MolVision: Molecular Property Prediction with Vision Language Models (Supplementary Material)

Contents

A	Limitations	2
В	Ethical considerations	2
C	Datasets: Additional Details	3
_	C.1 Model variants	3
	C.2 Task and Datasets	2
	C.3 Computational Resources	4
D	•	5
	D.1 Zero-Shot Evaluation	4
	D.2 Effect of ICL Examples	(
	D.3 Chain of Thought Prompting	(
	D.4 Effect of Temperature	9
	D.5 Experiments on FS-Mol Dataset	9
	D.5.1 Zero-Shot Performance on FS-Mol	9
	D.5.2 Few-Shot Learning on FS-Mol Dataset	
	D.5.3 Contrastive Learning on FS-Mol	
	D.6 Impact of visual data	12
\mathbf{E}	Regression: Further Analysis and Discussion	12
	E.1 Effect of Finetuning	12
	E.2 Effect of ICL Examples	1.
	E.3 Analysis of QM9 Multi-Target Prediction	13
F	Molecular Description: Further Analysis	1:
	F.1 Zero-Shot Evaluation	1:
	F.2 Effect of ICL Examples	1:
	F.3 Chain of Thought Prompting	16
G	Contrastive Learning for Vision Encoders	10
	G.1 Augmentation-based contrastive learning	1
	G.2 Tanimoto similarity-based contrastive learning	1
	G.3 Overall loss function	1
H	Multimodal vs. Text-Only Baseline Comparison	1
I	Additional Experiments and Datasets	1
J	Effect of Image Processing Parameters	19
-	Prompt Examples	19

In this supplementary material, we begin with important discussions on limitations (Section A) and ethical considerations (Section B). We have also included additional dataset details (Section C), comprehensive results and analysis for classification tasks (Section D), regression tasks (Section E), and molecular description tasks (Section F). Furthermore, we present our approach to contrastive learning for vision encoders (Section G) and provide detailed prompt examples (Section K) supporting our discussion in the main paper.

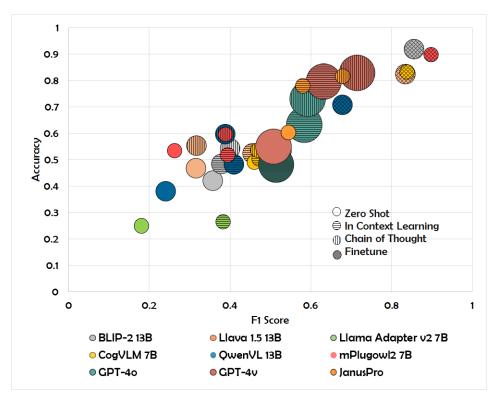


Figure 1: Performance comparison of Vision-Language Models (VLMs) across BACE, BBBP, HIV, Clintox, and Tox21 datasets, depicting Accuracy vs F1 Score. The bubble size represents the model's parameter scale

A Limitations

Here we discuss some of the limitations of our work.

Adaptation of closed-source models: Our efficient adaptation of large visual language models for molecular property prediction is limited to open-source models. Considering the strong performance of proprietary models in case of few-shot learning, it will interesting to see how the capabilities of these closed-source models improve for this domain.

Advanced vision-language models: In our few-shot setup, we utilize an image representation of a molecule as additional input to the model. Since these models can take only one image as input, it was not possible to provide image representations for in-context examples as input. Future research could explore models capable of processing multiple images simultaneously.

B Ethical considerations

The integration of Vision-Language Models (VLMs) into molecular property prediction opens exciting new possibilities while also highlighting the importance of ethical considerations. By leveraging visual and textual representations, these models have the potential to accelerate discoveries in drug development and materials science in a more data-efficient manner. However, ensuring responsible AI development is crucial—focusing on model interpretability, fairness, and transparency

can enhance trust and reliability in scientific applications. Additionally, proactive measures, such as open benchmarking and ethical guidelines, can help steer this technology toward positive societal impact while mitigating risks. By addressing these considerations thoughtfully, VLMs can become a transformative tool for chemistry and beyond.

C Datasets: Additional Details

This study covers datasets with varied numbers of molecules, as low as 2k to as high as 3.7M. Figure 2 shows categorization of these datasets by tasks, Classification, Regression and Molecular Description. The default representation that is included with these datasets is SMILES and we generated the corresponding SELFIES representation and performed additional evaluations. All the data will be available on the provided link ¹.

Figure 2: *Distribution of Datasets by Task Type*: The chart illustrates the categorization of datasets based on their primary task, either classification (blue) or regression (yellow).

C.1 Model variants

VLMs are evolved from LLMs that are designed to understand visual information and generate language based on both, textual and visual inputs. They integrate vision encoders and natural language processing techniques to interpret and describe images enabling use cases such as image captioning, visual question answering and multimodal translation. We study nine different state-of-the-art visual language models in this study.

Janus-Pro 7B: Janus-Pro 7B is a unified multimodal model that employs a novel decoupled visual encoding approach. It processes visual inputs differently for understanding versus generation tasks: using a SigLIP encoder to extract semantic features for understanding, while employing a VQ tokenizer for generation. These distinct visual representations are then mapped through separate adaptors into a shared input space, where a 7B-parameter autoregressive transformer processes the combined multimodal sequences.

BLIP-2: BLIP-2 (Bootstrapping Language-Image Pre-training) is a multimodal model developed by Salesforce that combines visual and language modalities to improve performance on tasks involving both visual inputs and textual information generation.

Llava 1.5: It is a multimodal model that integrates text and image data, excelling in tasks like Visual Question Answering (VQA), image captioning, and cross-modal retrieval. The model uses Vicuna v1.5 as the base LLM.

Llama Adapter V2: The LLaMA-Adapter V2 is an adaption technique that is intended to improve

¹Code and datasets available at: https://molvision.github.io/MolVision/

the LLaMA model's ability to obey instructions while preserving parameter efficiency. It presents a number of important methods, such as early fusing of visual knowledge, joint training with discontinuous parameters, bias control of linear layers, and integration with expert models.

CogVLM: CogVLM is a vision-language model that integrates a Vision Transformer (ViT) encoder, MLP adapter, pretrained large language model, and a visual expert module. The ViT encoder uses the pretrained EVA2-CLIP-E model with the final layer removed for image feature compatibility.

QwenVL: Qwen-VL is a vision-language model for tasks like understanding, localization, and text reading. It consists of a visual encoder, a position-aware vision-language converter, and a large language model (Qwen-7B). The visual encoder, based on Openclip's ViT-bigG, processes images by dividing them into patches.

mPlugOwl 2: mPLUGOWL2 integrates a vision encoder, visual abstractor, and language decoder for vision-language tasks. The ViT-L/14 encoder processes images into visual tokens, which the LLaMA-2-7B decoder converts into text.

GPT-4V: GPT-4V (GPT-4 with Vision) advances multimodal AI by processing both visual and textual inputs. Though its architecture is proprietary, GPT-4V excels in understanding and describing images, solving visual problems, and performing detailed visual-language reasoning across various domains. **GPT-4o:** GPT-4o, OpenAI's advanced language model, improves upon its predecessors with enhanced natural language processing, reasoning, and task completion. It offers better reliability, safety, and zero-shot generalization, though its architecture details remain largely undisclosed.

C.2 Task and Datasets

We utilize RDKit to generate molecular visualizations from SMILES structures. RDKit not only facilitates the conversion of SMILES strings into visual representations but also supports the transformation of SMILES into SELFIES strings. This functionality enables us to explore diverse molecular encoding techniques, thereby enhancing the robustness and adaptability of our predictive models. Since most existing datasets primarily feature SMILES strings, the ability to convert them to SELFIES representations extends the scope of our analysis. Each dataset contains a formatted prompt alongside the pathway to the visualized molecule image. Leveraging these datasets, we input the information into vision-language models for tasks such as visual question answering and instruction-based challenges. We use the following datasets in our benchmark.

BACE-V: The BACE-V dataset, adapted from the BACE (Binary Activity of Chemical Entities) dataset, provides 2D skeletal images of molecular structures along with key bioactivity data. Widely used for binary classification in bioactivity prediction, particularly for BACE-1 inhibitors linked to Alzheimer's, the dataset includes both quantitative (IC50 values) and qualitative (binary) binding data. It features 154 BACE inhibitors for affinity prediction, 20 for pose prediction, and 34 for free energy prediction.

BBBP-V: The BBBP-V dataset, based on the Blood-Brain Barrier Penetration (BBBP) dataset, includes 2D skeletal images of molecular structures. It provides binary labels for BBB penetration (penetrant or non-penetrant) along with SMILES notations and key properties like molecular weight, lipophilicity (logP), and topological polar surface area (TPSA), all essential for predicting BBB permeability.

HIV-V: The HIV-V dataset, based on the HIV dataset, contains 2D skeletal images of molecular structures to support predictions of HIV replication inhibition. It includes binary labels for anti-HIV activity and key molecular parameters—molecular weight, logP, and TPSA—essential for assessing bioactivity and pharmacokinetics. Our evaluation focused on predicting HIV activity.

Clintox-V: The ClinTox-V dataset, derived from the ClinTox dataset, includes 2D skeletal images of molecular structures to support predictions of clinical toxicity and FDA approval status. Represented by SMILES notation, each of the 1,491 compounds is labeled for toxicity or FDA approval, enabling two classification tasks. Our evaluation focused on predicting FDA approval status.

Tox21-V: The Tox21-V dataset, based on the Tox21 dataset, includes 2D skeletal molecular images for predicting chemical toxicity, critical for environmental and pharmaceutical safety. It contains hundreds of compounds, each represented by SMILES notation, with twelve binary labels from toxicological tests. Our evaluation focused on the NR-AR binary label.

ESOL-V: The ESOL-V dataset, based on the ESOL (Estimating Solubility of Organic Compounds in Water) dataset, includes 2D skeletal molecular images and key data for predicting aqueous solubility of organic compounds, crucial for drug development and environmental studies.

LD50-V: It is based on the LD50 (Lethal Dose 50) dataset and includes 2D skeletal molecular images and data on acute toxicity. It focuses on the dose required to cause death in 50% of test subjects, a key metric for safety assessment in drug development and environmental health.

QM9-V: The QM9-V dataset, derived from the QM9 dataset, contains 2D skeletal representations of molecular structures in image format, alongside various quantum chemical properties. QM9 provides extensive data on 12 quantum mechanical properties, including the dipole moment, isotropic polarizability, electronic spatial extent, HOMO (Highest Occupied Molecular Orbital energy), LUMO (Lowest Unoccupied Molecular Orbital energy), and HOMO-LUMO gap, among others.

PCQM4Mv2-V: The PCQM4Mv2-V dataset, derived from the PCQM4Mv2 dataset, contains 2D skeletal molecular images paired with quantum property data. The dataset focuses on predicting the HOMO-LUMO gap, an essential quantum property that provides insights into a molecule's chemical stability and reactivity.

ChEBI-V: The ChEBI-V dataset, derived from the ChEBI database, contains 2D skeletal representations of molecular structures in image format, alongside comprehensive biological and chemical annotations. ChEBI-V provides structured information including molecular names, functional classifications, physicochemical properties, and biological roles such as enzyme inhibitors, receptor agonists, and therapeutic agents, making it valuable for molecular description and biological function prediction tasks.

C.3 Computational Resources

Table 1 summarizes the computational requirements for fine-tuning each model in our benchmark. All experiments were conducted over 20 epochs using LoRA adaptation.

Model	GPU VRAM	Time
UniMol	8–12 GB	2–4 hours
Molca	20-28 GB	6–10 hours
BLIP-2 13B	22-30 GB	1.5–2 hours
LLaVA 1.5 13B	22-30 GB	2–3 hours
Llama Adapter V2 7B	24-30 GB	2–3 hours
CogVLM 7B	32-46 GB	1.5–3 hours
Qwen-VL 13B	22-30 GB	1–2 hours
mPLUG-OWL2 7B	24-32 GB	1.5–2 hours

Table 1: Computational resources for model fine-tuning (20 epochs)

D Classification: Further Analysis and Discussion

In this section, we discuss Zero-shot evaluation, effect of number of examples used in ICL, chain of thought prompting, effect of temperature in model performance and impact of visual data for classification task. Figure 1 show performance comparison of different models.

D.1 Zero-Shot Evaluation

We have included more detailed results with Zero-shot performance (Table 2 and 3) where we only ask questions with general outline to the models without using any in-context examples.

SMILES vs SELFIES: We examine and compare Zero-shot performance of models with SMILES and SELFIES representations. SELFIES generally yield better performance however on HIV dataset we see comparatively better performance with SMILES representation as shown in Tables 2 and 3. We also performed this analysis with ICL and has been discussed later.

Table 2: **Zero-shot with SMILES:** The table shows variation in the F1-score & accuracy of different models when subjected to zero-shot prompting. In this evaluation, only the basic instruction is provided to the models to predict whether a given molecule string is toxic or not, without any additional context or examples.

Model	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
JanusPro 7B	0.45(0.37)	0.42(0.44)	0.52(0.32)	0.31(0.32)	0.44(0.34)
BLIP2	0.28 (0.29)	0.31 (0.29)	0.42 (0.33)	0.29 (0.28)	0.42 (0.31)
Llava 1.5	0.37 (0.54)	0.43 (0.46)	0.38 (0.35)	0.36 (0.39)	0.46 (0.39)
Llama	0.34 (0.39)	0.41 (0.28)	0.21 (0.33)	0.28 (0.31)	0.12 (0.13)
CogVLM	0.27 (0.34)	0.31 (0.32)	0.22 (0.25)	0.47 (0.49)	0.17 (0.12)
QwenVLM	0.32 (0.39)	0.29 (0.12)	0.22 (0.29)	0.22 (0.15)	0.45 (0.37)
mPlugowl2	0.39 (0.38)	0.32 (0.31)	0.41 (0.27)	0.27 (0.26)	0.67 (0.13)

Table 3: **Zero-shot performance with SELFIES:** The table illustrates the variation in the Accuracy (F1-score) of different models when subjected to zero-shot prompting. In this evaluation, only the basic instruction is provided to the models to predict whether a given molecule string is toxic or not, without any additional context or examples.

Model	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
JanusPro 7B	0.48(0.53)	0.54(0.581)	0.43 (0.36)	0.48 (0.37)	0.47 (0.31)
BLIP2	0.41 (0.34)	0.46 (0.48)	0.31 (0.29)	0.45 (0.47)	0.57 (0.21)
Llava 1.5	0.42 (0.48)	0.48 (0.50)	0.24 (0.33)	0.54 (0.64)	0.59 (0.15)
Llama Adapter v2 7B	0.42 (0.51)	0.39 (0.42)	0.21 (0.33)	0.41 (0.53)	0.14 (0.12)
CogVLM	0.42 (0.49)	0.49 (0.62)	0.28 (0.39)	0.44 (0.35)	0.16 (0.11)
QwenVL	0.42 (0.59)	0.41 (0.58)	0.21 (0.31)	0.16 (0.14)	0.16 (0.11)
mPlugOwl2	0.47 (0.25)	0.35 (0.23)	0.39 (0.28)	0.28 (0.22)	0.37 (0.17)

D.2 Effect of ICL Examples

We conducted a comprehensive analysis of effects of number of examples (k = 0, 2, 4) in in-context learning (ICL) across vision-language models for molecular property prediction. More context does not always yield better results (Table 4, 5). The effectiveness of ICL varies significantly across datasets, as evidenced by CogVLM's substantial improvement on ClinTox-V when increasing from k = 0 to k = 4 (0.54 to 0.76 accuracy). We also observed similar behavious with CogVLM using SELFIES in Table 7. Different models demonstrate varying sensitivity to ICL, BLIP-2 however show consistent improvement with increased context, achieving its best performance with k = 4 across most datasets (Table 6).

Model QwenVL shows peak performance with k=2 on several datasets (Table 10). Comparing SMILES representations (Table 4, 5) versus SELFIES representations (Table 8, 9,10 11, 12), SELFIES maintains more stable performance across different k values, particularly for complex models like mPlugOwl2 and CogVLM. These findings indicate that ICL's effectiveness depends heavily on model architecture, molecular representation, and dataset characteristics.

We also included results with increased in-context examples with gpt-4o. With the exception of BBBP-V accuracy improved across all datasets with an increase in the number of in-context examples (k) to six or eight. Notably, on the BACE-V, and Clintox-V datasets, we observed approximately a 40% increase in accuracy. With the exception of BACE-V, the F1-score was also highest at k=2 or 4 across all datasets (Table 13).

D.3 Chain of Thought Prompting

Table 14 demonstrates the effectiveness of Chain of Thought (CoT) prompting on molecular property classification tasks across five benchmark datasets. GPT-4v emerges as the top performer with an average accuracy of 72.32%, closely followed by GPT-4o at 71.14%, indicating that both commercial models excel when employing structured reasoning approaches. Janus achieves the third-highest performance with an average accuracy of 71.60%, demonstrating competitive capabilities among open-source models and particularly excelling on HIV-V (93.3%) and ClinTox-V (97.2%) datasets.

Table 4: *Role of in-context examples:* ICL with k = 0 showing Accuracy (F1-score) of various models on different datasets with SMILES representations.

Model	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
JanusPro 7B	0.65(0.68)	0.52(0.51)	0.92(0.68)	0.41(0.31)	0.52(0.44)
BLIP2	0.36 (0.52)	0.33 (0.27)	0.41 (0.36)	0.37 (0.28)	0.63 (0.29)
Llava 1.5	0.55 (0.18)	0.47 (0.43)	0.35 (0.32)	0.33 (0.33)	0.64 (0.11)
Llama	0.39 (0.59)	0.36 (0.42)	0.21 (0.33)	0.22 (0.19)	0.15 (0.19)
CogVLM	0.39 (0.56)	0.48 (0.48)	0.39 (0.26)	0.54 (0.54)	0.65 (0.11)
QwenVLM	0.41 (0.52)	0.31 (0.11)	0.28 (0.21)	0.38 (0.12)	0.52 (0.43)
mPlugowl2	0.48 (0.16)	0.41 (0.43)	0.65 (0.18)	0.28 (0.28)	0.85 (0.11)

Table 5: *Effect of in-context examples:* ICL with k = 4 showing Accuracy (F1-score) of various models on different datasets with SMILES Representation.

Model	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
JanusPro 7B	0.73(0.62)	0.63(0.601))	0.95(0.69)	0.97(0.64)	0.71(0.62)
BLIP2	0.29 (0.42)	0.19 (0.11)	0.52 (0.32)	0.34 (0.36)	0.55 (0.39)
Llava 1.5	0.48 (0.38)	0.57 (0.66)	0.32 (0.33)	0.25 (0.22)	0.64 (0.25)
Llama	0.39 (0.56)	0.37 (0.22)	0.21 (0.33)	0.32 (0.19)	0.28 (0.12)
CogVLM	0.39 (0.54)	0.64 (0.34)	0.39 (0.26)	0.68 (0.48)	0.19 (0.11)
QwenVLM	0.42 (0.52)	0.31 (0.11)	0.42 (0.54)	0.81 (0.12)	0.72(0.17)
mPlugowl2	0.58 (0.42)	0.43 (0.38)	0.71 (0.25)	0.38 (0.42)	0.83 (0.13)

Table 6: *Effect of in-context examples:* Accuracy (F1-score) of BLIP-2 Model using SELFIES representations with variation in number of in-context examples used in the prompt (k = 0, 2, 4).

Variation	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
k = 0	0.43(0.26)	0.38(0.27)	0.54(0.32)	0.33(0.42)	0.52(0.21)
k = 2	0.36(0.52)	0.37(0.29)	0.60(0.29)	0.34(0.36)	0.75(0.42)
k = 4	0.61 (0.27)	0.39(0.31)	0.81(0.39)	0.36(0.44)	0.79(0.48)

Table 7: *Impact of number of in-context examples:* The table illustrates the variation in the performance of the CogVLM model with ICL in terms of Accuracy (F1-score), which utilizes the Vicuna 7B as its backbone, when tested on the SELFIE representation of various datasets. The performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt. The following results are produced with temperature set to 0.

Variation	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
k = 0	0.34 (0.51)	0.36 (0.32)	0.24 (0.33)	0.54 (0.65)	0.26 (0.15)
k = 2	0.62 (0.44)	0.51 (0.58)	0.25 (0.29)	0.32 (0.37)	0.18 (0.14)
k = 4	0.44 (0.53)	0.38 (0.45)	0.32 (0.31)	0.76 (0.86)	0.47 (0.13)

Table 8: *Impact of number of in-context examples:* The table illustrates the variation in the performance of the Llava 1.5 model with ICL in terms of Accuracy (F1-score) using Llava 1.5 13 billion parameters, when tested on the SELFIE representation of various datasets. The performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt. (Temperature=0).

Variation	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
k = 0 $k = 2$ $k = 4$	0.62 (0.24)	0.35 (0.17)	0.51 (0.13)	0.20 (0.14)	0.76 (0.17)
	0.61 (0.33)	0.73 (0.46)	0.32 (0.35)	0.35 (0.36)	0.67 (0.47)
	0.49 (0.38)	0.56 (0.29)	0.42 (0.33)	0.25 (0.19)	0.89 (0.11)

Table 9: *Impact of number of in-context examples:* The table illustrates the variation in the performance of the mPlugOwl2 model with ICL in terms of Accuracy (F1-score). This model utilizes Llama2 7B as its backbone and is tested on the SELFIE representation of various datasets. The performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt. (Temperature = 0).

Variation	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
k = 0	0.53 (0.22)	0.48 (0.52)	0.57 (0.19)	0.22 (0.15)	0.62 (0.17)
k = 2	0.64 (0.65)	0.46 (0.46)	0.76 (0.74)	0.39 (0.43)	0.74 (0.21)
k = 4	0.61 (0.31)	0.35 (0.36)	0.73 (0.41)	0.46 (0.57)	0.76 (0.14)

Table 10: *Impact of number of in-context examples:* The table illustrates the variation in the performance of the QwenVL model with ICL in terms of Accuracy (F1-score) using QwenVL 7 B parameters, when tested on the SELFIE representation of various datasets. The performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt. (Temperature=0).

Variation	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
k = 0	0.41 (0.52)	0.31 (0.10)	0.80 (0.11)	0.18 (0.12)	0.52 (0.14)
k = 2	0.45 (0.38)	0.63 (0.49)	0.79(0.49)	0.50 (0.48)	0.78 (0.76)
k = 4	0.42 (0.51)	0.29 (0.09)	0.81 (0.10)	0.42 (0.54)	0.72 (0.17)

Table 11: *Impact of number of in-context examples* The table illustrates the variation in the Accuracy (F1-score) of the ICL model using Llama Adapter V2, which utilizes Llama2 7B as its backbone, when tested on the SELFIE representation of various datasets. The performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt.(Temperature=0).

Variation	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
k = 0	0.37 (0.34)	0.49 (0.21)	0.21 (0.33)	0.30 (0.39)	0.14 (0.17)
k = 2	0.38 (0.44)	0.48 (0.23)	0.21 (0.37)	0.31 (0.35)	0.15 (0.17)
k = 4	0.36 (0.35)	0.51 (0.27)	0.31 (0.42)	0.50 (0.31)	0.15 (0.18)

Table 12: *Impact of number of in-context examples:* The table illustrates the variation in the Accuracy (F1-score) of the ICL model using the BLIP-2 model when tested on the SELFIE representation of various datasets. The performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt. (Temperature=0).

Variation	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
k = 0	0.56 (0.10)	0.31 (0.12)	0.49 (0.24)	0.16 (0.09)	0.47 (0.32)
k = 2	0.61 (0.15)	0.35 (0.16)	0.56 (0.24)	0.18 (0.12)	0.41 (0.22)
k = 4	0.66 (0.26)	0.32 (0.11)	0.51 (0.29)	0.21 (0.10)	0.45 (0.19)

Table 13: **Effect of in-context examples:** Accuracy (F1-score) for different ICL examples on GPT-40 model.

ICL Variation	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V	Average
k=0	0.39 (0.55)	0.56 (0.64)	0.72 (0.53)	0.25 (0.33)	0.49 (0.46)	0.48/0.50
k=2	0.56 (0.53)	0.77 (0.81)	0.82 (0.56)	0.59 (0.44)	0.42 (0.58)	0.63/0.58
k=4	0.64 (0.52)	0.63 (0.66)	0.82(0.78)	0.71 (0.69)	0.52 (0.44)	0.66/ 0.61
k=6	0.61 (0.48)	0.56 (0.62)	0.86 (0.79)	0.76 (0.63)	0.61 (0.43)	0.68 /0.59
k=8	0.72 (0.51)	0.56 (0.60)	0.72(0.64)	0.67 (0.69)	0.55 (0.34)	0.64/0.55
k=10	0.55 (0.35)	0.55 (0.59)	0.69 (0.23)	0.49 (0.53)	0.61 (0.27)	0.57/0.39

The results reveal significant performance variations across datasets, with HIV-V generally showing the highest accuracy scores across models, while BBBP-V and Tox21-V present greater challenges. Notably, QwenVLM shows strong performance on HIV-V (82.9%) and Tox21-V (73.9%), while mPlugOWL2 demonstrates exceptional performance on specific datasets like Tox21-V (76.0%) and HIV-V (75.2%). The remaining models exhibit moderate performance, with CogVLM achieving balanced results across datasets and BLIP-2 showing consistent but lower performance.

Table 14: *Classification Performance in Chain of Thought Prompting:* Comparisons of models evaluated on classification tasks across various datasets using Chain-of-Thought (CoT) prompting showing Accuracy (F1-score) with SMILES representations.

Model	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
GPT-40	0.783(0.612)	0.696(0.481)	0.893(0.829)	0.683(0.582)	0.601(0.455)
GPT-4v	0.800(0.749)	0.716(0.620)	0.928(0.842)	0.972(0.729)	0.728(0.632)
BLIP-2	0.49 (0.52)	0.49 (0.41)	0.62 (0.32)	0.54 (0.36)	0.57 (0.39)
CogVLM	0.510(0.559)	0.673(0.396)	0.422(0.384)	0.650(0.701)	0.430(0.303)
mPlugOWL2	0.716(0.414)	0.555(0.362)	0.752 (0.413)	0.461(0.574)	0.76 (0.148)
Llava	0.523 (0.462)	0.582(0.493)	0.42 (0.33)	0.352(0.19)	0.893(0.11)
Llama-Adapter	0.430(0.339)	0.554(0.674)	0.429(0.312)	0.684(0.712)	0.437(0.382)
QwenVLM	0.528(0.429)	0.394(0.291)	0.829(0.329)	0.492(0.421)	0.739(0.471)
Janus	0.797(0.669)	0.696(0.661)	0.933(0.781)	0.972(0.729)	0.681(0.557)

D.4 Effect of Temperature

The effect of temperature variation was shown in the main paper on one model (BLIP2 model) and here we include more results examining the effect of temperature variation under different settings (Table 17, 15 Table 20, and Table 19, 16, 18). We analyzed the impact of sampling temperature (ranging from 0.0 to 0.8) on model performance across different molecular representations and architectures. For SELFIES representation, the Llama Adapter v2 model shows optimal performance at moderate temperatures (0.2-0.4) for the BBBP-V dataset, achieving accuracy of 0.66 at temperature 0.2 (Table 16). SMILES representation exhibits different temperature sensitivity, with generally improved performance at higher temperatures across datasets (Table 17). BLIP2 demonstrates consistent improvement with increasing temperature, achieving peak average performance of 0.51 at temperature 0.6 (Table 15). Llava 1.5 13B shows optimal performance at lower temperatures, particularly for the Tox21-V dataset with 0.93 accuracy at temperature 0.2 (Table 19). CogVLM exhibits more stable performance across temperature variations, with slight degradation at higher temperatures (Table 20). The mPlugOWL2 model achieves its best performance at temperature 0.2 across multiple datasets, notably reaching 0.88 accuracy on Tox21-V (Table 15). These findings suggest that moderate temperatures (0.2-0.4) generally provide optimal performance across models and representations, with specific optimal values being model and dataset dependent.

Table 15: **Effect of temperature:** Accuracy (F1-score) for different temperature settings using ICL (Samples k=2) on mPlugOWL2 model with SMILES.

Temp Variation	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
0.0	0.59(0.32)	0.35(0.38)	0.62(0.30)	0.34(0.42)	0.69(0.57)
0.2	0.70 (0.28)	0.38(0.24)	0.74 (0.18)	0.78 (0.18)	0.88 (0.10)
0.4	0.65(0.15)	0.46(0.46)	0.64(0.21)	0.30(0.36)	0.83(0.16)
0.6	0.60(0.23)	0.43(0.44)	0.62(0.26)	0.40(0.51)	0.73(0.16)
0.8	0.58(0.19)	0.41(0.43)	0.59(0.28)	0.43(0.52)	0.72(0.20)

D.5 Experiments on FS-Mol Dataset

D.5.1 Zero-Shot Performance on FS-Mol

We evaluated models without any training examples to establish baseline capabilities. Table 21 presents zero-shot AUPRC values.

Table 16: *Effect of temperature on SELFIE*: This table shows the performance of the Llama Adapter v2 model with ICL (k=2 examples) on various datasets represented in SELFIE notation.

Temp	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
0.0	0.38 (0.44)	0.48 (0.23)	0.21 (0.37)	0.31 (0.35)	0.15 (0.17)
0.2	0.34 (0.51)	0.66(0.79)	0.19 (0.31)	0.29(0.88)	0.13 (0.18)
0.4	0.35 (0.49)	0.62 (0.75)	0.22 (0.32)	0.24 (0.85)	0.28 (0.11)
0.6	0.36 (0.43)	0.53 (0.68)	0.26 (0.33)	0.22 (0.83)	0.31 (0.18)
0.8	0.33 (0.44)	0.58 (0.69)	0.24 (0.39)	0.22 (0.81)	0.31 (0.15)

Table 17: *Effect of temperature on SMILES:* This table shows the performance of the Llama Adapter v2 model with ICL (k=2 examples) on various datasets represented in SMILES notation.

Temp	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
0.0	0.28 (0.29)	0.18 (0.11)	0.19 (0.17)	0.29 (0.12)	0.31 (0.21)
0.2	0.38 (0.55)	0.22(0.83)	0.21 (0.33)	0.28 (0.19)	0.32 (0.15)
0.4	0.35 (0.49)	0.35 (0.76)	0.42 (0.35)	0.22(0.24)	0.39 (0.24)
0.6	0.39 (0.56)	0.23 (0.74)	0.31 (0.25)	0.31 (0.11)	0.41 (0.29)
0.8	0.43 (0.54)	0.29 (0.62)	0.37 (0.36)	0.26 (0.19)	0.41 (0.11)

Table 18: **Effect of Temperature on Model Performance:** Accuracy (F1-score) at different temperature settings using the BLIP2 model on various datasets. Higher temperatures generally show increased variability in F1-scores, with peak performance occurring at different temperature levels across datasets.

Temp Variation	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V	Average
0.0	0.33(0.42)	0.29(0.27)	0.56(0.24)	0.28(0.23)	0.65(0.32)	0.42(0.30)
0.2	0.35(0.49)	0.30(0.28)	0.56(0.30)	0.29(0.16)	0.69(0.34)	0.44(0.31)
0.4	0.34(0.42)	0.32(0.28)	0.59(0.27)	0.32(0.34)	0.72(0.34)	0.46(0.33)
0.6	0.41(0.54)	0.39(0.31)	0.64(0.35)	0.38(0.38)	0.72(0.36)	0.51(0.39)
0.8	0.38(0.48)	0.36(0.24)	0.62(0.32)	0.38(0.26)	0.78(0.44)	0.50(0.35)

Table 19: *Effect of temperature:* Performance analysis using the Llava 1.5 13B with ICL (k=2), focusing on diverse datasets represented in SELFIE format.

Temp	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
0.0	0.61 (0.33)	0.73 (0.46)	0.32 (0.35)	0.35 (0.36)	0.67 (0.47)
0.2	0.59 (0.34)	0.63 (0.18)	0.36 (0.14)	0.19(0.14)	0.93 (0.11)
0.4	0.57 (0.41)	0.34 (0.25)	0.34 (0.25)	0.31 (0.11)	0.86 (0.12)
0.6	0.48 (0.29)	0.42 (0.43)	0.36 (0.43)	0.34 (0.34)	0.77 (0.18)
0.8	0.52 (0.41)	0.37 (0.35)	0.30 (0.35)	0.36 (0.13)	0.75 (0.07)

Table 20: *Effect of temperature:* Analysis of temperature variation in various SELFIE based datasets with ICL (k=2) using CogVLM model.

Temp	BACE-V	BBBP-V	HIV-V	Clintox-V	Tox21-V
0.0	0.62 (0.44)	0.51 (0.58)	0.25 (0.29)	0.32 (0.37)	0.18 (0.14)
0.2	0.58 (0.41)	0.48 (0.54)	0.28 (0.52)	0.32 (0.31)	0.14 (0.35)
0.4	0.58 (0.41)	0.42 (0.52)	0.26 (0.48)	0.33 (0.33)	0.17 (0.34)
0.6	0.53 (0.44)	0.45 (0.48)	0.25 (0.42)	0.27 (0.31)	0.14 (0.32)
0.8	0.56 (0.39)	0.37 (0.39)	0.28 (0.49)	0.25 (0.30)	0.18 (0.32)

Table 21: Zero-shot performance on FS-Mol dataset showing AUPRC values.

Description	PN	LLama 3.1 8B	LLaVA 1.5	CogVLM
Oxidoreductases	0.086	0.136	0.202	0.188
Kinases	0.217	0.201	0.242	0.237
Hydrolases	0.196	0.156	0.207	0.207
Lysases	0.229	0.198	0.213	0.190
Isomerase	0.117	0.189	0.217	0.208
Ligases	0.058	0.145	0.203	0.167
Translocases	0.055	0.173	0.250	0.252

Even without training examples, VLMs demonstrate superior performance compared to the PN baseline and text-only models, with LLaVA 1.5 achieving the highest average AUPRC across enzyme classes.

D.5.2 Few-Shot Learning on FS-Mol Dataset

We evaluated VLMs on the FS-Mol dataset for few-shot molecular property prediction across seven enzyme classes. Table 22 presents AUPRC (Area Under the Precision-Recall Curve) values.

Table 22: Few-shot learning performance on FS-Mol dataset showing AUPRC values across different enzyme classes.

Description	PN	LLama 3.1 8B	LLaVA 1.5	CogVLM
Oxidoreductases	0.086	0.208	0.310	0.290
Kinases	0.217	0.309	0.387	0.370
Hydrolases	0.196	0.288	0.399	0.391
Lysases	0.229	0.366	0.409	0.380
Isomerase	0.117	0.343	0.425	0.408
Ligases	0.058	0.268	0.390	0.328
Translocases	0.055	0.255	0.384	0.380

VLMs consistently outperform both the PN baseline and text-only models (LLama 3.1 8B) across all molecular classes. LLaVA 1.5 achieves the best performance, with improvements ranging from 43% (oxidoreductases) to 573% (ligases) over the PN baseline, demonstrating clear advantages in few-shot scenarios where visual information provides complementary structural insights.

D.5.3 Contrastive Learning on FS-Mol

We explored contrastive learning using positive examples based on Tanimoto similarity (Section G) with only 10% of the training data. Table 23 shows substantial performance improvements.

Table 23: Contrastive learning performance on FS-Mol dataset using 10% training data, showing AUPRC values.

Description	PN	LLaVA 1.5
Oxidoreductases	0.086	0.403
Kinases	0.217	0.453
Hydrolases	0.196	0.488
Lysases	0.229	0.502
Isomerase	0.117	0.513
Ligases	0.058	0.492
Translocases	0.055	0.499

Contrastive learning with Tanimoto similarity-based positive pairs yields dramatic improvements, achieving 4-9× performance gains over the PN baseline while using only 10% of training data. This demonstrates the effectiveness of leveraging structural similarities for enhanced molecular representation learning.

D.6 Impact of visual data

Table 24 underscores the stark contrast in performance between Llama 2, a large language model, and its VLM counterpart, Llama Adapter v2 after ICL. Llama Adapter v2 also show substantial improvement post-finetuning.

Table 24: *Impact of visual data:* First row shows Accuracy (F1-score) for ICL with language model Llama2, second row shows visual-language variant with improvement in performance, and third row demonstrates significant improvement in performance after finetuning.

Models	BACE-V	BBBP-V	HIV-V	ClinTox-V	Tox21-V
Llama 2 13B (ICL)	<0.01(<0.01)	0.05(0.04)	0.05(0.07)	0.05(0.08)	<0.01(<0.01)
Llama Adapter v2 7B (ICL) Llama Adapter v2 7B (LoRA)	0.28(0.29) 0.52(0.48)	0.18(0.11) 0.45(0.46)	0.19(0.17) 0.43(0.42)	0.29(0.12) 0.58(0.62)	0.31(0.21) 0.68(0.69)

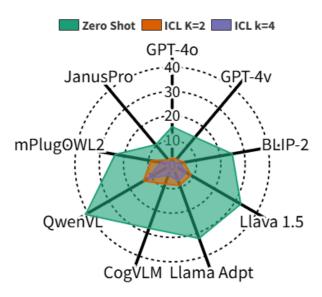


Figure 3: Radar plot comparing regression performance across various models (GPT-4v, GPT-4o, JansuPro, QwenVL, mPlugOWL2, BLIP-2, Llava 1.5 13B, CogVLM, and Llama Adapter v2 7B) averaged across ESOL, LD50, QM9, and PCQM4Mv2 datasets. The chart highlights Zero Shot (green) and Few Shot (k=2 in orange, k=4 in purple) capabilities.

E Regression: Further Analysis and Discussion

The main paper presents the results of regression tasks on ESOL, LD50, QM9, and PCQM4Mv2 for in-context learning (ICL) with k=2 and finetuning. Here we provide additional results for **zero-shot** learning, detailed in Table 26, and **few-shot** learning with k=4, shown in Table 27. Figure 3 summarizes performance comparison across different models for regression tasks.

Furthermore, comprehensive evaluations on the QM9 dataset are included for 12 quantum mechanical targets under the "all-together" setting, where all targets are prompted simultaneously. These evaluations cover zero-shot learning (k=0), shown in Table 28; few-shot learning with k=2, presented in Table 29; and few-shot learning with k=4, detailed in Table 30.

E.1 Effect of Finetuning

The performance improvements achieved through LoRA-based finetuning are substantial across all regression tasks, as demonstrated in Table 25. BLIP-2 achieves the best overall performance with an average error of 1.925 across all datasets, excelling particularly on QM9-V (4.923 MAE) and

PCQM4Mv2-V (0.235 MAE). CogVLM follows closely with an average error of 1.928, showing exceptional performance on ESOL-V with an RMSE of 1.102. Notably, Qwen VL demonstrates remarkable accuracy on LD50-V with a minimal MAE of 0.022. These finetuning results significantly outperform the in-context learning (ICL k=2) approaches presented in Table 3 of the main paper, where even the best-performing ICL model, Janus-Pro 7B, achieved only 2.52 average error. For example, BLIP-2's finetuned performance (1.925 average error) represents a 61.5% improvement over its ICL performance (5.01 average error). Similarly, CogVLM improved from 8.50 to 1.928, and Qwen VL from 13.64 to 2.340. These dramatic improvements underscore the limitations of few-shot learning for molecular property prediction tasks and highlight the critical importance of task-specific parameter adaptation through finetuning.

Table 25: *Performance comparison after finetuning:* Regression tasks. Error comparison of models finetuned using LoRA across different datasets. The best performing models are highlighted with bold text. Second best model performance are underlined.

Model	ESOL-V (RMSE)	LD50-V (MAE)	QM9-V (MAE)	PCQM4Mv2-V (MAE)	Average
BLIP-2	1.764	0.779	4.923	0.235	1.925
Llava 1.5 13B	2.229	0.193	5.193	0.602	2.554
Llama Adapter v2 7B	4.032	0.624	7.921	3.002	3.895
CogVLM	1.102	0.592	5.221	0.795	1.928
Qwen VL	2.192	0.022	5.021	2.125	2.340
mPlugOWL2	<u>1.291</u>	0.082	8.029	1.621	2.756

E.2 Effect of ICL Examples

Tables 26 and 27 shows significant impact of in-context examples (k=4) versus zero-shot learning (k=0) across all models. GPT-4v maintains superior performance in both scenarios, ranking first with average metrics of 14.6485 and 1.04825 respectively, as shown in Table 26 and Table 27. The introduction of examples leads to substantial error reduction, exemplified by GPT-4v's ESOL RMSE improving from 1.489 to 0.812, and its QM9 MAE decreasing from 45.296 to 2.503. Notably, the performance gap between models narrows with in-context examples, as evidenced by the reduction in average performance difference between best and worst models from 26.4815 (Table 26) to 10.69325 (Table 27), particularly in complex tasks like QM9 and PCQM4Mv2.

Table 26: *Performance comparison for zero-shot learning (k=0):* MAE, RMSE of Multimodal LLMs for molecular property prediction based regression tasks.

Model	ESOL (RMSE)	LD50 (MAE)	QM9 (MAE)	PCQM4Mv2 (MAE)	Average
GPT-40	1.232	12.31	47.126	1.41	15.5195
GPT-4v	1.489	9.01	45.296	2.799	14.6485
JanusPro 7B	1.997	8.124	48.301	1.893	15.07875
BLIP-2	2.011	15.631	78.731	3.973	25.0865
Llava 1.5	18.198	14.952	93.182	3.967	32.57475
Llama Adapter	3.314	5.741	106.382	14.005	32.3605
CogVLM	2.093	23.769	80.766	4.939	27.89175
Qwen	4.119	24.388	116.353	19.66	41.13
mPlugOWL2	2.12	10.888	77.297	4.899	23.801

E.3 Analysis of QM9 Multi-Target Prediction

Tables 28, 29, and 30 present the performance comparison for simultaneous prediction of all 12 QM9 molecular properties. In the zero-shot setting (Table 28), GPT-40 and GPT-4v demonstrate superior performance with average MAEs of 47.1264 and 45.2964 respectively. The addition of in-context examples (k=2, k=4) significantly improves prediction accuracy across all models, with GPT-4v achieving the best average MAE of 2.5028 at k=4. Notably, both GPT-40 and GPT-4v show consistent performance across different molecular properties, maintaining their superiority even in this challenging multi-target prediction scenario.

Table 27: *Performance comparison for few-shot learning (k=4):* MAE, RMSE of Multimodal LLMs for molecular property prediction based regression tasks.

Model	ESOL (RMSE)	LD50 (MAE)	QM9 (MAE)	PCQM4Mv2 (MAE)	Average
GPT-4o	0.867	0.614	3.147	0.222	1.2125
GPT-4v	0.812	0.686	2.503	0.192	1.048
JanusPro 7B	0.562	0.632	3.071	0.348	1.421
BLIP-2	1.289	0.696	10.339	0.882	3.3015
Llava 1.5	4.361	0.709	20.157	0.883	6.5275
Llama Adapter	2.309	2.431	19.840	3.809	7.09725
CogVLM	1.225	0.815	15.662	0.805	4.62675
Qwen	3.332	0.839	33.534	9.261	11.7415
mPlugOWL2	1.416	0.741	14.998	1.692	4.71175

Table 28: *Performance comparison for zero-shot learning (k=0):* MAE of Multimodal LLMs for molecular property prediction based regression tasks on QM9 Dataset.

Model	QM9(Alpha)	QM9(Gap)	QM9(Homo)	QM9(Lumo)	QM9(Mu)	QM9(CV)	QM9(G298)	QM9(H298)	QM9(r2)	QM9(u298)	QM9(u0)	QM9(zpve)	QM9(Avg)
GPT-40	11.0855	1.8364	1.0287	3.0245	2.6813	6.7424	85.0988	85.0906	195.5142	85.0902	85.0929	3.2317	47.1264
GPT-4v	14.925	2.4481	1.9924	2.129	3.129	6.1294	88.924	120.449	145.9812	66.2498	88.9192	2.2804	45.2964
JanusPro 7B	12.921	3.8238	1.8299	2.921	3.109	4.291	97.921	91.842	170.829	73.289	111.924	4.921	48.301
BLIP-2	47.902	3.920	2.220	2.844	11.294	59.201	122.842	129.912	255.901	102.120	194.201	12.422	78.7316
Llava 1.5	108.449	32.923	21.382	17.994	17.544	36.686	173.561	126.244	209.361	186.335	157.421	30.285	93.1821
Llama-Adapter	175.989	13.822	11.939	15.679	12.525	79.738	207.088	130.005	232.172	165.611	201.434	30.584	106.3822
CogVLM	93.191	2.119	1.4757	2.997	9.784	45.534	137.238	184.106	232.069	132.701	120.716	7.2616	80.7660
Qwen	184.191	8.201	7.772	9.009	46.111	137.302	240.019	129.090	220.322	172.828	197.466	43.923	116.3528
mPlugOWL2	72.706	3.676	4.280	2.457	5.673	31.363	157.058	157.078	214.541	100.495	121.920	56.315	77.2968

Table 29: *Performance comparison for few-shot learning (k=2):* MAE of Multimodal LLMs for molecular property prediction based regression tasks on QM9 Dataset.

Model	QM9(Alpha)	QM9(Gap)	QM9(Homo)	QM9(Lumo)	QM9(Mu)	QM9(CV)	QM9(G298)	ОМ9(Н298)	QM9(r2)	QM9(u298)	QM9(u0)	QM9(zpve)	QM9(Avg)
GPT-40	2.32	0.2126	0.3113	0.2212	0.9787	0.857	17.9428	17.9434	22.948	17.9435	17.9432	0.9126	8.3779
GPT-4v	3.1	0.484	0.396	0.293	0.968	0.998	18.021	18.022	24.405	18.022	18.021	0.725	8.6217
JanusPro 7B	2.892	0.429	0.3329	0.3392	0.792	0.729	18.291	18.728	21.882	19.821	17.211	0.884	8.5276
BLIP-2	3.401	0.713	0.891	0.629	2.14	2.129	22.092	21.921	85.239	29.912	22.12	0.982	16.014
Llava 1.5	17.472	2.191	1.991	1.629	7.737	3.516	26.653	68.502	100.307	56.087	36.873	1.024	26.9985
Llama-adapter	17.316	1.621	2.091	1.032	4.554	5.011	39.585	45.626	130.37	58.654	29.255	2.02	28.0946
CogVLM	7.6465	0.91	1.012	0.876	3.613	2.799	21.292	27.702	174.554	45.178	23.74	0.822	25.8454
QwenVLM	13.563	2.03	1.293	1.075	10.587	3.563	130.992	75.385	134.581	55.007	36.941	2.036	38.9211
mPlugOWL2	10.336	1.832	1.432	1.71	2.685	3.233	23.091	37.263	189.806	52.405	27.379	0.829	29.333

Table 30: *Performance comparison for few-shot learning (k=4):* MAE of Multimodal LLMs for molecular property prediction based regression tasks on QM9 Dataset.

Model	QM9(Alpha)	QM9(Gap)	QM9(Homo)	QM9(Lumo)	QM9(Mu)	QM9(CV)	QM9(G298)	QM9(H298)	QM9(r2)	QM9(u298)	QM9(u0)	QM9(zpve)	QM9(Avg)
GPT-4o	1.28	0.0184	0.0137	0.0053	0.2787	0.257	3.9572	3.9561	20.052	3.956	3.9563	0.0334	3.1470
GPT-4v	1.56	0.0244	0.0383	0.0069	0.9664	0.207	3.0218	3.0214	15.1194	3.0215	3.0215	0.0251	2.5028
JanusPro 7B	1.992	0.0892	0.0782	0.0098	0.389	0.108	5.208	4.592	17.229	4.092	2.981	0.0782	3.0705
BLIP-2	2.992	0.064	0.192	0.023	1.102	0.942	9.28	19.029	73.923	9.284	7.128	0.103	10.3385
CogVLM	6.9543	0.166	0.112	0.196	1.644	2.912	16.482	19.597	98.439	18.502	22.844	0.0919	15.6617
mPlugOWL2	8.823	1.016	1.011	1.489	1.556	2.746	14.191	22.711	88.797	15.687	21.826	0.126	14.9983
llava	10.064	0.362	0.221	0.092	1.76	3.014	21.824	65.123	80.81	28.139	30.044	0.426	20.1566
llama-adapter	15.961	1.129	1.071	0.902	2.65	4.741	25.978	27.412	93.616	37.095	26.511	1.019	19.8404
qwen	12.988	1.203	1.102	1.091	2.813	2.988	97.619	69.377	127.947	51.125	33.136	1.018	33.5339

F Molecular Description: Further Analysis

We conducted a comprehensive evaluation of molecular description capabilities across multiple models and settings. This analysis examines zero-shot performance, the effects of in-context learning (ICL) with varying numbers of examples, and the impact of Chain of Thought (CoT) prompting on description quality. All experiments use the same evaluation metrics: BLEU-2, BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, and METEOR, with average scores reported for concise comparison.

F.1 Zero-Shot Evaluation

We conducted experiments evaluating molecular description capabilities in a zero-shot setting. GPT-40 demonstrates superior performance across all metrics, achieving the highest average score of 27.541 (Table 31). GPT-4v follows with a notable performance gap but consistent profile (24.556 average). Among the remaining models, JanusPro and Llava 1.5 13B form the second tier (19.642 and 18.140 average, respectively), followed by CogVLM and mPlugOWL2 showing comparable capabilities (16.158 and 16.004). BLIP-2 and Qwen VL deliver similar mid-to-low range performance, while Llama Adapter v2 7B struggles significantly with this task (10.048 average). These results suggest that general-purpose models with extensive pretraining currently maintain substantial advantages in zero-shot molecular understanding and description tasks.

Table 31: *Molecular description performance in zero-shot setting:* Comparison of models evaluated on molecular description task without finetuning. The best performing models are highlighted with bold text.

Models	BLEU-2↑	BLEU-4↑	ROUGE-1↑	ROUGE-2↑	$\mathbf{ROUGE\text{-}L} \uparrow$	$\mathbf{METEOR} \uparrow$	Average ↑
GPT-40	27.853	25.491	29.376	26.184	28.729	27.615	27.541
GPT-4v	24.837	23.492	25.876	24.184	25.329	23.615	24.556
BLIP-2	12.610	11.780	12.480	12.150	12.390	11.940	12.225
CogVLM	16.753	15.292	16.876	15.684	16.529	15.815	16.158
mPlugOWL2	16.621	15.220	16.432	15.837	16.286	15.629	16.004
Llava 1.5 13B	18.662	17.544	18.470	18.047	18.340	17.774	18.140
Llama Adapter v2 7B	10.332	9.723	10.235	9.985	10.173	9.841	10.048
Qwen VL	14.497	13.634	14.360	14.008	14.267	13.802	14.095
JanusPro	19.753	18.492	20.876	19.284	20.529	18.915	19.642

F.2 Effect of ICL Examples

Tables 32 and 33 demonstrate significant performance improvements when increasing from 2-shot to 4-shot learning. GPT-4v leads in the 2-shot setting with the highest average score of 43.400, while GPT-4o achieves superior results in the 4-shot setting with an average of 59.727, showing a remarkable improvement of 17.6 percentage points over its 2-shot performance. All models exhibit consistent gains when provided with additional examples, with larger models generally demonstrating better utilization of in-context examples. JanusPro maintains strong performance in both settings, while smaller models like Llama Adapter v2 7B show more modest improvements.

Table 32: *Molecular description performance in few-shot setting (k=2):* Comparison of models evaluated on molecular description task with 2-shot learning. The best performing models are highlighted with bold text.

Models	BLEU-2↑	BLEU-4↑	ROUGE-1↑	ROUGE-2↑	ROUGE-L↑	METEOR ↑	Average ↑
GPT-4o	43.330	40.180	42.870	42.070	42.670	41.740	42.143
GPT-4v	43.720	43.020	43.620	43.310	43.580	43.150	43.400
BLIP-2	30.265	29.273	30.136	29.719	30.032	29.546	29.829
CogVLM	31.951	30.552	31.762	31.167	31.616	30.959	31.335
mPlugOWL2	26.664	24.795	26.390	25.619	26.184	25.359	25.835
Llava 1.5 13B	29.818	28.617	29.653	29.137	29.526	28.951	29.284
Llama Adapter v2 7B	21.619	20.465	21.469	21.142	21.377	20.982	21.176
Qwen VL	31.062	29.051	30.817	29.923	30.600	29.583	30.173
JanusPro	38.286	37.061	38.153	37.618	38.021	37.262	37.734

Table 33: *Molecular description performance in few-shot setting (k=4):* Comparison of models evaluated on molecular description task with 4-shot learning. The best performing models are highlighted with bold text.

Models	BLEU-2↑	BLEU-4↑	ROUGE-1↑	ROUGE-2↑	ROUGE-L↑	METEOR ↑	Average ↑
GPT-4o	61.310	58.690	60.490	59.220	60.060	58.590	59.727
GPT-4v	55.780	54.430	55.580	54.930	55.460	54.650	55.138
BLIP-2	36.064	34.530	35.896	35.227	35.728	35.049	35.416
CogVLM	40.285	39.062	40.152	39.618	40.020	39.262	39.733
mPlugOWL2	33.774	32.299	33.614	32.969	33.454	32.792	33.150
Llava 1.5 13B	40.775	39.507	40.638	40.083	40.502	39.715	40.203
Llama Adapter v2 7B	32.063	31.075	31.947	31.456	31.857	31.298	31.616
Qwen VL	40.285	39.062	40.152	39.618	40.020	39.262	39.733
JanusPro	50.574	48.696	50.373	49.599	50.104	49.098	49.741

F.3 Chain of Thought Prompting

Table 34 illustrates the impact of Chain of Thought (CoT) prompting on molecular description tasks. GPT-40 achieves superior performance across all metrics with an average score of 61.494, slightly outperforming GPT-4v (59.549). Both models demonstrate strong capabilities when encouraged to reason step-by-step. JanusPro maintains its position as the third-best performer with an average score of 53.703, showing considerable potential among non-commercial models. The remaining models show varying degrees of effectiveness with CoT prompting, with Llava and CogVLM achieving similar performance (43.393 and 42.878, respectively). Notably, when compared to few-shot learning results, CoT prompting appears to further enhance model performance, particularly for larger models, suggesting that structured reasoning approaches are beneficial for molecular description tasks.

Table 34: *Molecular description performance in Chain-of-thought setting:* Comparison of models evaluated on molecular description task with Chain of Thought (CoT). The best performing models are highlighted with bold text.

Models	BLEU-2↑	BLEU-4↑	ROUGE-1↑	ROUGE-2↑	$\mathbf{ROUGE\text{-}L} \uparrow$	$\mathbf{METEOR} \uparrow$	Average ↑
GPT-40	62.162	60.743	62.406	61.151	62.006	60.495	61.494
GPT-4v	60.242	58.784	60.026	59.324	59.897	59.022	59.549
BLIP2	38.708	37.092	38.530	37.825	38.344	37.638	38.023
CogVLM	43.467	42.187	43.324	42.745	43.182	42.361	42.878
mPlugOWL	36.475	34.883	36.303	35.606	36.130	35.416	35.802
Llava	43.996	42.668	43.849	43.249	43.702	42.892	43.393
Llama Adapter	34.628	33.561	34.503	33.972	34.405	33.802	34.145
Qwen	43.387	42.187	43.324	42.745	43.182	42.403	42.871
Janus	54.571	52.591	54.352	53.567	54.112	53.026	53.703

G Contrastive Learning for Vision Encoders

We explore two contrastive learning strategies for enhancing the vision encoder's ability to capture molecular structural information: augmentation-based and Tanimoto similarity-based approaches. This additional loss is used with LoRA finetuning. We experimente with BLIP-2 considering its better performance across all tasks. The motivation is to enable the vision encoder to learn more discriminative representations of molecular structures by leveraging either image transformations or chemical similarity relationships. The performance of these contrastive learning approaches across multiple molecular datasets is summarized in the main paper, while the detailed metrics on the molecular description task are presented in Table 35.

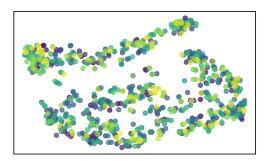
Table 35: *Molecular description performance using Contrastive Learning* Comparison of BLIP2 evaluated on molecular description task with Augmentation (Aug) and Tanimoto Augmentation (T-Aug).

Models	BLEU-2↑	BLEU-4↑	ROUGE-1↑	ROUGE-2↑	$\mathbf{ROUGE\text{-}L} \uparrow$	$\mathbf{METEOR} \uparrow$	Average \uparrow
Lora	59.062	58.034	58.933	58.466	58.889	58.185	58.595
Aug	61.530	60.307	61.398	60.863	61.266	60.507	60.979
T-Aug	64.176	63.192	64.072	63.641	63.966	63.352	63.733

G.1 Augmentation-based contrastive learning

We generate multiple views of the same molecule using a set of image transformations including rotations (at angles 45°, 90°, 135°, 180°, 225°, 270°, and 315°), vertical and horizontal flips, solarization, posterization, and auto-contrast adjustments. For each molecule image, we randomly apply two transformations to create positive pairs for contrastive learning.

Figure 4 illustrates the analysis of our augmentation-based approach through t-SNE visualizations of the visual encodings. While our main paper demonstrates the superior performance of contrastive learning using Tanimoto similarity, here we present results from image augmentation techniques for comparison. The left plot shows the visual encodings from BLIP-2 before cross-modal fusion, with clusters exhibiting significant overlap. The right plot displays the representations after cross-modal fusion, where the clusters become more distinguishable but still less defined than those achieved with Tanimoto similarity methods discussed in the main paper. This comparative analysis confirms that Tanimoto similarity-based approaches provide better molecular structure differentiation than augmentation-based techniques alone, particularly for chemical structure representation tasks.



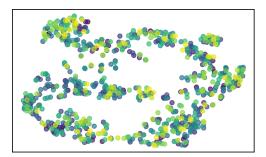


Figure 4: *Analyzing visual features:* The two plots show t-SNE visualizations of visual encodings of BLIP-2 before and after cross-modal fusion respectively using augmentative technique.

G.2 Tanimoto similarity-based contrastive learning

Rather than using augmented views, we leverage chemical similarity to define positive pairs. For each molecule, we identify three structurally similar molecules with Tanimoto similarity scores >0.85 to serve as positive examples. This approach ensures that the model learns from meaningful chemical relationships rather than artificial transformations.

G.3 Overall loss function

For both approaches, we implement a contrastive loss based on NT-Xent (Normalized Temperature-scaled Cross Entropy) as used in SimCLR. The fundamental principle behind this loss function is to learn discriminative molecular representations by pulling together embeddings of similar molecules (positive pairs) while pushing apart embeddings of dissimilar molecules (negative pairs) in the representation space.

The contrastive loss is mathematically defined as:

$$\mathcal{L}_{\text{contrastive}} = -\frac{1}{2N} \sum_{i=1}^{N} \log \frac{\exp(\sin(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp(\sin(z_i, z_k)/\tau)}$$
(1)

The key components of this formulation include z_i and z_j , which represent the normalized embeddings of a positive pair obtained from the vision encoder after processing molecular images. The similarity function $\sin(z_i,z_j)=\frac{z_i^Tz_j}{\|z_i\|\|z_j\|}$ denotes the cosine similarity between two embeddings, while $\tau=0.5$ is the temperature parameter that controls the concentration of the distribution around positive pairs. The batch size is represented by N, resulting in 2N total samples when considering both elements of each positive pair, and $\mathbf{1}_{[k\neq i]}$ is an indicator function that excludes the case where k=i to prevent self-comparison.

The loss function operates by computing the probability that embedding z_i is most similar to its positive counterpart z_j compared to all other embeddings in the batch. The numerator $\exp(\sin(z_i,z_j)/\tau)$ represents the similarity between the positive pair, while the denominator sums over all possible negative pairs within the batch, creating a softmax-like normalization that encourages the model to distinguish between related and unrelated molecular structures.

The temperature parameter τ plays a crucial role in controlling the learning dynamics. A lower temperature such as our chosen value of 0.5 creates sharper distributions, making the model more sensitive to small differences in similarity scores and encouraging tighter clustering of positive pairs. This helps the encoder learn more discriminative features that are essential for downstream molecular property prediction across classification tasks, regression tasks, and molecular description tasks.

During training, this contrastive loss is combined with the task-specific loss for the target dataset:

$$\mathcal{L}_{total} = \mathcal{L}_{task} + \lambda \mathcal{L}_{contrastive}$$
 (2)

Here, \mathcal{L}_{task} represents the primary loss for the specific molecular property prediction task, which varies depending on whether we are performing classification (cross-entropy loss), regression (mean squared error or mean absolute error), or molecular description (sequence generation loss). The weighting parameter λ balances the contribution of the contrastive learning objective with the task-specific objective. This combined loss function is optimized during LoRA finetuning, allowing the vision encoder to simultaneously learn task-specific features for classification, regression, and molecular description tasks while maintaining the ability to distinguish between different molecular structures through contrastive learning. The integration of contrastive learning with task-specific objectives enables the model to develop robust molecular representations that generalize well across diverse downstream applications in molecular property prediction.

H Multimodal vs. Text-Only Baseline Comparison

To validate the contribution of visual information, we compare our multimodal approach with text-only fine-tuned language models. Table 36 presents results across classification (BACE, BBBP), regression (ESOL, LD50), and molecular description (ChEBI-20) tasks.

Table 36: Comparison of multimodal and text-only fine-tuning. BACE and BBBP show Accuracy (F1-score), ESOL shows RMSE, LD50 shows MAE, and ChEBI-20 shows average of BLEU-2, BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, METEOR.

Model	Type	String	BACE	BBBP	ESOL	LD50	ChEBI-20
BLIP-2	Visual-Text	SMILES	0.86(0.83)	0.93(0.96)	1.764	0.779	58.6
Mistral 7B	Text	SMILES	0.539(0.510)	0.639(0.575)	3.291	2.931	42.982
Mistral 7B	Text	SELFIES	0.564(0.549)	0.638(0.634)	2.948	2.784	44.094
Llama 3.1 8B	Text	SMILES	0.599(0.610)	0.643(0.657)	2.093	2.003	45.998
Llama 3.1 8B	Text	SELFIES	0.634(0.612)	0.685(0.699)	2.084	1.91	48.092

The multimodal approach consistently outperforms text-only models across all tasks. BLIP-2 achieves substantial improvements: 26% higher accuracy on BACE and 24% on BBBP compared to the best text-only baseline (Llama 3.1 8B with SELFIES). Similar advantages are observed in regression (16% lower RMSE on ESOL) and molecular description (22% higher ChEBI-20 score), confirming that visual information provides significant value for molecular property prediction.

I Additional Experiments and Datasets

In this section, we present additional experiments conducted to validate our approach, including image processing methods, few-shot learning on the FS-Mol dataset, and zero-shot with contrastive learning evaluations.

J Effect of Image Processing Parameters

To examine the impact of image processing parameters on model performance, we conducted experiments with different visual protocols using CogVLM (ICL k=2). Table 37 presents results across classification (BACE) and regression (ESOL) tasks.

Table 37: Impact of image processing methods on molecular property prediction. BACE shows Accuracy (F1-score) and ESOL shows RMSE.

Image Protocol	BACE	ESOL
224×224 (Baseline)	0.48(0.51)	1.26
128×128	0.46(0.50)	1.43
512×512	0.48(0.52)	1.24
Thicker Bond Lines $(2.0 \rightarrow 5.0)$	0.48(0.50)	1.25
Functional Group Highlighting	0.50(0.51)	1.22

While image processing variations show modest performance differences (maximum 4% accuracy variation on BACE and 15% RMSE variation on ESOL), functional group highlighting and higher resolution (512×512) demonstrate slight improvements. We used standard RDKit parameters with 224×224 resolution as our baseline to ensure fair comparison across models and maintain computational efficiency.

K Prompt Examples

In this section, we show some prompt examples as used for various datasets. We have included some example ICL prompts specific to some of the dataset (Figure 5, 8, 6, 9,7). For regression tasks, we demonstrate an example using the ESOL dataset for solubility prediction (Figure 11). With ICL k=0 (different from zero-shot), we have all other section as shown in the prompt, however the example block is not used as input. The additional information as available with task instruction differentiates it from zero-shot, as models do not see 'Task instruction' in zero-shot. Prompt examples for ICL are included with SELFIES representations (Figure 10).

We include a chain-of-thought prompt example for the BBBP dataset (Figure 13), showing the step-by-step reasoning approach for classification tasks.

We provide a prompt example for molecular description tasks using the ChEBI dataset with ICL k=2 (Figure 12), demonstrating how the model generates natural language descriptions of molecular structures and properties.

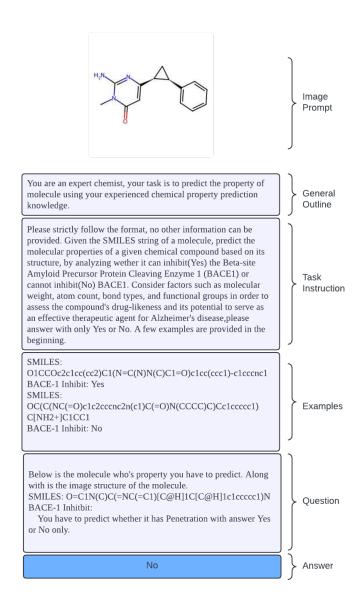


Figure 5: Sample prompt for BACE-V: A general outline is provided at first followed by set of instructions to be more specific about the task. The task is explained briefly and expected output is stated. In our case it should be Yes/No. This includes ICL examples with k=2 (No of samples). With this the main question is asked. The chemical compound who's property is to be expected is represented in its molecular structure created using RDKIT which goes along with the text input.

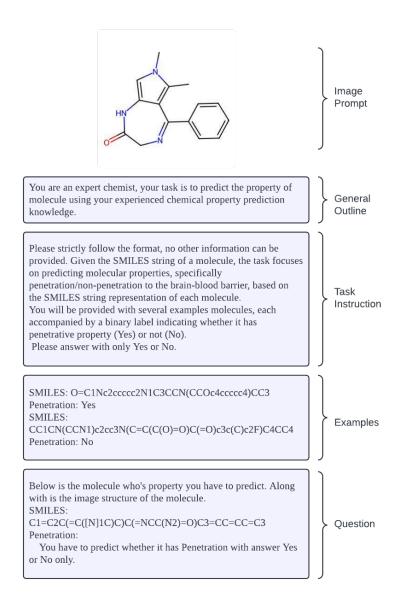


Figure 6: *Example prompt:* The figure presents a task designed for predicting molecular properties, specifically penetration through the blood-brain barrier (BBBP-V dataset), using the SMILES string representation. The general outline and specific instructions detail the expected binary output (Yes/No). Two example molecules are provided to illustrate the task, followed by the main question, which includes the SMILES string and structure of the target molecule, generated with RDKit.

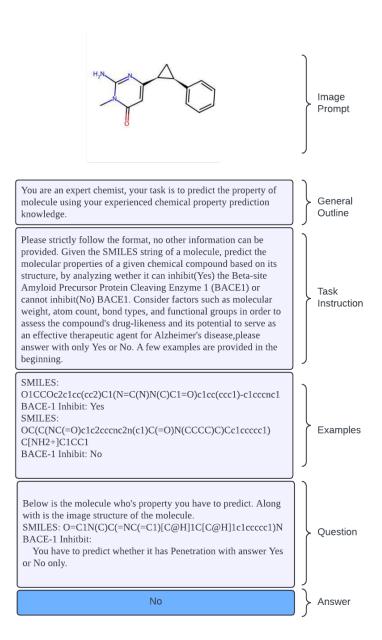


Figure 7: *Example prompt:* The figure outlines a task for predicting the ability of molecules to inhibit HIV replication (HIV-V dataset), based on their SMILES string representation. The general outline and specific instructions require a binary output (Yes/No). Example molecules are provided to illustrate the task, followed by the main question, which includes the SMILES string and structure of the target molecule, generated with RDKit.

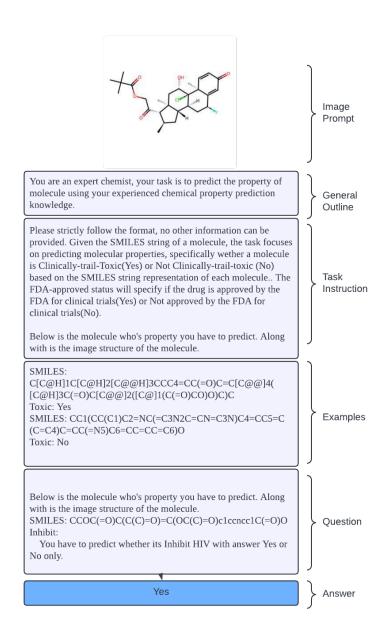


Figure 8: *Example prompt:* The figure outlines a task for predicting whether molecules are clinically trial-toxic (ClinTox-V dataset), using their SMILES string representation. The general outline and specific instructions require a binary output (Yes/No) to indicate if the molecule is approved by the FDA for clinical trials. Example molecules are provided to illustrate the task, followed by the main question, which includes the SMILES string and structure of the target molecule, generated with RDKit.

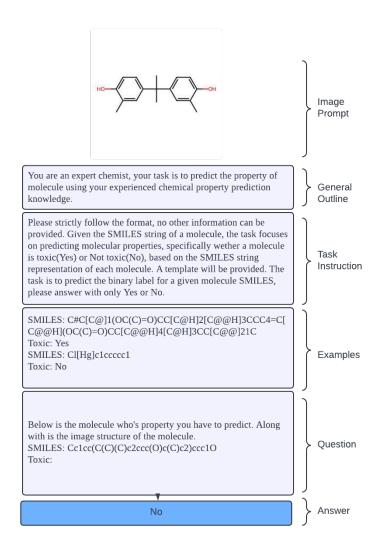


Figure 9: *Example prompt:* The figure outlines a task for predicting the toxicity of molecules based on their SMILES string representation, specifically in the context of the Tox21 dataset. The general outline and specific instructions require a binary output (Yes/No) to indicate the molecule's toxicity. Example molecules are provided to illustrate the task, followed by the main question, which includes the SMILES string and structure of the target molecule, generated with RDKit.

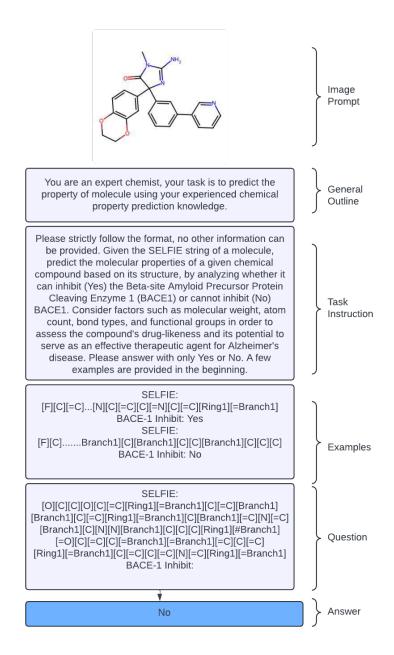


Figure 10: *Example prompt:* The figure outlines a task for predicting the ability of molecules for BACE-Inhibit (BACE-V dataset), using their SELFIES string representation. The general outline and specific instructions require a binary output (Yes/No). Example molecules are provided to illustrate the task, followed by the main question, which includes the SELFIES string and structure of the target molecule, generated with RDKit.

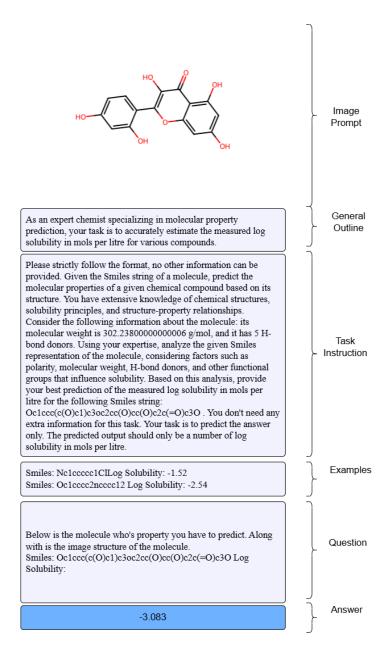


Figure 11: *Example prompt:* The figure outlines a task for predicting the log solubility of molecules based on their SMILES string representation, using the ESOL dataset. The general outline and specific instructions require a numerical output for log solubility in mols per litre. Two example molecules (k=2) are provided to illustrate the task, followed by the main question, which includes the SMILES string and structure of the target molecule, generated with RDKit.

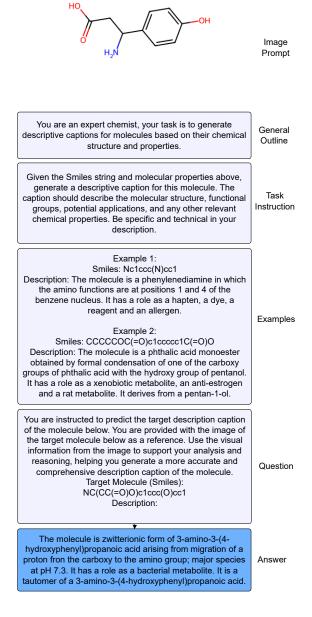


Figure 12: *Example Molecular Description prompt:* The figure outlines a task for predicting the Molecular Description based on their SMILES string representation, using the Chebi dataset. The general outline and specific instructions requires a captioning output.

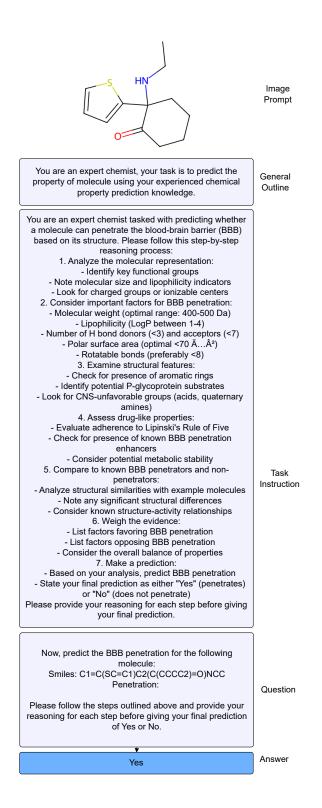


Figure 13: *Example CoT prompt:* The figure outlines a task for predicting the Brain Penetration of molecules based on their SMILES string representation, using the BBBP dataset. The general outline and specific instructions requires a binary output (Yes/No).