 2019.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

12

https://github.com/fmfn/BayesianOptimization
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071

Published as a conference paper at ICLR 2024

Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the ninth ACM international confer-
ence on web search and data mining, pp. 153–162, 2016.

Daniel Zelazo and Mathias Bürger. On the definiteness of the weighted laplacian and its connection
to effective resistance. In 53rd IEEE Conference on Decision and Control, pp. 2895–2900. IEEE,
2014.

Jieming Zhu, Kelong Mao, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Zhicheng
Dou, Xi Xiao, and Rui Zhang. Bars: Towards open benchmarking for recommender systems.
arXiv preprint arXiv:2205.09626, 2022.

13

Published as a conference paper at ICLR 2024

A PROOFS AND DERIVATIONS

A.1 DEFINITION OF LLE

In this section we introduce LLE as it was done in the original works by Roweis & Saul (2000);
Saul & Roweis (2003). We denote by Di∗ the i-th data sample, by Wi∗ its local coordinate vector,
and by NN(i) the set of indices for nearest neighbors of the i-th data sample; n is the number of data
samples. The first step is to find the matrix Ŵ:

Ŵ = argminW
∑
i

∥∥∥∥∥∥Di∗ −
∑

j∈NN(i)

WijDj∗

∥∥∥∥∥∥
2

2

s.t.
∑
j

Wij = 1, (17)

where Ŵij = 0 if j /∈ NN(i). On the second step, LLE finds the embedding matrix Ŷ given the
sparse matrix Ŵ:

Ŷ = argminY
∑
i

∥∥∥∥∥∥Yi∗ −
∑
j

ŴijYj∗

∥∥∥∥∥∥
2

2

s.t.
1

n

∑
i

Yi∗Y
⊤
i∗ = I,

∑
i

Yij = 0.

(18)

Denoting D = X⊤, W = B⊤, and Y = V⊤ we can rewrite (17) and (18) in this notation as

B̂ = argminB
∑
i

∥∥∥∥∥∥X∗i −
∑

j∈NN(i)

X∗jBji

∥∥∥∥∥∥
2

2

s.t.
∑
j

Bji = 1, (19)

V̂ = argminV
∑
i

∥∥∥∥∥∥V∗i −
∑
j

V∗jB̂ji

∥∥∥∥∥∥
2

2

s.t.
1

n

∑
i

V∗iV
⊤
∗i = I,

∑
i

Vji = 0.

(20)

Rewriting formulas (19) and (20) in matrix form whenever possible, we derive (3) and (4) respec-
tively.

A.2 DERIVATION OF SLIM-LLE

To get the item-item interaction matrix from the first step

B̂ = argminB ∥X−XB∥2F + λ∥B∥2F s.t. B⊤1 = 1, diagB = 0, (21)
we have to solve the following system of linear equations:

∂

∂B

(
∥X−XB∥2F + λ∥B∥2F + 2γTdiag (B) + 2κT (BT1− 1)

)
= 0,

B⊤1 = 1,

diagB = 0.

(22)

The solution is

B̂ = I−

(
P̂− P̂1(P̂1)T

1T P̂1

)
diagMat

(
1⊘ diag

(
P̂− P̂1(P̂1)T

1T P̂1

))
,

where P̂
def
= (X⊤X+ λI)−1.

14

Published as a conference paper at ICLR 2024

A.3 DIAGONAL OF THE INVERSE OF A MATRIX

We begin by representing the inverse of a matrix A as an infinite sum derived from the Neumann
series:

A−1 =

∞∑
n=0

(I−A)n. (23)

We note that B−1 = D−1DB−1 = D−1
(
BD−1

)−1
, where D

def
= diagMat(diagB), and substi-

tute A = BD−1 into (23) to obtain

B−1 = D−1
∞∑

n=0

(
I−BD−1

)n
. (24)

We now approximate B−1 with the first two terms of the Neumann series:

B−1 ≈ D−1
(
I+

(
I−BD−1

))
.

Since we need only diagB−1 rather than the full matrix B−1, we simplify the result to

diagB−1 ≈ diag(D−1
(
I+

(
I−BD−1

))
) = 2D−1 − diag(D−1BD−1) = D−1.

Next we show that the series (24) converges:∥∥∥∥∥
∞∑

n=0

(
I−BD−1

)n∥∥∥∥∥
1

≤
∞∑

n=0

∥∥I−BD−1
∥∥n
1
.

As we defined earlier, Bij = X⊤
∗iX∗j + λ Ji = jK, X ∈ {0, 1}U×I , λ > 0, and Dij =(

X⊤
∗iX∗j + λ

)
Ji = jK, where J·K is the indicator function. Then∥∥I−BD−1

∥∥
1
=max

j

∑
i

∣∣∣Ji = jK−
(
BD−1

)
ij

∣∣∣ =
=max

j

∑
i

∣∣∣∣∣Ji = jK− X⊤
∗iX∗j + λ Ji = jK
X⊤

∗jX∗j + λ

∣∣∣∣∣ =
=max

j

∑
i

∣∣∣∣∣
(
Ji = jKX⊤

∗j −X⊤
∗i
)
X∗j

X⊤
∗jX∗j + λ

∣∣∣∣∣
=max

j

∑
i:i̸=j X

⊤
∗iX∗j

X⊤
∗jX∗j + λ

≤ max
j

(I − 1)X⊤
∗jX∗j

X⊤
∗jX∗j + λ

.

Thus, if λ > (I − 2)maxj
(
X⊤

∗jX∗j
)

then
∥∥I−BD−1

∥∥
1
< 1, and the series in (24) converges.

A.4 LLE AND GRAPH REGULARIZATION

We can represent the SLIM regularizer (15) as a graph regularizer (5):

∥Q−QB̂∥2F = ∥Q(I− B̂)∥2F = tr
(
Q(I− B̂)(I− B̂)TQT

)
def
= tr

(
QL̂QT

)
,

Here L̂ is a positive semi-definite matrix since it is a Gram matrix. However, in general L̂ is not a
graph Laplacian matrix.

Assuming that B̂⊤1 = 1 and diag B̂ = 0, we get

L̂1 = (I− B̂)(I− B̂)T1 = (I− B̂)0 = 0.

Since L̂ is also a symmetric matrix, the sum of any row or column is equal to zero. As a result, there
exists such an adjacency matrix Â that L̂ is the corresponding graph Laplacian matrix, and

Â = diagMat(diag(L̂))− L̂.

15

Published as a conference paper at ICLR 2024

Algorithm 1: Pseudocode for vanilla matrix factorization
Data: dataset X, number of iterations k, hyperparameters rp, rq
Result: item embeddings matrix Q
Q← standart Gaussian noise ;
for i← 1 to k do

P← argminP LMF(Xtrain,Q, rp);
Q← argminQ LMF(Xtrain,P, rq);
evaluate(Xvalid,Q, rp);
if current validation score < the best validation score then

break;
end

end

Note that some values in Â could be negative; while it is uncommon to consider a graph Laplacian
matrix for a graph with negative weight edges, such matrices have been introduced in some papers,
in particular by Zelazo & Bürger (2014). Fortunately, even despite the presence of negative values in
the adjacency matrix the graph regularizer is still equal to the weighted sum of pairwise distances (5).

As a result, we claim that the SLIM regularizer with matrix B̂ taken from SLIM-LLE is equal to the
graph regularizer. Unfortunately, this equality does not hold for the matrix B̂ taken from EASE.

B ADDITIONAL DETAILS ON BASELINES

B.1 MATRIX FACTORIZATION

The MF model we used in our experiments is defined by the following loss function:

LMF(P,Q) = ∥X−P⊤Q∥2F + rp∥P∥2F + rq∥Q∥2F , (25)

where P ∈ RL×U is the user embeddings matrix, Q ∈ RL×I is the item embeddings matrix, and rp
and rq are regularization coefficients. LMF(P,Q) can be optimized with alternating least squares
(ALS).

We used eALS5 as an implementation of WMF, but had to adapt it to the strong generalization
setting, so that the model would be comparable to others.

For MF and WMF, we can easily obtain embeddings of held-out users from validation/test sets in
the same way we update user embeddings during training using the closed form solution for user
embeddings given fixed item embeddings and held-out validation/test feedback matrix.

B.2 MATRIX FACTORIZATION WITH ITEM EMBEDDINGS REGULARIZATION

CoFactor was evaluated in a different setup in the original papers, so we had to re-evaluate it. We
use a publicly available implementation of CoFactor6, but similarly to eALS we have had to adapt it
to the strong generalization setting.

Since there is no publicly available implementation of GRALS, we have implemented it indepen-
dently. We use the cooccurrence matrix X⊤X as the adjacency matrix with diagonal elements
zeroed. Following the experimental results of He et al. (2020), we use the symmetrically normalized
graph Laplacian. Graph regularization was applied to item embeddings only to be consistent with
other experiments.

In order to update item embeddings in GRALS we have to solve the Sylvester equation, which
requires us to compute the eigenvectors of a large matrix on every step of the ALS algorithm. To
avoid this computation, we propose to update item embeddings using gradient descent with optimal
step size search, which just slightly hurts performance in terms of ranking metrics while being much
more computationally efficient.

5https://github.com/newspicks/eals
6https://github.com/dawenl/cofactor

16

https://github.com/newspicks/eals
https://github.com/dawenl/cofactor

Published as a conference paper at ICLR 2024

Algorithm 2: Pseudocode for the vanilla PLRec
Data: dataset X, hyperparameter rq
Result: item embeddings matrix Q
W← initialize using SVD ;
Q← argminQ LPLREC(Xtrain,W, rq);
evaluate(Xvalid,Q, rp);

B.3 LINEAR MODELS

We use SLIM (Ning & Karypis, 2011) and EASE (Steck, 2019) as baselines, taking the scores of
SLIM from (Liang et al., 2018), and scores of EASE from (Steck, 2019).

For our experiments we have reimplemented PLRec, we consider the following objective function:

LPLREC(Q) = ∥X−XW⊤Q∥2F + rq∥Q∥2F . (26)

There are two item embedding matrices in this model: W projects user ratings into a low-
dimensional space and Q maps user embeddings to predicted user ratings. Matrix W is assumed to
be initialized by the SVD item embeddings matrix, and is fixed during training.

We have found that normalizing the columns of X before projecting into a low-dimensional space
significantly improves the performance. Specifically, in our experiments we replaced W⊤ in (26)
with N−1W⊤, where N is a diagonal matrix with Nii = ∥X∗i∥n1 , where n is a parameter to be
tuned during cross-validation.

B.4 NONLINEAR AUTOENCODERS

We consider several nonlinear autoencoders as baselines: CDAE (Wu et al., 2016), MultVAE (Liang
et al., 2018), RaCT (Lobel et al., 2019), RecVAE (Shenbin et al., 2020), and H+Vamp(Gated) (Kim
& Suh, 2019). Scores for these models were taken from the corresponding papers, except for CDAE
where we took them from (Liang et al., 2018). Also, scores of H+Vamp(Gated) on Million Song
Dataset were not published in original paper, so we get the scores ourselves using original imple-
mentation of this model.

C HYPERPARAMETER SEARCH

We use the BayesianOptimization library (Nogueira, 2014) for hyperparameter search. At every step
of Bayesian optimization, we evaluate the model with the current set of hyperparameters. When the
hyperparameter search procedure ends, we select the set of hyperparameters that maximizes the
validation score; then we use the selected set of hyperparameters to evaluate the model on test data.

Learning a large number of models is time-consuming for models with high-dimensional embed-
dings. In order to speed it up, we start hyperparameter search with low-dimensional embeddings.
When we terminate the search procedure for the current dimensionality, we increase the dimen-
sionality and begin a new hyperparameter search, but begin to evaluate the model on the set of
hyperparameters that was chosen as best at the previous dimensionality. This narrows down the
search in larger dimensions and can find sufficiently good hyperparameters much faster, especially
for heavyweight models.

We perform at least 200 steps of Bayesian optimization for every model, with the exception of most
heavyweight models, for which we introduce an additional external restriction of a ten hour limit
per model.

The heaviest setup for training MF and PLRec is SLIM-LLE init. Unlike the others, it requires
huge matrix inversions and computation of eigenvectors for the smallest eigenvalues. As a result,
computational costs for this setting are much higher, especially when the dimensionality of embed-
dings is large. Hence we have limited the evaluation of this setup on the Million Song Dataset with
embedding dimensions equal to 1024 and lower. Additionally, we have precomputed LLE-SLIM

17

Published as a conference paper at ICLR 2024

Algorithm 3: Pseudocode for ImplicitSLIM init+reg matrix factorization
Data: dataset X, number of iterations k, hyperparameters rp, rq , sq , λ, α
Result: item embeddings matrix Q
Q← standart Gaussian noise ;
for i← 1 to k do

V← ImplicitSLIM(Xtrain, Q, λ, α);
if i = 1 then

Q← V;
end
P← argminP LMF-IMPLICITSLIM(Xtrain,Q, rp);
Q← argminQ LMF-IMPLICITSLIM(Xtrain,P,V, rq, sq);
evaluate(Xvalid,Q, rp);
if current validation score < the best validation score then

break;
end

end

Algorithm 4: Pseudocode for ImplicitSLIM init matrix factorization
Data: dataset X, number of iterations k, hyperparameters rp, λ, α
Result: item embeddings matrix Q
Q← standart Gaussian noise ;
for i← 1 to k do

Q← ImplicitSLIM(Xtrain, Q, λ, α);
evaluate(Xvalid,Q, rp);
if current validation score < the best validation score then

break;
end

end

Algorithm 5: Pseudocode for SLIM-LLE init matrix factorization
Data: dataset X, number of iterations k, hyperparameters rp, λ, α
Result: item embeddings matrix Q
Q← SLIM-LLE(Xtrain, λ);
evaluate(Xvalid,Q, rp);

embeddings for various values of λ on a logarithmic grid with step 0.1, and we have not computed
embeddings for other values of λ during hyperparameter tuning.

D ADDITIONAL DETAILS ON IMPLICITSLIM WITH OTHER MODELS

D.1 IMPLICITSLIM WITH MATRIX FACTORIZATION AND PLREC

We have evaluated ImplicitSLIM in application to matrix factorization and PLRec. To describe
these setups in detail, we present the pseudocode for all of them. We define the loss function for
ImplicitSLIM init+reg as follows:

LMF-IMPLICITSLIM(P,Q,V) = ∥X−P⊤Q∥2F + sq∥V −Q∥2F + rp∥P∥2F + rq∥Q∥2F (27)

Regularizer sq∥V −Q∥2F is used instead of sq∥(V −Q)Q⊤∥2F to get a closed form solution.

In order to present Algorithm 6, we first define the LPLREC-IMPLICITSLIM loss as

LPLREC-IMPLICITSLIM(Q,V) = ∥X−XW⊤Q∥2F + rq∥Q∥2F + sq∥V −Q∥2F .

18

Published as a conference paper at ICLR 2024

Algorithm 6: Pseudocode for ImplicitSLIM init+reg PLRec
Data: dataset X, number of iterations k, hyperparameters rq , sq , λ, α
Result: item embeddings matrix Q
V← standart Gaussian noise ;
for i← 1 to k do

V← ImplicitSLIM(Xtrain, V, λ, α);
V← orthogonalize(V);
W← V;
Q← argminQ LPLREC-IMPLICITSLIM(Xtrain,W,V, rq, sq);
evaluate(Xvalid,Q, rp);
if current validation score < the best validation score then

break;
end

end

Algorithm 7: Pseudocode for SLIM-LLE init PLRec
Data: dataset X, hyperparameters rq , λ
Result: item embeddings matrix Q
W← SLIM-LLE(Xtrain, λ);
Q← argminQ LPLREC(Xtrain,W, rq);
evaluate(Xvalid,Q, rp);

Algorithms in this section return only item embedding matrices since we are working in the strong
generalization setting; the user embedding matrix is not required for further evaluations.

In the main text, we approximated the user-item interactions matrix X with a low-rank matrix P⊤Q.
In our experiments we also used the matrix P⊤Q+1b⊤ instead, i.e., employed a bias vector. Using
a bias vector has led to better results in some experiments. For both matrix factorization and PLRec,
we estimate b using maximum likelihood, and in both cases we set bi as the mean value of elements
of vector X∗i.

In Section 3.2 it was proposed to set A equal to Q. Since embeddings of unpopular items could
be noisy, we propose to first set A equal to Q but then zero out columns in A that correspond to
unpopular items; a threshold of item popularity here becomes another hyperparameter.

D.2 IMPLICITSLIM WITH VAE, GCN AND BERT4REC

The most successful of these models, namely RecVAE and H+Vamp(Gated), have also been evalu-
ated with additional regularization via ImplicitSLIM. For this purpose, we used the original imple-
mentations of RecVAE7 and H+Vamp(Gated)8 and integrated ImplicitSLIM into them as follows:
the item embeddings matrices from both encoder and decoder are updated with ImplicitSLIM once
every several epochs (every 10 epochs for RecVAE, every 15 epochs for H+Vamp(Gated)); addi-
tionally, the dimension of embeddings has been increased to 400 for RecVAE; the rest of the setup
is taken from original implementations.

According to Zhu et al. (2022), GF-CF (Shen et al., 2021) and UltraGCN (Mao et al., 2021) are state-
of-the-art GCN-influenced models. However, GF-CF has no trainable embeddings, so we apply
ImplicitSLIM to UltraGCN only. Unlike models we have mentioned above, UltraGCN is based on
a different setup. It has trainable embeddings for both users and items, and the same users are
considered in both train and test time. That allows us to apply ImplicitSLIM not only for item
embeddings but also for user embeddings (using its official implementation9). In both cases we
update embeddings once in several epochs, similarly to nonlinear autoencoders.

7https://github.com/ilya-shenbin/RecVAE
8https://github.com/psywaves/EVCF
9https://github.com/xue-pai/UltraGCN

19

https://github.com/ilya-shenbin/RecVAE
https://github.com/psywaves/EVCF
https://github.com/xue-pai/UltraGCN

Published as a conference paper at ICLR 2024

Table 4: 1NN scores of embeddings obtained with different methods.

Embedding dimensionality 10 100

Standard Gaussian noise 0.423 0.423
SVD 0.634 0.695

SLIM-LLE 0.661 0.713
ImplicitSLIM 0.630 0.704

MF 0.620 0.693
MF + ImplicitSLIM 0.636 0.692

RecVAE 0.667 0.760
RecVAE + ImplicitSLIM 0.688 0.758

In order to show that ImplicitSLIM can be useful not only for collaborative filtering models in
their classical form, we have also applied it to sequence-based recommendations. We have chosen
BERT4Rec (Shen et al., 2021) as one of the most popular sequential model with strong performance.
To perform our experiments we took its unofficial implementation10, since the results shown by Shen
et al. (2021) fail to reproduce with the official implementation, according to experiments performed
by Petrov & Macdonald (2022). Item embedding matrices are updating during training every two
epochs for the MovieLens-1M dataset and every 20 epochs for the MovieLens-20M, similarly to
nonlinear autoencoders.

According to our experiments, ImplicitSLIM regularization (namely minimizing the distance be-
tween the current embedding matrix and the one updated by ImplicitSLIM) does not improve the
performance of VAEs and GCNs compared to the approach proposed above. According to our in-
tuition, it happens because embeddings updated by ImplicitSLIM become out of date after several
stochastic gradient decent updates of current embedding vectors. Moreover, this form of Implicit-
SLIM application is more computationally expensive.

D.3 EVALUATION OF EMBEDDINGS WITH 1NN

In additional to our evaluation of ImplicitSLIM on the collaborative filtering downstream task,
we have also evaluated extracted embeddings employing contextual information. Items from the
MovieLens-20M dataset have genre labels, where some items could have several labels and others
might have none. Items without labels were excluded for this experiment.

We evaluate the embeddings using a popular way to evaluate visualization methods based on the
assumption that similar items should have similar labels. We define it as follows:

1

I

I∑
i=1

JQ∗i and its nearest neighbor have at least one common labelK ,

where J·K is the indicator function and Q∗i is the embedding vector of the ith item. Results are
presented in Table 4. For the sake of a fair comparison, labels were not used either when learning the
embeddings or in tuning the hyperparameters. We use the same hyperparameters as for experiments
shown in Table 1.

E ADDITIONAL DETAILS ON RESULTS

E.1 RUNTIME

Table 5 shows a runtime comparison of ImplicitSLIM and its variation with explicit computation of
the matrix B̂ (that includes Step 1 and Step 2). The runtime of ImplicitSLIM significantly depends
on the dimensionality of the embedding matrix, thus we have measured it for different dimensions.
As we can see, using ImplicitSLIM instead of straightforward calculations drastically reduces com-
putational time.

10https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch

20

https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch

Published as a conference paper at ICLR 2024

Table 5: Runtime of embedding extraction procedures, seconds.

Step 1 (1) Step 2 (8) ImplicitSLIM
64 128 256 512 1024 2048 4096

ML-20M 48.7 53.3 0.37 0.7 1.4 2.6 5.1 12.0 31.1
Netflix 67.4 78.1 1.7 3.4 6.6 12.1 23.0 52.0 133.2
MSD 389.9 452.9 1.4 2.5 7.7 17.5 32.7 64.5 132.0

Table 6: Evaluation of high, mid, and low popularity items, NDCG@100 scores

Dataset MovieLens-20M Netflix Prize Dataset
Items poplarity high medium low high medium low

MF 0.392 0.097 0.036 0.366 0.092 0.057
MF + ImplicitSLIM 0.416 0.110 0.040 0.383 0.138 0.089

RecVAE 0.444 0.192 0.092 0.402 0.209 0.157
RecVAE + ImplicitSLIM 0.449 0.180 0.086 0.405 0.213 0.165

Fig. 3 shows convergence plots for matrix factorization (MF), MF with ImplicitSLIM init (we call
it MF + ImplicitSLIM here for short), and EASE. Since EASE is not an iterative model, its plot is
presented as a single point. We also note that MF + ImplicitSLIM reaches its best scores in one
or two iterations in these experiments. We show individual plots for MF and MF + ImplicitSLIM
with different embedding dimensionality. As a result, Figure 3 shows that MF + ImplicitSLIM
obtains better results than MF in terms of both metric scores and wall clock time. Moreover, MF
+ ImplicitSLIM is also competitive with EASE: while it obtains slightly lower scores in the quality
metric, it contains much fewer parameters and needs less time to train in most cases.

E.2 EVALUATION OF APPROXIMATIONS

To make ImplicitSLIM efficient in both computation time and memory, we have made several ap-
proximations and simplifications:

(a) the constraint in (6) is dropped;
(b) diagonal of the inverted matrix is approximated with (12);
(c) ∥(V −Q)Q⊤∥2F is used in (7) instead of ∥V −Q∥2F .

We have compared the performance of ImplicitSLIM and its explicit version where approxima-
tions (a-c) are not used, using MF and RecVAE as base models on the MovieLens-20M and Net-
flix datasets. In all cases the difference in results was negligible, so they are not shown in Table 1,
which validates the efficiency of approximations in ImplicitSLIM. We note, however, that the almost
identical optimal scores were achieved at different hyperparameter values.

E.3 EVALUATION ON UNPOPULAR ITEMS

We divided the items into groups of the same size: very popular, with medium popularity, and with
low popularity, and then evaluated several methods on each of these groups. According to the results
shown in Table 6, ImplicitSLIM generally boosts the performance for items with low and medium
popularity more significantly than for very popular items. There is one exception, however: RecVAE
evaluated on MovieLens-20M. In our opinion, this is an effect of zeroing out columns in matrix A
that correspond to unpopular items, as we describe it in Appendix D.1, which hurts the performance
for unpopular items in this case.

21

Published as a conference paper at ICLR 2024

0 10 20 30 40 50 60

0.385

0.390

0.395

0.400

0.405

0.410

0.415

0.420

64

128

256
512

1024 2048 4096

128

256

512

MovieLens-20M

0 20 40 60 80 100 120 140

0.35

0.36

0.37

0.38

0.39

64

128

256

512
1024 2048 4096

64
128

256

Netflix Prize Dataset

0 50 100 150 200 250 300 350 400

0.20

0.25

0.30

0.35

64

128

256

512

1024
2048

4096

64

128

256
512

Million Songs Dataset

EASE MF + ImplicitSLIM MF

Figure 3: Convergence plots for MF, MF + ImplicitSLIM, and EASE; the X-axis shows wall-clock
time is seconds, the Y-axis shows NDCG@100; MF and MF + ImplicitSLIM have been evaluated
with different embedding dimensions shown in the figure.

22

	Introduction
	Preliminaries
	Proposed Approach
	SLIM as LLE
	ImplicitSLIM

	ImplicitSLIM with other models
	General scenario
	SLIM regularization

	Experimental evaluation
	Results
	Related work
	Conclusion
	Proofs and derivations
	Definition of LLE
	Derivation of SLIM-LLE
	Diagonal of the Inverse of a Matrix
	LLE and Graph regularization

	Additional details on baselines
	Matrix factorization
	Matrix factorization with item embeddings regularization
	Linear models
	Nonlinear autoencoders

	Hyperparameter search
	Additional details on ImplicitSLIM with other models
	ImplicitSLIM with Matrix Factorization and PLRec
	ImplicitSLIM with VAE, GCN and BERT4Rec
	Evaluation of embeddings with 1NN

	Additional details on results
	Runtime
	Evaluation of approximations
	Evaluation on unpopular items

