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In this supplementary material, we begin with important discussions on limitations (Section[A]) and
ethical considerations (Section [B). We have also included additional dataset details (Section [C),
comprehensive results and analysis for classification tasks (Section , regression tasks (Section |E|),
and molecular description tasks (Section [F). Furthermore, we present our approach to contrastive
learning for vision encoders (Section[G) and provide detailed prompt examples (Section[K) supporting
our discussion in the main paper.

2

2
2
et

5
<5
oot

i
o
bt
Rt
o5
ol

£
s

<l
<f

0.9

e

0.8

0.7

Accuracy
o
[%)]

0.4
0.3 O Zero Shot
O % & In Context Learning
0.2 (I» Chaiin of Thought
) Finetune
0.1
(o]
(o] 0.2 0.4 0.6 0.8 1
F1 Score
o BLIP-213B o Llava 1.5 13B @ Lloma Adapter v2 7B
© CogVLM 7B ® QwenVL 13B mPlugowl2 7B
© CPT-40 © GPT-4v 0 JanusPro

Figure 1: Performance comparison of Vision-Language Models (VLMs) across BACE, BBBP, HIV,
Clintox, and Tox21 datasets, depicting Accuracy vs F1 Score. The bubble size represents the model’s
parameter scale

A Limitations

Here we discuss some of the limitations of our work.

Adaptation of closed-source models: Our efficient adaptation of large visual language models for
molecular property prediction is limited to open-source models. Considering the strong performance
of proprietary models in case of few-shot learning, it will interesting to see how the capabilities of
these closed-source models improve for this domain.

Advanced vision-language models: In our few-shot setup, we utilize an image representation of a
molecule as additional input to the model. Since these models can take only one image as input, it
was not possible to provide image representations for in-context examples as input. Future research
could explore models capable of processing multiple images simultaneously.

B Ethical considerations

The integration of Vision-Language Models (VLMs) into molecular property prediction opens
exciting new possibilities while also highlighting the importance of ethical considerations. By
leveraging visual and textual representations, these models have the potential to accelerate discoveries
in drug development and materials science in a more data-efficient manner. However, ensuring
responsible Al development is crucial—focusing on model interpretability, fairness, and transparency



can enhance trust and reliability in scientific applications. Additionally, proactive measures, such as
open benchmarking and ethical guidelines, can help steer this technology toward positive societal
impact while mitigating risks. By addressing these considerations thoughtfully, VLMs can become a
transformative tool for chemistry and beyond.

C Datasets: Additional Details

This study covers datasets with varied numbers of molecules, as low as 2k to as high as 3.7M. Figure[2]
shows categorization of these datasets by tasks, Classification, Regression and Molecular Description.
The default representation that is included with these datasets is SMILES and we generated the
corresponding SELFIES representation and performed additional evaluations. All the data will be
available on the provided link [H
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Figure 2: Distribution of Datasets by Task Type: The chart illustrates the categorization of datasets
based on their primary task, either classification (blue) or regression (yellow).

C.1 Model variants

VLMs are evolved from LLMs that are designed to understand visual information and generate
language based on both, textual and visual inputs. They integrate vision encoders and natural
language processing techniques to interpret and describe images enabling use cases such as image
captioning, visual question answering and multimodal translation. We study nine different state-of-
the-art visual language models in this study.

Janus-Pro 7B: Janus-Pro 7B is a unified multimodal model that employs a novel decoupled visual
encoding approach. It processes visual inputs differently for understanding versus generation tasks:
using a SigLIP encoder to extract semantic features for understanding, while employing a VQ
tokenizer for generation. These distinct visual representations are then mapped through separate
adaptors into a shared input space, where a 7B-parameter autoregressive transformer processes the
combined multimodal sequences.

BLIP-2: BLIP-2 (Bootstrapping Language-Image Pre-training) is a multimodal model developed by
Salesforce that combines visual and language modalities to improve performance on tasks involving
both visual inputs and textual information generation.

Llava 1.5: It is a multimodal model that integrates text and image data, excelling in tasks like Visual
Question Answering (VQA), image captioning, and cross-modal retrieval. The model uses Vicuna
v1.5 as the base LLM.

Llama Adapter V2: The LLaMA-Adapter V2 is an adaption technique that is intended to improve

'Code and datasets available at: https://molvision.github.io/MolVision/
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the LLaMA model’s ability to obey instructions while preserving parameter efficiency. It presents
a number of important methods, such as early fusing of visual knowledge, joint training with
discontinuous parameters, bias control of linear layers, and integration with expert models.
CogVLM: CogVLM is a vision-language model that integrates a Vision Transformer (ViT) encoder,
MLP adapter, pretrained large language model, and a visual expert module. The ViT encoder uses
the pretrained EVA2-CLIP-E model with the final layer removed for image feature compatibility.
QwenVL: Qwen-VL is a vision-language model for tasks like understanding, localization, and text
reading. It consists of a visual encoder, a position-aware vision-language converter, and a large
language model (Qwen-7B). The visual encoder, based on Openclip’s ViT-bigG, processes images by
dividing them into patches.

mPlugOwl 2: mPLUGOWL?2 integrates a vision encoder, visual abstractor, and language decoder
for vision-language tasks. The ViT-L/14 encoder processes images into visual tokens, which the
LLaMA-2-7B decoder converts into text.

GPT-4V: GPT-4V (GPT-4 with Vision) advances multimodal Al by processing both visual and textual
inputs. Though its architecture is proprietary, GPT-4V excels in understanding and describing images,
solving visual problems, and performing detailed visual-language reasoning across various domains.
GPT-40: GPT-40, OpenAl’s advanced language model, improves upon its predecessors with enhanced
natural language processing, reasoning, and task completion. It offers better reliability, safety, and
zero-shot generalization, though its architecture details remain largely undisclosed.

C.2 Task and Datasets

We utilize RDKit to generate molecular visualizations from SMILES structures. RDKit not only
facilitates the conversion of SMILES strings into visual representations but also supports the transfor-
mation of SMILES into SELFIES strings. This functionality enables us to explore diverse molecular
encoding techniques, thereby enhancing the robustness and adaptability of our predictive models.
Since most existing datasets primarily feature SMILES strings, the ability to convert them to SELFIES
representations extends the scope of our analysis. Each dataset contains a formatted prompt alongside
the pathway to the visualized molecule image. Leveraging these datasets, we input the informa-
tion into vision-language models for tasks such as visual question answering and instruction-based
challenges. We use the following datasets in our benchmark.

BACE-V: The BACE-V dataset, adapted from the BACE (Binary Activity of Chemical Entities)
dataset, provides 2D skeletal images of molecular structures along with key bioactivity data. Widely
used for binary classification in bioactivity prediction, particularly for BACE-1 inhibitors linked to
Alzheimer’s, the dataset includes both quantitative (IC50 values) and qualitative (binary) binding
data. It features 154 BACE inhibitors for affinity prediction, 20 for pose prediction, and 34 for free
energy prediction.

BBBP-V: The BBBP-V dataset, based on the Blood-Brain Barrier Penetration (BBBP) dataset,
includes 2D skeletal images of molecular structures. It provides binary labels for BBB penetration
(penetrant or non-penetrant) along with SMILES notations and key properties like molecular weight,
lipophilicity (logP), and topological polar surface area (TPSA), all essential for predicting BBB
permeability.

HIV-V: The HIV-V dataset, based on the HIV dataset, contains 2D skeletal images of molecular
structures to support predictions of HIV replication inhibition. It includes binary labels for anti-HIV
activity and key molecular parameters—molecular weight, logP, and TPSA—essential for assessing
bioactivity and pharmacokinetics. Our evaluation focused on predicting HIV activity.

Clintox-V: The ClinTox-V dataset, derived from the ClinTox dataset, includes 2D skeletal images of
molecular structures to support predictions of clinical toxicity and FDA approval status. Represented
by SMILES notation, each of the 1,491 compounds is labeled for toxicity or FDA approval, enabling
two classification tasks. Our evaluation focused on predicting FDA approval status.

Tox21-V: The Tox21-V dataset, based on the Tox21 dataset, includes 2D skeletal molecular images
for predicting chemical toxicity, critical for environmental and pharmaceutical safety. It contains
hundreds of compounds, each represented by SMILES notation, with twelve binary labels from
toxicological tests. Our evaluation focused on the NR-AR binary label.



ESOL-V: The ESOL-V dataset, based on the ESOL (Estimating Solubility of Organic Compounds in
Water) dataset, includes 2D skeletal molecular images and key data for predicting aqueous solubility
of organic compounds, crucial for drug development and environmental studies.

LDS50-V: It is based on the LD50 (Lethal Dose 50) dataset and includes 2D skeletal molecular images
and data on acute toxicity. It focuses on the dose required to cause death in 50% of test subjects, a
key metric for safety assessment in drug development and environmental health.

QM09-V: The QM9-V dataset, derived from the QM9 dataset, contains 2D skeletal representations
of molecular structures in image format, alongside various quantum chemical properties. QM9
provides extensive data on 12 quantum mechanical properties, including the dipole moment, isotropic
polarizability, electronic spatial extent, HOMO (Highest Occupied Molecular Orbital energy), LUMO
(Lowest Unoccupied Molecular Orbital energy), and HOMO-LUMO gap, among others.

PCQM4Mv2-V: The PCQM4Mv2-V dataset, derived from the PCQM4Myv?2 dataset, contains 2D
skeletal molecular images paired with quantum property data. The dataset focuses on predicting the
HOMO-LUMO gap, an essential quantum property that provides insights into a molecule’s chemical
stability and reactivity.

ChEBI-V: The ChEBI-V dataset, derived from the ChEBI database, contains 2D skeletal represen-
tations of molecular structures in image format, alongside comprehensive biological and chemical
annotations. ChEBI-V provides structured information including molecular names, functional clas-
sifications, physicochemical properties, and biological roles such as enzyme inhibitors, receptor
agonists, and therapeutic agents, making it valuable for molecular description and biological function
prediction tasks.

C.3 Computational Resources

Table[T] summarizes the computational requirements for fine-tuning each model in our benchmark.
All experiments were conducted over 20 epochs using LoRA adaptation.

Table 1: Computational resources for model fine-tuning (20 epochs)

Model GPU VRAM Time
UniMol 8-12 GB 2—4 hours
Molca 20-28 GB 6—10 hours
BLIP-2 13B 22-30 GB 1.5-2 hours
LLaVA 1.5 13B 22-30 GB 2-3 hours
Llama Adapter V2 7B 24-30 GB 2-3 hours
CogVLM 7B 32-46 GB 1.5-3 hours
Qwen-VL 13B 22-30 GB 1-2 hours
mPLUG-OWL2 7B 24-32 GB 1.5-2 hours

D Classification: Further Analysis and Discussion

In this section, we discuss Zero-shot evaluation, effect of number of examples used in ICL,chain
of thought prompting, effect of temperature in model performance and impact of visual data for
classification task. Figure|l|show performance comparison of different models.

D.1 Zero-Shot Evaluation

We have included more detailed results with Zero-shot performance (Table [2]and [3) where we only
ask questions with general outline to the models without using any in-context examples.

SMILES vs SELFIES: We examine and compare Zero-shot performance of models with SMILES
and SELFIES representations. SELFIES generally yield better performance however on HIV dataset
we see comparatively better performance with SMILES representation as shown in Tables[2]and 3]
We also performed this analysis with ICL and has been discussed later.



Table 2: Zero-shot with SMILES: The table shows variation in the F1-score & accuracy of different
models when subjected to zero-shot prompting. In this evaluation, only the basic instruction is
provided to the models to predict whether a given molecule string is toxic or not, without any
additional context or examples.

Model BACE-V BBBP-V HIV-V Clintox-V Tox21-V

JanusPro 7B 0.45(0.37)  0.42(0.44)  0.52(0.32)  0.31(0.32)  0.44(0.34)
BLIP2 0.28 (0.29) 0.31(0.29) 0.42(0.33) 0.29(0.28) 0.42(0.31)
Llava 1.5 0.37(0.54) 0.43(0.46) 0.38(0.35) 0.36(0.39) 0.46(0.39)
Llama 0.34(0.39) 0.41(0.28) 0.21(0.33) 0.28(0.31) 0.12(0.13)

CogVLM 0.27 (0.34) 0.31(0.32) 0.22(0.25) 0.47(0.49) 0.17(0.12)
QwenVLM  0.32(0.39) 0.29(0.12) 0.22(0.29) 0.22(0.15) 0.45(0.37)
mPlugowl2  0.39(0.38) 0.32(0.31) 0.41(0.27) 0.27(0.26) 0.67 (0.13)

Table 3: Zero-shot performance with SELFIES: The table illustrates the variation in the Accuracy
(F1-score) of different models when subjected to zero-shot prompting. In this evaluation, only the
basic instruction is provided to the models to predict whether a given molecule string is toxic or not,
without any additional context or examples.

Model BACE-V  BBBP-V HIV-V  ClinTox-V  Tox21-V
JanusPro 7B 0.48(0.53)  0.54(0.581) 0.43(0.36) 0.48 (0.37) 0.47 (0.31)
BLIP2 0.41(0.34) 0.46(0.48) 0.31(0.29) 0.45(0.47) 0.57 (0.21)
Llava 1.5 0.42(0.48)  0.48(0.50) 0.24(0.33) 0.54(0.64) 0.59 (0.15)
Llama Adapter v2 7B 0.42 (0.51)  0.39(0.42)  0.21(0.33) 0.41(0.53) 0.14(0.12)
CogVLM 0.42(0.49)  0.49(0.62) 028 (0.39) 0.44(0.35) 0.16(0.11)
QwenVL 0.42(0.59) 0.41(0.58) 0.21(0.31) 0.16(0.14) 0.16(0.11)
mPlugOwl2 0.47(0.25) 0.35(0.23) 0.39(0.28) 0.28(0.22) 0.37(0.17)

D.2 Effect of ICL Examples

We conducted a comprehensive analysis of effects of number of examples (k = 0, 2, 4) in in-context
learning (ICL) across vision-language models for molecular property prediction. More context does
not always yield better results (Table {] [5). The effectiveness of ICL varies significantly across
datasets, as evidenced by CogVLM’s substantial improvement on ClinTox-V when increasing from
k =0 to k=4 (0.54 to 0.76 accuracy). We also observed similar behavious with CogVLM using
SELFIES in Table[/] Different models demonstrate varying sensitivity to ICL, BLIP-2 however show
consistent improvement with increased context, achieving its best performance with k = 4 across
most datasets (Table [6)).

Model QwenVL shows peak performance with k = 2 on several datasets (Table [T0). Comparing
SMILES representations (Table [} [5] ) versus SELFIES representations (Table [8] PIT0|[TT]} [T2),
SELFIES maintains more stable performance across different k values, particularly for complex
models like mPlugOwl2 and CogVLM. These findings indicate that ICL’s effectiveness depends
heavily on model architecture, molecular representation, and dataset characteristics.

We also included results with increased in-context examples with gpt-4o. With the exception of
BBBP-V accuracy improved across all datasets with an increase in the number of in-context examples
(k) to six or eight. Notably, on the BACE-V, and Clintox-V datasets, we observed approximately a
40% increase in accuracy. With the exception of BACE-V, the F1-score was also highest at k=2 or 4
across all datasets (Table [T3).

D.3 Chain of Thought Prompting

Table [T4] demonstrates the effectiveness of Chain of Thought (CoT) prompting on molecular property
classification tasks across five benchmark datasets. GPT-4v emerges as the top performer with an
average accuracy of 72.32%, closely followed by GPT-40 at 71.14%, indicating that both commercial
models excel when employing structured reasoning approaches. Janus achieves the third-highest
performance with an average accuracy of 71.60%, demonstrating competitive capabilities among
open-source models and particularly excelling on HIV-V (93.3%) and ClinTox-V (97.2%) datasets.



Table 4: Role of in-context examples: ICL with k = 0 showing Accuracy (F1-score) of various
models on different datasets with SMILES representations.

Model BACE-V  BBBP-V HIV-V  ClinTox-V  Tox21-V

JanusPro 7B 0.65(0.68)  0.52(0.51)  0.92(0.68)  0.41(0.31)  0.52(0.44)
BLIP2 0.36(0.52) 0.33(0.27) 0.41(0.36) 0.37(0.28) 0.63 (0.29)
Llava 1.5 0.55(0.18) 0.47(0.43) 0.35(0.32) 0.33(0.33) 0.64(0.11)
Llama 0.39(0.59) 0.36(0.42) 0.21(0.33) 0.22(0.19) 0.15(0.19)

CogVLM 0.39(0.56) 0.48 (0.48) 0.39(0.26) 0.54(0.54) 0.65(0.11)
QwenVLM  0.41(0.52) 0.31(0.11) 0.28(0.21) 0.38(0.12) 0.52(0.43)
mPlugowl2  0.48 (0.16) 0.41(0.43) 0.65(0.18) 0.28(0.28) 0.85(0.11)

Table 5: Effect of in-context examples: ICL with k = 4 showing Accuracy (F1-score) of various
models on different datasets with SMILES Representation.

Model BACE-V BBBP-V HIV-V ClinTox-V  Tox21-V

JanusPro 7B 0.73(0.62)  0.63(0.601))  0.95(0.69)  0.97(0.64)  0.71(0.62)
BLIP2 0.29 (0.42) 0.19(0.11)  0.52(0.32) 0.34(0.36) 0.55(0.39)
Llava 1.5 0.48 (0.38)  0.57(0.66) 0.32(0.33) 0.25(0.22) 0.64 (0.25)
Llama 0.39 (0.56)  0.37(0.22) 0.21(0.33) 0.32(0.19) 0.28 (0.12)

CogVLM 0.39 (0.54) 0.64(0.34) 0.39(0.26) 0.68 (0.48) 0.19(0.11)
QwenVLM 042 (0.52) 0.31(0.11) 0.42(0.54) 0.81(0.12) 0.72(0.17)
mPlugowl2  0.58 (0.42) 0.43(0.38) 0.71(0.25) 0.38(0.42) 0.83 (0.13)

Table 6: Effect of in-context examples: Accuracy (Fl-score) of BLIP-2 Model using SELFIES
representations with variation in number of in-context examples used in the prompt (k =0, 2, 4).

Variation BACE-V BBBP-V HIV-V ClinTox-V  Tox21-V

k=0 0.43(0.26) 0.38(0.27) 0.54(0.32)  0.33(0.42)  0.52(0.21)
k=2 0.36(0.52) 0.37(0.29) 0.60(0.29)  0.34(0.36)  0.75(0.42)
k=4 0.61(0.27) 0.39(0.31) 0.81(0.39)  0.36(0.44)  0.79(0.48)

Table 7: Impact of number of in-context examples: The table illustrates the variation in the
performance of the CogVLM model with ICL in terms of Accuracy (F1-score), which utilizes the
Vicuna 7B as its backbone, when tested on the SELFIE representation of various datasets. The
performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the
prompt. The following results are produced with temperature set to 0.

Variation BACE-V BBBP-V HIV-V ClinTox-V Tox21-V

k=0 0.34(0.51) 0.36(0.32) 0.24(0.33) 0.54(0.65) 0.26(0.15)
k=2 0.62 (0.44) 0.51(0.58) 0.25(0.29) 0.32(0.37) 0.18(0.14)
k=4 0.44(0.53) 0.38(0.45) 0.32(0.31) 0.76(0.86) 0.47 (0.13)

Table 8: Impact of number of in-context examples: The table illustrates the variation in the
performance of the Llava 1.5 model with ICL in terms of Accuracy (F1-score) using Llava 1.5 13
billion parameters, when tested on the SELFIE representation of various datasets. The performance
is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt.
(Temperature=0).

Variation BACE-V BBBP-V HIV-V ClinTox-V Tox21-V

k=0 0.62(0.24) 0.35(0.17) 0.51(0.13) 0.20(0.14) 0.76 (0.17)
k=2 0.61(0.33) 0.73(0.46) 0.32(0.35) 0.35(0.36) 0.67 (0.47)
k=4 0.49 (0.38) 0.56(0.29) 0.42(0.33) 0.25(0.19) 0.89(0.11)




Table 9: Impact of number of in-context examples: The table illustrates the variation in the
performance of the mPlugOwI12 model with ICL in terms of Accuracy (F1-score). This model utilizes
Llama2 7B as its backbone and is tested on the SELFIE representation of various datasets. The
performance is evaluated with different numbers of in-context examples (k = 0, 2, 4) provided in the
prompt. (Temperature = 0).

Variation BACE-V BBBP-V HIV-V ClinTox-V Tox21-V

k=0 0.53(0.22) 0.48(0.52) 0.57(0.19) 0.22(0.15) 0.62(0.17)
k=2 0.64 (0.65) 0.46 (0.46) 0.76 (0.74) 0.39(0.43) 0.74(0.21)
k=4 0.61 (0.31) 0.35(0.36) 0.73(0.41) 0.46(0.57) 0.76(0.14)

Table 10: Impact of number of in-context examples: The table illustrates the variation in the
performance of the QwenVL model with ICL in terms of Accuracy (F1-score) using QwenVL 7 B pa-
rameters, when tested on the SELFIE representation of various datasets. The performance is evaluated
with different numbers of in-context examples (k = 0, 2, 4) provided in the prompt.(Temperature=0).

Variation BACE-V BBBP-V HIV-V ClinTox-V Tox21-V

k=0 0.41(0.52) 0.31(0.10) 0.80(0.11) 0.18(0.12) 0.52(0.14)
k=2 0.45(0.38) 0.63(0.49) 0.79(0.49) 0.50(0.48) 0.78 (0.76)
k=4 0.42 (0.51) 0.29(0.09) 0.81(0.10) 0.42(0.54) 0.72(0.17)

Table 11: Impact of number of in-context examples The table illustrates the variation in the Accuracy
(F1-score) of the ICL model using Llama Adapter V2, which utilizes Llama2 7B as its backbone,
when tested on the SELFIE representation of various datasets. The performance is evaluated with
different numbers of in-context examples (k = 0, 2, 4) provided in the prompt.(Temperature=0).

Variation BACE-V BBBP-V HIV-V ClinTox-V Tox21-V

k=0 0.37(0.34) 0.49(0.21) 0.21(0.33) 0.30(0.39) 0.14(0.17)
k=2 0.38 (0.44) 0.48(0.23) 0.21(0.37) 0.31(0.35) 0.15(0.17)
k=4 0.36 (0.35) 0.51(0.27) 0.31(0.42) 0.50(0.31) 0.15(0.18)

Table 12: Impact of number of in-context examples: The table illustrates the variation in the Accu-
racy (F1-score) of the ICL model using the BLIP-2 model when tested on the SELFIE representation
of various datasets. The performance is evaluated with different numbers of in-context examples (k =
0, 2, 4) provided in the prompt.(Temperature=0).

Variation BACE-V BBBP-V HIV-V Clintox-V Tox21-V

k=0 0.56 (0.10)  0.31(0.12) 0.49 (0.24) 0.16 (0.09)  0.47 (0.32)
k=2 0.61 (0.15) 0.35(0.16) 0.56(0.24) 0.18(0.12)  0.41 (0.22)
k=4 0.66 (0.26) 0.32(0.11) 0.51(0.29) 0.21 (0.10)  0.45 (0.19)

Table 13: Effect of in-context examples: Accuracy (F1-score) for different ICL examples on GPT-40
model.

ICL Variation = BACE-V BBBP-V HIV-V Clintox-V Tox21-V \ Average

k=0 0.39 (0.55) 0.56 (0.64) 0.72(0.53) 0.25(0.33) 0.49 (0.46) | 0.48/0.50
k=2 0.56 (0.53) 0.77 (0.81) 0.82(0.56) 0.59 (0.44) 0.42(0.58) | 0.63/0.58
k=4 0.64 (0.52) 0.63(0.66) 0.82(0.78) 0.71 (0.69) 0.52 (0.44) | 0.66/0.61
k=6 0.61 (0.48) 0.56 (0.62) 0.86 (0.79) 0.76 (0.63) 0.61 (0.43) | 0.68/0.59
k=8 0.72(0.51)  0.56 (0.60) 0.72 (0.64) 0.67 (0.69) 0.5 (0.34) | 0.64/0.55
k=10 0.55(0.35) 0.55(0.59) 0.69 (0.23) 0.49 (0.53) 0.61(0.27) | 0.57/0.39




The results reveal significant performance variations across datasets, with HIV-V generally showing
the highest accuracy scores across models, while BBBP-V and Tox21-V present greater challenges.
Notably, QwenVLM shows strong performance on HIV-V (82.9%) and Tox21-V (73.9%), while
mPlugOWL2 demonstrates exceptional performance on specific datasets like Tox21-V (76.0%) and
HIV-V (75.2%). The remaining models exhibit moderate performance, with CogVLM achieving
balanced results across datasets and BLIP-2 showing consistent but lower performance.

Table 14: Classification Performance in Chain of Thought Prompting: Comparisons of models
evaluated on classification tasks across various datasets using Chain-of-Thought (CoT) prompting
showing Accuracy (F1-score) with SMILES representations.

Model BACE-V BBBP-V HIV-V ClinTox-V Tox21-V
GPT-4o 0.783(0.612)  0.696(0.481)  0.893(0.829)  0.683(0.582)  0.601(0.455)
GPT-4v 0.800(0.749)  0.716(0.620)  0.928(0.842)  0.972(0.729)  0.728(0.632)
BLIP-2 049 (0.52) 049 (0.41)  0.62(0.32)  054(0.36)  0.57(0.39)
CogVLM 0.510(0.559)  0.673(0.396)  0.422(0.384)  0.650(0.701)  0.430(0.303)
mPlugOWL2  0.716(0.414)  0.555(0.362) 0.752 (0.413)  0.461(0.574)  0.76 (0.148)
Llava 0.523 (0.462) 0.582(0.493)  0.42(0.33)  0.352(0.19)  0.893(0.11)
Llama-Adapter  0.430(0.339)  0.554(0.674)  0.429(0.312)  0.684(0.712)  0.437(0.382)
QwenVLM 0.528(0.429)  0.394(0.291)  0.829(0.329)  0.492(0.421)  0.739(0.471)
Janus 0.797(0.669)  0.696(0.661)  0.933(0.781)  0.972(0.729)  0.681(0.557)

D.4 Effect of Temperature

The effect of temperature variation was shown in the main paper on one model (BLIP2 model) and
here we include more results examining the effect of temperature variation under different settings
(Table [T7] [T5] Table 20} and Table [I9] [T6] [I8). We analyzed the impact of sampling temperature
(ranging from 0.0 to 0.8) on model performance across different molecular representations and
architectures. For SELFIES representation, the Llama Adapter v2 model shows optimal performance
at moderate temperatures (0.2-0.4) for the BBBP-V dataset, achieving accuracy of 0.66 at temperature
0.2 (Table [I6). SMILES representation exhibits different temperature sensitivity, with generally
improved performance at higher temperatures across datasets (Table [I7). BLIP2 demonstrates
consistent improvement with increasing temperature, achieving peak average performance of 0.51
at temperature 0.6 (Table [I3). Llava 1.5 13B shows optimal performance at lower temperatures,
particularly for the Tox21-V dataset with 0.93 accuracy at temperature 0.2 (Table [I9). CogVLM
exhibits more stable performance across temperature variations, with slight degradation at higher
temperatures (Table 20). The mPlugOWL2 model achieves its best performance at temperature 0.2
across multiple datasets, notably reaching 0.88 accuracy on Tox21-V (Table [I5). These findings
suggest that moderate temperatures (0.2-0.4) generally provide optimal performance across models
and representations, with specific optimal values being model and dataset dependent.

Table 15: Effect of temperature: Accuracy (F1-score) for different temperature settings using ICL
(Samples k=2) on mPlugOWL2 model with SMILES.

Temp Variation BACE-V BBBP-V HIV-V Clintox-V  Tox21-V
0.0 0.59(0.32) 0.35(0.38) 0.62(0.30) 0.34(0.42) 0.69(0.57)
0.2 0.70(0.28) 0.38(0.24)  0.74(0.18)  0.78(0.18)  0.88(0.10)
0.4 0.65(0.15) 0.46(0.46) 0.64(0.21) 0.30(0.36) 0.83(0.16)
0.6 0.60(0.23) 0.43(0.44) 0.62(0.26) 0.40(0.51) 0.73(0.16)
0.8 0.58(0.19) 0.41(0.43) 0.59(0.28) 0.43(0.52) 0.72(0.20)

D.5 Experiments on FS-Mol Dataset
D.5.1 Zero-Shot Performance on FS-Mol

We evaluated models without any training examples to establish baseline capabilities. Table [21]
presents zero-shot AUPRC values.



Table 16: Effect of temperature on SELFIE: This table shows the performance of the Llama Adapter
v2 model with ICL (k=2 examples) on various datasets represented in SELFIE notation.

Temp BACE-V BBBP-V HIV-V Clintox-V Tox21-V

0.0 0.38 (0.44) 0.48(0.23) 0.21(0.37) 0.31(0.35) 0.15(0.17)
0.2 0.34(0.51) 0.66(0.79) 0.19(0.31) 0.29 (0.88)  0.13 (0.18)
0.4 0.35(0.49) 0.62(0.75) 0.22(0.32) 0.24(0.85) 0.28 (0.11)
0.6 0.36 (0.43) 0.53(0.68) 0.26(0.33) 0.22(0.83) 0.31 (0.18)
0.8 0.33(0.44) 0.58(0.69) 0.24(0.39) 0.22(0.81) 0.31 (0.15)

Table 17: Effect of temperature on SMILES: This table shows the performance of the Llama Adapter
v2 model with ICL (k=2 examples) on various datasets represented in SMILES notation.

Temp BACE-V BBBP-V HIV-V Clintox-V Tox21-V

0.0 0.28 (0.29) 0.18(0.11) 0.19(0.17) 0.29(0.12)  0.31 (0.21)
0.2 0.38 (0.55) 0.22(0.83) 0.21(0.33) 0.28(0.19) 0.32 (0.15)
0.4 0.35(0.49) 0.35(0.76) 0.42(0.35) 0.22(0.24) 0.39 (0.24)
0.6 0.39 (0.56) 0.23(0.74) 0.31(0.25) 0.31(0.11)  0.41 (0.29)
0.8 0.43(0.54) 0.29(0.62) 0.37(0.36) 0.26(0.19) 0.41 (0.11)

Table 18: Effect of Temperature on Model Performance: Accuracy (F1-score) at different tem-
perature settings using the BLIP2 model on various datasets. Higher temperatures generally show
increased variability in F1-scores, with peak performance occurring at different temperature levels
across datasets.

Temp Variation BACE-V BBBP-V HIV-V Clintox-V  Tox21-V Average

0.0 0.33(0.42)  0.29(0.27) 0.56(0.24)  0.28(0.23)  0.65(0.32)  0.42(0.30)
0.2 0.35(0.49) 0.30(0.28) 0.56(0.30) 0.29(0.16)  0.69(0.34)  0.44(0.31)
0.4 0.34(0.42)  0.32(0.28) 0.59(0.27)  0.32(0.34) 0.72(0.34)  0.46(0.33)
0.6 0.41(0.54) 0.39(0.31) 0.64(0.35) 0.38(0.38) 0.72(0.36)  0.51(0.39)
0.8 0.38(0.48) 0.36(0.24) 0.62(0.32) 0.38(0.26) 0.78(0.44)  0.50(0.35)

Table 19: Effect of temperature: Performance analysis using the Llava 1.5 13B with ICL (k=2),
focusing on diverse datasets represented in SELFIE format.

Temp BACE-V BBBP-V HIV-V Clintox-V Tox21-V

0.0 0.61(0.33) 0.73(0.46) 0.32(0.35) 0.35(0.36) 0.67 (0.47)
0.2 0.59(0.34) 0.63(0.18) 0.36(0.14) 0.19(0.14) 0.93 (0.11)
0.4 0.57(0.41) 0.34(0.25) 0.34(0.25) 0.31(0.11) 0.86(0.12)
0.6 0.48 (0.29) 0.42(0.43) 0.36(0.43) 0.34(0.34) 0.77 (0.18)
0.8 0.52(0.41) 0.37(0.35) 0.30(0.35) 0.36 (0.13) 0.75(0.07)

Table 20: Effect of temperature: Analysis of temperature variation in various SELFIE based datasets
with ICL (k=2) using CogVLM model.

Temp BACE-V BBBP-V HIV-V Clintox-V Tox21-V

0.0 0.62 (0.44) 0.51(0.58) 0.25(0.29) 0.32(0.37) 0.18(0.14)
0.2 0.58 (0.41) 0.48(0.54) 0.28(0.52) 0.32(0.31) 0.14(0.35)
04 0.58 (0.41) 0.42(0.52) 0.26(0.48) 0.33(0.33) 0.17(0.34)
0.6 0.53(0.44) 0.45(0.48) 0.25(042) 0.27(0.31) 0.14(0.32)
0.8 0.56 (0.39) 0.37(0.39) 0.28(0.49) 0.25(0.30) 0.18 (0.32)
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Table 21: Zero-shot performance on FS-Mol dataset showing AUPRC values.

Description PN LLama3.18B LLaVA1lS5S CogVLM
Oxidoreductases  0.086 0.136 0.202 0.188
Kinases 0.217 0.201 0.242 0.237
Hydrolases 0.196 0.156 0.207 0.207
Lysases 0.229 0.198 0.213 0.190
Isomerase 0.117 0.189 0.217 0.208
Ligases 0.058 0.145 0.203 0.167
Translocases 0.055 0.173 0.250 0.252

Even without training examples, VLMs demonstrate superior performance compared to the PN
baseline and text-only models, with LLaVA 1.5 achieving the highest average AUPRC across enzyme
classes.

D.5.2 Few-Shot Learning on FS-Mol Dataset

We evaluated VLMs on the FS-Mol dataset for few-shot molecular property prediction across seven
enzyme classes. Table[22]presents AUPRC (Area Under the Precision-Recall Curve) values.

Table 22: Few-shot learning performance on FS-Mol dataset showing AUPRC values across different
enzyme classes.

Description PN LLama3.18B LLaVA1lS5S CogVLM
Oxidoreductases  0.086 0.208 0.310 0.290
Kinases 0.217 0.309 0.387 0.370
Hydrolases 0.196 0.288 0.399 0.391
Lysases 0.229 0.366 0.409 0.380
Isomerase 0.117 0.343 0.425 0.408
Ligases 0.058 0.268 0.390 0.328
Translocases 0.055 0.255 0.384 0.380

VLMs consistently outperform both the PN baseline and text-only models (LLama 3.1 8B) across
all molecular classes. LLaVA 1.5 achieves the best performance, with improvements ranging from
43% (oxidoreductases) to 573% (ligases) over the PN baseline, demonstrating clear advantages in
few-shot scenarios where visual information provides complementary structural insights.

D.5.3 Contrastive Learning on FS-Mol

We explored contrastive learning using positive examples based on Tanimoto similarity (Section [G])
with only 10% of the training data. Table [23]|shows substantial performance improvements.

Table 23: Contrastive learning performance on FS-Mol dataset using 10% training data, showing
AUPRC values.

Description PN LLaVA 1.5
Oxidoreductases  0.086 0.403
Kinases 0.217 0.453
Hydrolases 0.196 0.488
Lysases 0.229 0.502
Isomerase 0.117 0.513
Ligases 0.058 0.492
Translocases 0.055 0.499

Contrastive learning with Tanimoto similarity-based positive pairs yields dramatic improvements,
achieving 4-9x performance gains over the PN baseline while using only 10% of training data.
This demonstrates the effectiveness of leveraging structural similarities for enhanced molecular
representation learning.
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D.6 Impact of visual data

Table 24| underscores the stark contrast in performance between Llama 2, a large language model,
and its VLM counterpart, Llama Adapter v2 after ICL. Llama Adapter v2 also show substantial
improvement post-finetuning.

Table 24: Impact of visual data: First row shows Accuracy (F1-score) for ICL with language model
Llama?2, second row shows visual-language variant with improvement in performance, and third row
demonstrates significant improvement in performance after finetuning.

Models BACE-V BBBP-V HIV-V ClinTox-V Tox21-V
Llama 2 13B (ICL) <0.01(<0.01)  0.05(0.04) 0.05(0.07)  0.05(0.08) <0.01(<0.01)
Llama Adapter v2 7B (ICL) 0.28(0.29) 0.18(0.11)  0.19(0.17)  0.29(0.12) 0.31(0.21)

Llama Adapter v2 7B (LoRA) 0.52(0.48) 0.45(0.46) 0.43(0.42) 0.58(0.62) 0.68(0.69)

I zZero shot IICL K=2 I ICL k=4

GPT-40

Janusl?ro""'4|0""’*-G

. =300

PT-4v

----------

CogVLM Llama Adpt

Figure 3: Radar plot comparing regression performance across various models (GPT-4v, GPT-4o,
JansuPro, QwenVL, mPlugOWL?2, BLIP-2, Llava 1.5 13B, CogVLM, and Llama Adapter v2 7B)
averaged across ESOL, LD50, QM9, and PCQM4Mv2 datasets. The chart highlights Zero Shot
(green) and Few Shot (k=2 in orange, k=4 in purple) capabilities.

E Regression: Further Analysis and Discussion

The main paper presents the results of regression tasks on ESOL, LD50, QM9, and PCQM4Mv?2
for in-context learning (ICL) with £k = 2 and finetuning. Here we provide additional results for
zero-shot learning, detailed in Table[26] and few-shot learning with & = 4, shown in Table[27] Figure
[3] summarizes performance comparison across different models for regression tasks.

Furthermore, comprehensive evaluations on the QM9 dataset are included for 12 quantum mechanical
targets under the “all-together'' setting, where all targets are prompted simultaneously. These
evaluations cover zero-shot learning (¢ = 0), shown in Table @; few-shot learning with & = 2,
presented in Table[29} and few-shot learning with k& = 4, detailed in Table [30}

E.1 Effect of Finetuning
The performance improvements achieved through LoRA-based finetuning are substantial across all

regression tasks, as demonstrated in Table 23] BLIP-2 achieves the best overall performance with
an average error of 1.925 across all datasets, excelling particularly on QM9-V (4.923 MAE) and
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PCQM4Mv2-V (0.235 MAE). CogVLM follows closely with an average error of 1.928, showing
exceptional performance on ESOL-V with an RMSE of 1.102. Notably, Qwen VL demonstrates
remarkable accuracy on LD50-V with a minimal MAE of 0.022. These finetuning results significantly
outperform the in-context learning (ICL k=2) approaches presented in Table 3 of the main paper,
where even the best-performing ICL model, Janus-Pro 7B, achieved only 2.52 average error. For
example, BLIP-2’s finetuned performance (1.925 average error) represents a 61.5% improvement
over its ICL performance (5.01 average error). Similarly, CogVLM improved from 8.50 to 1.928, and
Qwen VL from 13.64 to 2.340. These dramatic improvements underscore the limitations of few-shot
learning for molecular property prediction tasks and highlight the critical importance of task-specific
parameter adaptation through finetuning.

Table 25: Performance comparison after finetuning: Regression tasks. Error comparison of models
finetuned using LoRA across different datasets. The best performing models are highlighted with
bold text. Second best model performance are underlined.

Model ESOL-V (RMSE) LD50-V(MAE) QM9-V(MAE) PCQM4Mv2-V (MAE) ‘ Average
BLIP-2 1.764 0.779 4.923 0.235 1.925
Llava 1.5 13B 2.229 0.193 5.193 0.602 2.554
Llama Adapter v2 7B 4.032 0.624 7.921 3.002 3.895
CogVLM 1.102 0.592 5.221 0.795 1.928
Qwen VL 2.192 0.022 5.021 2.125 2.340
mPlugOWL2 1.291 0.082 8.029 1.621 2.756

E.2 Effect of ICL Examples

Tables[26]and [27] shows significant impact of in-context examples (k=4) versus zero-shot learning
(k=0) across all models. GPT-4v maintains superior performance in both scenarios, ranking first
with average metrics of 14.6485 and 1.04825 respectively, as shown in Table [26]and Table[27] The
introduction of examples leads to substantial error reduction, exemplified by GPT-4v’s ESOL RMSE
improving from 1.489 to 0.812, and its QM9 MAE decreasing from 45.296 to 2.503. Notably, the
performance gap between models narrows with in-context examples, as evidenced by the reduction in
average performance difference between best and worst models from 26.4815 (Table[26) to 10.69325
(Table[27), particularly in complex tasks like QM9 and PCQM4Myv2.

Table 26: Performance comparison for zero-shot learning (k=0): MAE, RMSE of Multimodal
LLMs for molecular property prediction based regression tasks.

Model ESOL (RMSE) LD50 (MAE) QM9 (MAE) PCQM4Mv2 (MAE) Average
GPT-40 1.232 12.31 47.126 1.41 15.5195
GPT-4v 1.489 9.01 45.296 2.799 14.6485
JanusPro 7B 1.997 8.124 48.301 1.893 15.07875
BLIP-2 2.011 15.631 78.731 3.973 25.0865
Llava 1.5 18.198 14.952 93.182 3.967 32.57475
Llama Adapter 3.314 5.741 106.382 14.005 32.3605
CogVLM 2.093 23.769 80.766 4.939 27.89175
Qwen 4.119 24.388 116.353 19.66 41.13

mPlugOWL2 2.12 10.888 77.297 4.899 23.801

E.3 Analysis of QM9 Multi-Target Prediction

Tables [28] 29] and [30] present the performance comparison for simultaneous prediction of all 12
QM9 molecular properties. In the zero-shot setting (Table [28), GPT-40 and GPT-4v demonstrate
superior performance with average MAEs of 47.1264 and 45.2964 respectively. The addition of
in-context examples (k=2, k=4) significantly improves prediction accuracy across all models, with
GPT-4v achieving the best average MAE of 2.5028 at k=4. Notably, both GPT-40 and GPT-4v show
consistent performance across different molecular properties, maintaining their superiority even in
this challenging multi-target prediction scenario.
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Table 27: Performance comparison for few-shot learning (k=4): MAE, RMSE of Multimodal LLMs
for molecular property prediction based regression tasks.

Model ESOL (RMSE) LD50 (MAE) QM9 (MAE) PCQM4Mv2 (MAE) Average
GPT-40 0.867 0.614 3.147 0.222 1.2125
GPT-4v 0.812 0.686 2.503 0.192 1.048
JanusPro 7B 0.562 0.632 3.071 0.348 1.421
BLIP-2 1.289 0.696 10.339 0.882 3.3015
Llava 1.5 4.361 0.709 20.157 0.883 6.5275
Llama Adapter 2.309 2431 19.840 3.809 7.09725
CogVLM 1.225 0.815 15.662 0.805 4.62675
Qwen 3.332 0.839 33.534 9.261 11.7415
mPlugOWL2 1.416 0.741 14.998 1.692 4.71175

Table 28: Performance comparison for zero-shot learning (k=0): MAE of Multimodal LLMs for
molecular property prediction based regression tasks on QM9 Dataset.
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GPT-40 110855 1.8364 1.0287 3.0245 2.6813 67424 85.0988 85.0906 195.5142 85.0902 85.0929 32317 47.1264
GPT-4v 14925 24481 19924 2129 3129 61294 88924 120449 1459812 662498 88.9192 2.2804 452964
JanusPro 7B 12921 3.8238 1.8299 2921  3.109 4291  97.921  91.842  170.829  73.289 111.924 4921 48301
BLIP-2 47902 3920 2220 2844 11294 59201 122.842 129912 255901  102.120 194201 12422 787316
Llava 1.5 108.449 32923 21.382 17.994 17.544 36.686 173561 126244 209.361 186335 157.421 30285 93.1821
Llama-Adapter 175989  13.822 11.939 15679 12.525 79.738  207.088 130.005 232.172 165611 201.434 30.584 106.3822
CogVLM 93.191  2.119 14757 2997 9784 45534 137238 184106 232069 132701 120716 7.2616  80.7660
Qwen 184191 8201 7772 9.009 46111 137.302 240019 129.090 220322 172.828 197.466 43.923 1163528

mPlugOWL2 72706  3.676 4280 2457  5.673 31.363  157.058 157.078  214.541 100495 121.920 56.315  77.2968

Table 29: Performance comparison for few-shot learning (k=2): MAE of Multimodal LLMs for
molecular property prediction based regression tasks on QM9 Dataset.
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GPT-40 2.32 0.2126 03113  0.2212 09787 0.857 17.9428 17.9434 22948 17.9435 17.9432 09126 8.3779
GPT-4v 3.1 0.484 0.396 0.293 0.968 0.998 18.021 18.022 24.405 18.022 18.021 0.725 8.6217
JanusPro 7B 2.892 0.429  0.3329 0.3392 0.792  0.729 18.291 18.728 21.882 19.821 17.211 0.884 8.5276
BLIP-2 3.401 0.713 0.891 0.629 2.14 2.129 22.092 21.921 85.239 29.912 22.12 0.982 16.014
Llava 1.5 17472  2.191 1.991 1.629 7.737  3.516  26.653 68.502 100.307  56.087 36.873 1.024  26.9985
Llama-adapter  17.316 1.621 2.091 1.032 4554  5.011 39.585 45.626 130.37 58.654 29.255 2.02 28.0946
CogVLM 7.6465 091 1.012 0.876 3.613 2.799 21.292 27.702 174.554  45.178 23.74 0.822  25.8454

QwenVLM 13.563 2.03 1.293 1.075 10.587 3.563 130.992 75385 134.581  55.007 36.941 2.036  38.9211
mPlugOWL2 10336 1.832 1.432 1.71 2.685 3.233  23.091 37.263  189.806  52.405 27.379 0.829 29.333

Table 30: Performance comparison for few-shot learning (k=4): MAE of Multimodal LLMs for
molecular property prediction based regression tasks on QM9 Dataset.
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GPT-40 1.28 0.0184 0.0137 0.0053 0.2787 0.257 3.9572 3.9561 20.052 3.956 3.9563 0.0334 3.1470
GPT-4v 1.56 0.0244 0.0383 0.0069 0.9664 0.207 3.0218 3.0214 15.1194 3.0215 3.0215 0.0251 2.5028
JanusPro 7B 1.992 0.0892 0.0782  0.0098 0.389 0.108 5.208 4.592 17.229 4.092 2.981 0.0782 3.0705
BLIP-2 2.992 0.064 0.192 0.023 1.102 0.942 9.28 19.029 73.923 9.284 7.128 0.103 10.3385
CogVLM 6.9543 0.166 0.112 0.196 1.644 2912 16.482 19.597 98.439 18.502 22.844 0.0919 15.6617
mPlugOWL2 8.823 1.016 1.011 1.489 1.556 2746  14.191 22711 88.797 15.687 21.826 0.126 14.9983
llava 10.064 0.362 0.221 0.092 1.76 3.014 21.824 65.123 80.81 28.139  30.044 0.426 20.1566
llama-adapter 15.961 1.129 1.071 0.902 2.65 4.741 25978 27.412 93.616 37.095 26.511 1.019 19.8404
qwen 12.988 1.203 1.102 1.091 2.813 2988 97.619 69.377 127.947 51.125 33.136 1.018 33.5339
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F Molecular Description: Further Analysis

We conducted a comprehensive evaluation of molecular description capabilities across multiple
models and settings. This analysis examines zero-shot performance, the effects of in-context learning
(ICL) with varying numbers of examples, and the impact of Chain of Thought (CoT) prompting on
description quality. All experiments use the same evaluation metrics: BLEU-2, BLEU-4, ROUGE-1,
ROUGE-2, ROUGE-L, and METEOR, with average scores reported for concise comparison.

F.1 Zero-Shot Evaluation

We conducted experiments evaluating molecular description capabilities in a zero-shot setting. GPT-
40 demonstrates superior performance across all metrics, achieving the highest average score of 27.541
(Table[31). GPT-4v follows with a notable performance gap but consistent profile (24.556 average).
Among the remaining models, JanusPro and Llava 1.5 13B form the second tier (19.642 and 18.140
average, respectively), followed by CogVLM and mPlugOWL?2 showing comparable capabilities
(16.158 and 16.004). BLIP-2 and Qwen VL deliver similar mid-to-low range performance, while
Llama Adapter v2 7B struggles significantly with this task (10.048 average). These results suggest
that general-purpose models with extensive pretraining currently maintain substantial advantages in
zero-shot molecular understanding and description tasks.

Table 31: Molecular description performance in zero-shot setting: Comparison of models evaluated
on molecular description task without finetuning. The best performing models are highlighted with
bold text.

Models BLEU-21 BLEU-41T ROUGE-1T7 ROUGE-21T ROUGE-L1T METEOR1 Average
GPT-40 27.853 25.491 29.376 26.184 28.729 27.615 27.541
GPT-4v 24.837 23.492 25.876 24.184 25.329 23.615 24.556
BLIP-2 12.610 11.780 12.480 12.150 12.390 11.940 12.225
CogVLM 16.753 15292 16.876 15.684 16.529 15.815 16.158
mPlugOWL2 16.621 15.220 16.432 15.837 16.286 15.629 16.004
Llava 1.5 13B 18.662 17.544 18.470 18.047 18.340 17.774 18.140
Llama Adapter v2 7B 10.332 9.723 10.235 9.985 10.173 9.841 10.048
Qwen VL 14.497 13.634 14.360 14.008 14.267 13.802 14.095
JanusPro 19.753 18.492 20.876 19.284 20.529 18.915 19.642

F.2 Effect of ICL Examples

Tables [32]and [33] demonstrate significant performance improvements when increasing from 2-shot
to 4-shot learning. GPT-4v leads in the 2-shot setting with the highest average score of 43.400,
while GPT-40 achieves superior results in the 4-shot setting with an average of 59.727, showing a
remarkable improvement of 17.6 percentage points over its 2-shot performance. All models exhibit
consistent gains when provided with additional examples, with larger models generally demonstrating
better utilization of in-context examples. JanusPro maintains strong performance in both settings,
while smaller models like Llama Adapter v2 7B show more modest improvements.

Table 32: Molecular description performance in few-shot setting (k=2): Comparison of models
evaluated on molecular description task with 2-shot learning. The best performing models are
highlighted with bold text.

Models BLEU-21 BLEU-47 ROUGE-17 ROUGE-27 ROUGE-L{ METEOR?{ Average |
GPT-4o0 43.330 40.180 42.870 42.070 42.670 41.740 42.143
GPT-4v 43.720 43.020 43.620 43.310 43.580 43.150 43.400
BLIP-2 30.265 29.273 30.136 29.719 30.032 29.546 29.829
CogVLM 31.951 30.552 31.762 31.167 31.616 30.959 31.335
mPlugOWL2 26.664 24.795 26.390 25.619 26.184 25.359 25.835
Llava 1.5 13B 29.818 28.617 29.653 29.137 29.526 28.951 29.284
Llama Adapter v27B  21.619 20.465 21.469 21.142 21.377 20.982 21.176
Qwen VL 31.062 29.051 30.817 29.923 30.600 29.583 30.173
JanusPro 38.286 37.061 38.153 37.618 38.021 37.262 37.734
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Table 33: Molecular description performance in few-shot setting (k=4): Comparison of models
evaluated on molecular description task with 4-shot learning. The best performing models are
highlighted with bold text.

Models BLEU-21 BLEU-47 ROUGE-11 ROUGE-2t ROUGE-LT METEORT Average !
GPT-40 61310 58.690 60.490 59.220 60.060 58.590 59.727
GPT-4v 55780 54.430 55.580 54.930 55.460 54.650 55.138
BLIP-2 36.064 34530 35.896 35227 35728 35.049 35.416
CogVLM 40.285 39.062 40.152 39.618 40.020 39.262 39.733
mPlugOWL2 33.774 32299 33.614 32.969 33.454 32792 33.150
Llava 1.5 13B 40.775 39.507 40.638 40.083 40.502 39.715 40.203
Llama Adapter v2 7B 32.063 31075 31.947 31.456 31.857 31298 31616
Qwen VL 40.285 39.062 40.152 39.618 40.020 39.262 39.733
JanusPro 50.574 48.696 50373 49.599 50.104 49.098 49.741

F.3 Chain of Thought Prompting

Table [34]illustrates the impact of Chain of Thought (CoT) prompting on molecular description tasks.
GPT-40 achieves superior performance across all metrics with an average score of 61.494, slightly
outperforming GPT-4v (59.549). Both models demonstrate strong capabilities when encouraged to
reason step-by-step. JanusPro maintains its position as the third-best performer with an average score
of 53.703, showing considerable potential among non-commercial models. The remaining models
show varying degrees of effectiveness with CoT prompting, with Llava and CogVLM achieving
similar performance (43.393 and 42.878, respectively). Notably, when compared to few-shot learning
results, CoT prompting appears to further enhance model performance, particularly for larger models,
suggesting that structured reasoning approaches are beneficial for molecular description tasks.

Table 34: Molecular description performance in Chain-of-thought setting: Comparison of models
evaluated on molecular description task with Chain of Thought (CoT). The best performing models
are highlighted with bold text.

Models BLEU-21 BLEU-41 ROUGE-11 ROUGE-2? ROUGE-LT METEOR?T Average
GPT-40 62.162 60.743 62.406 61.151 62.006 60.495 61.494
GPT-4v 60.242 58.784 60.026 59.324 59.897 59.022 59.549
BLIP2 38.708 37.092 38.530 37.825 38.344 37.638 38.023
CogVLM 43.467 42.187 43.324 42.745 43.182 42361 42.878
mPlugOWL 36.475 34.883 36303 35.606 36.130 35416 35.802
Llava 43.996 42,668 43.849 43.249 43702 42.892 43.393
Llama Adapter ~ 34.628 33561 34503 33.972 34.405 33.802 34.145
Qwen 43387 42.187 43.324 42745 43.182 42.403 42.871
Janus 54571 52.591 54352 53.567 54.112 53.026 53703

G Contrastive Learning for Vision Encoders

We explore two contrastive learning strategies for enhancing the vision encoder’s ability to capture
molecular structural information: augmentation-based and Tanimoto similarity-based approaches.
This additional loss is used with LoRA finetuning. We experimente with BLIP-2 considering its
better performance across all tasks. The motivation is to enable the vision encoder to learn more
discriminative representations of molecular structures by leveraging either image transformations or
chemical similarity relationships. The performance of these contrastive learning approaches across
multiple molecular datasets is summarized in the main paper, while the detailed metrics on the
molecular description task are presented in Table [35]

Table 35: Molecular description performance using Contrastive Learning Comparison of BLIP2

evaluated on molecular description task with Augmentation (Aug) and Tanimoto Augmentation
(T-Aug).

Models BLEU-21 BLEU-417 ROUGE-117 ROUGE-21 ROUGE-LT METEORT Average 1

Lora 59.062 58.034 58.933 58.466 58.889 58.185 58.595
Aug 61.530 60.307 61.398 60.863 61.266 60.507 60.979
T-Aug 64.176 63.192 64.072 63.641 63.966 63.352 63.733
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G.1 Augmentation-based contrastive learning

We generate multiple views of the same molecule using a set of image transformations including
rotations (at angles 45°, 90°, 135°, 180°, 225°, 270°, and 315°), vertical and horizontal flips,
solarization, posterization, and auto-contrast adjustments. For each molecule image, we randomly
apply two transformations to create positive pairs for contrastive learning.

Figure @ illustrates the analysis of our augmentation-based approach through t-SNE visualizations of
the visual encodings. While our main paper demonstrates the superior performance of contrastive
learning using Tanimoto similarity, here we present results from image augmentation techniques for
comparison. The left plot shows the visual encodings from BLIP-2 before cross-modal fusion, with
clusters exhibiting significant overlap. The right plot displays the representations after cross-modal
fusion, where the clusters become more distinguishable but still less defined than those achieved
with Tanimoto similarity methods discussed in the main paper. This comparative analysis confirms
that Tanimoto similarity-based approaches provide better molecular structure differentiation than
augmentation-based techniques alone, particularly for chemical structure representation tasks.
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Figure 4: Analyzing visual features: The two plots show t-SNE visualizations of visual encodings of
BLIP-2 before and after cross-modal fusion respectively using augmentative technique.

G.2 Tanimoto similarity-based contrastive learning

Rather than using augmented views, we leverage chemical similarity to define positive pairs. For each
molecule, we identify three structurally similar molecules with Tanimoto similarity scores >0.85 to
serve as positive examples. This approach ensures that the model learns from meaningful chemical
relationships rather than artificial transformations.

G.3 Overall loss function

For both approaches, we implement a contrastive loss based on NT-Xent (Normalized Temperature-
scaled Cross Entropy) as used in SimCLR. The fundamental principle behind this loss function is to
learn discriminative molecular representations by pulling together embeddings of similar molecules
(positive pairs) while pushing apart embeddings of dissimilar molecules (negative pairs) in the
representation space.

The contrastive loss is mathematically defined as:

N exp(sim(z;, z;)/7)

= SN s exp(sim(z;, 1) /7)

»Cconlraslive = - ﬁ (1)

The key components of this formulation include z; and z;, which represent the normalized embeddings

of a positive pair obtained from the vision encoder after processing molecular images. The similarity
T ; . . . . . .

function sim(z;, z;) = m denotes the cosine similarity between two embeddings, while 7 = 0.5
i 3

is the temperature parameter that controls the concentration of the distribution around positive pairs.

The batch size is represented by N, resulting in 2N total samples when considering both elements of

each positive pair, and 1y, is an indicator function that excludes the case where k = i to prevent

self-comparison.
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The loss function operates by computing the probability that embedding z; is most similar to its posi-
tive counterpart z; compared to all other embeddings in the batch. The numerator exp(sim(z;, z;)/T)
represents the similarity between the positive pair, while the denominator sums over all possible
negative pairs within the batch, creating a softmax-like normalization that encourages the model to
distinguish between related and unrelated molecular structures.

The temperature parameter 7 plays a crucial role in controlling the learning dynamics. A lower
temperature such as our chosen value of 0.5 creates sharper distributions, making the model more
sensitive to small differences in similarity scores and encouraging tighter clustering of positive pairs.
This helps the encoder learn more discriminative features that are essential for downstream molecular
property prediction across classification tasks, regression tasks, and molecular description tasks.

During training, this contrastive loss is combined with the task-specific loss for the target dataset:

Etotal = Etask + )\Lconlraslive (2)

Here, L, represents the primary loss for the specific molecular property prediction task, which
varies depending on whether we are performing classification (cross-entropy loss), regression (mean
squared error or mean absolute error), or molecular description (sequence generation loss). The
weighting parameter A balances the contribution of the contrastive learning objective with the task-
specific objective. This combined loss function is optimized during LoRA finetuning, allowing
the vision encoder to simultaneously learn task-specific features for classification, regression, and
molecular description tasks while maintaining the ability to distinguish between different molecular
structures through contrastive learning. The integration of contrastive learning with task-specific
objectives enables the model to develop robust molecular representations that generalize well across
diverse downstream applications in molecular property prediction.

H Multimodal vs. Text-Only Baseline Comparison

To validate the contribution of visual information, we compare our multimodal approach with text-
only fine-tuned language models. Table [36] presents results across classification (BACE, BBBP),
regression (ESOL, LD50), and molecular description (ChEBI-20) tasks.

Table 36: Comparison of multimodal and text-only fine-tuning. BACE and BBBP show Accuracy
(F1-score), ESOL shows RMSE, LD50 shows MAE, and ChEBI-20 shows average of BLEU-2,
BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L, METEOR.

Model Type String BACE BBBP ESOL LD5S0 ChEBI-20
BLIP-2 Visual-Text SMILES 0.86(0.83) 0.93(0.96) 1.764 0.779 58.6
Mistral 7B Text SMILES 0.539(0.510) 0.639(0.575) 3.291 2.931 42.982
Mistral 7B Text SELFIES 0.564(0.549) 0.638(0.634) 2.948 2.784 44.094
Llama 3.1 8B Text SMILES  0.599(0.610) 0.643(0.657) 2.093  2.003 45.998
Llama 3.1 8B Text SELFIES 0.634(0.612) 0.685(0.699) 2.084 1.91 48.092

The multimodal approach consistently outperforms text-only models across all tasks. BLIP-2 achieves
substantial improvements: 26% higher accuracy on BACE and 24% on BBBP compared to the best
text-only baseline (Llama 3.1 8B with SELFIES). Similar advantages are observed in regression (16%
lower RMSE on ESOL) and molecular description (22% higher ChEBI-20 score), confirming that
visual information provides significant value for molecular property prediction.

I Additional Experiments and Datasets

In this section, we present additional experiments conducted to validate our approach, including
image processing methods, few-shot learning on the FS-Mol dataset, and zero-shot with contrastive
learning evaluations.
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J Effect of Image Processing Parameters

To examine the impact of image processing parameters on model performance, we conducted
experiments with different visual protocols using CogVLM (ICL k=2). Table [37] presents results
across classification (BACE) and regression (ESOL) tasks.

Table 37: Impact of image processing methods on molecular property prediction. BACE shows
Accuracy (Fl1-score) and ESOL shows RMSE.

Image Protocol BACE ESOL
224x224 (Baseline) 0.48(0.51) 1.26
128%x128 0.46(0.50) 1.43
512x512 0.48(0.52) 1.24

Thicker Bond Lines (2.0—5.0)  0.48(0.50) 1.25
Functional Group Highlighting 0.50(0.51)  1.22

While image processing variations show modest performance differences (maximum 4% accuracy
variation on BACE and 15% RMSE variation on ESOL), functional group highlighting and higher
resolution (512x512) demonstrate slight improvements. We used standard RDKit parameters with
224%224 resolution as our baseline to ensure fair comparison across models and maintain computa-
tional efficiency.

K Prompt Examples

In this section, we show some prompt examples as used for various datasets. We have included some
example ICL prompts specific to some of the dataset (Figure [5] [8] [6] PI7). For regression tasks, we
demonstrate an example using the ESOL dataset for solubility prediction (Figure [IT). With ICL k=0
(different from zero-shot), we have all other section as shown in the prompt, however the example
block is not used as input. The additional information as available with task instruction differentiates
it from zero-shot, as models do not see “Task instruction’ in zero-shot. Prompt examples for ICL are
included with SELFIES representations (Figure [I0).

We include a chain-of-thought prompt example for the BBBP dataset (Figure [I3), showing the
step-by-step reasoning approach for classification tasks.

We provide a prompt example for molecular description tasks using the ChEBI dataset with ICL
k=2 (Figure[T2), demonstrating how the model generates natural language descriptions of molecular
structures and properties.
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, Image
Prompt

You are an expert chemist, your task is to predict the property of
molecule using your experienced chemical property prediction General
knowledge. Outline

Please strictly follow the format, no other information can be
provided. Given the SMILES string of a molecule, predict the
molecular properties of a given chemical compound based on its
structure, by analyzing wether it can inhibit(Yes) the Beta-site
Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) or Task
cannot inhibit(No) BACE1. Consider factors such as molecular g
weight, atom count, bond types, and functional groups in order to
assess the compound's drug-likeness and its potential to serve as
an effective therapeutic agent for Alzheimer's disease,please
answer with only Yes or No. A few examples are provided in the
beginning. J

Instruction

SMILES:
01CCOc2clec(cc2)CIH{N=C(N)N(C)C1=0)clcc(cccl)-clceencl
BACE-1 Inhibit: Yes

SMILES:
OC(C(NC(=0)clc2ccene2n(cl)C(=0)N(CCCC)C)Cclcceccl) s Examples
C[NH2+]C1CC1
BACE-1 Inhibit: No

Below is the molecule who's property you have to predict. Along
with is the image structure of the molecule.
SMILES: O=CIN(C)C(=NC(=C1)[C@H]1C[C@H]1clcccecl)N
BACE-1 Inhitbit:

You have to predict whether it has Penetration with answer Yes
or No only.

> Question

J

e

Figure 5: Sample prompt for BACE-V: A general outline is provided at first followed by set of
instructions to be more specific about the task. The task is explained briefly and expected output
is stated. In our case it should be Yes/No. This includes ICL examples with k=2 (No of samples).
With this the main question is asked. The chemical compound who’s property is to be expected is
represented in its molecular structure created using RDKIT which goes along with the text input.
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\ / Image

; Prompt
HN
A/N

0 -
You are an expert chemist, your task is to predict the property of
molecule using your experienced chemical property prediction General
knowledge. Outline

A

Please strictly follow the format, no other information can be
provided. Given the SMILES string of a molecule, the task focuses
on predicting molecular properties, specifically
penetration/non-penetration to the brain-blood barrier, based on Task

the SMILES string representation of each molecule.

You will be provided with several examples molecules, each
accompanied by a binary label indicating whether it has
penetrative property (Yes) or not (No).

Please answer with only Yes or No.

" Instruction

SMILES: O=C1Nc2cccce2N1C3CCN(CCOc4cccec4)CC3
Penetration: Yes

SMILES: e
Examples

CC1CN(CCN1)c2ce3N(C=C(C(0)=0)C(=0)c3c(C)c2F)C4CC4 P
Penetration: No

Y

A
Below is the molecule who's property you have to predict. Along
with is the image structure of the molecule.
SMILES:
C1=C2C(=C([N]1C)C)C(=NCC(N2)=0)C3=CC=CC=C3 > Question

Penetration:
You have to predict whether it has Penetration with answer Yes
or No only.

Figure 6: Example prompt: The figure presents a task designed for predicting molecular properties,
specifically penetration through the blood-brain barrier (BBBP-V dataset), using the SMILES string
representation. The general outline and specific instructions detail the expected binary output
(Yes/No). Two example molecules are provided to illustrate the task, followed by the main question,
which includes the SMILES string and structure of the target molecule, generated with RDKit.
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, Image
Prompt

You are an expert chemist, your task is to predict the property of
molecule using your experienced chemical property prediction General
knowledge. Qutline

Please strictly follow the format, no other information can be
provided. Given the SMILES string of a molecule, predict the
molecular properties of a given chemical compound based on its
structure, by analyzing wether it can inhibit(Yes) the Beta-site
Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) or Task
cannot inhibit(No) BACE1. Consider factors such as molecular
weight, atom count, bond types, and functional groups in order to
assess the compound's drug-likeness and its potential to serve as
an effective therapeutic agent for Alzheimer's disease,please
answer with only Yes or No. A few examples are provided in the
beginning. J

¢ Instruction

SMILES:
01CCOc2c1ee(cc2)CIN=C(N)N(C)C1=0)clcc(cecl)-clecencl
BACE-1 Inhibit: Yes

SMILES:
OC(C(NC(=0)clc2ecenc2n(cl)C(=0)N(CCCC)C)Celececel) r Examples
C[NH2+]C1CC1
BACE-1 Inhibit: No
J
1
Below is the molecule who's property you have to predict. Along
with is the image structure of the molecule.
SMILES: OfC.lN(C)C(:NC(:C DNC@H]1C[C@H]1clcccecl)N L Question
BACE-1 Inhitbit:
You have to predict whether it has Penetration with answer Yes
or No only.
J

Figure 7: Example prompt: The figure outlines a task for predicting the ability of molecules to
inhibit HIV replication (HIV-V dataset), based on their SMILES string representation. The general
outline and specific instructions require a binary output (Yes/No). Example molecules are provided
to illustrate the task, followed by the main question, which includes the SMILES string and structure
of the target molecule, generated with RDKit.
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Image
Prompt

You are an expert chemist, your task is to predict the property of
molecule using your experienced chemical property prediction General
knowledge. Qutline

J

Please strictly follow the format, no other information can be
provided. Given the SMILES string of a molecule, the task focuses
on predicting molecular properties, specifically wether a molecule
is Clinically-trail-Toxic(Yes) or Not Clinically-trail-toxic (No)
based on the SMILES string representation of each molecule.. The Task
FDA-approved status will specify if the drug is approved by the (" Instruction
FDA for clinical trials(Yes) or Not approved by the FDA for
clinical trials(No).

Below is the molecule who's property you have to predict. Along
with is the image structure of the molecule.

SMILES:
C[C@H]1C[C@H]2[C@@H]3CCC4=CC(=0)C=C[C@@4(
[C@HBCFO)C[C@@]A([C@]1(C(=0)CO)0)C)C
Toxic: Yes L
SMILES: CC1(CC(C1)C2=NC(=C3N2C=CN=C3N)C4=CC5=C Examples
(C=C4)C=CC(=N5)C6=CC=CC=Ck)0
Toxic: No

Below is the molecule who's property you have to predict. Along
with is the image structure of the molecule.
SMILES: CCOC(=0)C(C(C)=0)=C(OC(C)=0)clccnec1C(=0)0 > Question
Inhibit:

You have to predict whether its Inhibit HIV with answer Yes or
No only.

|- J <
A

Figure 8: Example prompt: The figure outlines a task for predicting whether molecules are clinically
trial-toxic (ClinTox-V dataset), using their SMILES string representation. The general outline and
specific instructions require a binary output (Yes/No) to indicate if the molecule is approved by the
FDA for clinical trials. Example molecules are provided to illustrate the task, followed by the main
question, which includes the SMILES string and structure of the target molecule, generated with
RDK:it.
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Image
Prompt
You are an expert chemist, your task is to predict the property of
molecule using your experienced chemical property prediction General
knowledge. Outline

Please strictly follow the format, no other information can be
provided, Given the SMILES string of a molecule, the task focuses
on predicting molecular properties, specifically wether a molecule
is toxic(Yes) or Not toxic(No), based on the SMILES string L Task )
representation of each molecule. A template will be provided. The Instruction
task is to predict the binary label for a given molecule SMILES,
please answer with only Yes or No.

N

J

SMILES: C#C[C@]L(0C(C)=0)CC[C@H2[C@@H]I3CCCA=C|
C@@H](0C(C)=0)CC[C@@H4C@HI3CCIC@@]21C
Toxic: Yes
SMILES: Cl[Hglclcececl " Examples
Toxic: No

Below is the molecule who's property you have to predict. Along
with is the image structure of the molecule. )
SMILES: Celec(C(C)(C)e2ece(0)e(C)e2)ecclO » Question
Toxic:

L Y

D }

Figure 9: Example prompt: The figure outlines a task for predicting the toxicity of molecules based
on their SMILES string representation, specifically in the context of the Tox21 dataset. The general
outline and specific instructions require a binary output (Yes/No) to indicate the molecule’s toxicity.
Example molecules are provided to illustrate the task, followed by the main question, which includes
the SMILES string and structure of the target molecule, generated with RDKit.
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Image

Prompt

You are an expert chemist, your task is to predict the
" : h General
property of molecule using your experienced chemical Outline

property prediction knowledge.

Please strictly follow the format, no other information can
be provided. Given the SELFIE string of a molecule,
predict the molecular properties of a given chemical

compound based on its structure, by analyzing whether it

can inhibit (Yes) the Beta-site Amyloid Precursor Protein
Cleaving Enzyme 1 (BACEZL) or cannot inhibit (No) Task

BACEL1. Consider factors such as molecular weight, atom
count, bond types, and functional groups in order to

assess the compound's drug-likeness and its potential to

serve as an effective therapeutic agent for Alzheimer's
disease. Please answer with only Yes or No. A few

" Instruction

examples are provided in the beginning. J
SELFIE:
[FI[C](=C]...[NI[C][=C][C][=N][C][=C][Ring1][=Branch1] A
BACE-1 Inhibit: Yes
SELFIE:
[FIIC]....... Branch1][C][Branch1][C][C][Branch1][C][C][C] 14
BACE-1 Inhibit: No Examples
SELFIE: A
[OIIC][CI[O][C][=C][Ring1][=Branchl1][C][=C][Branchl]
[Branch1][C][=C][Ring1][=Branch1][C][Branch1][=C][N][=C]
[Branch1][C][N][N][Branch1][C][C][C][Ring1][#Branchi] )
[=0][C][=C][C][=Branchi][=Branch1][=C][C][=C] » Question
[Ring1][=Branch1][C][=C][C][=C][N][=C][Ring1][=Branch1i]
BACE-1 Inhibit:

7
v
. -

Figure 10: Example prompt: The figure outlines a task for predicting the ability of molecules for
BACE-Inhibit (BACE-V dataset), using their SELFIES string representation. The general outline and
specific instructions require a binary output (Yes/No). Example molecules are provided to illustrate
the task, followed by the main question, which includes the SELFIES string and structure of the
target molecule, generated with RDKit.
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Image
Prompt

As an expert chermust specializing 1n molecular property General

prediction, your task is to accurately estimate the measured log Outline
solubility in mols per litre for various compounds.

J

Please strictly follow the format, no other information can be
provided. Given the Smiles string of a molecule, predict the
molecular properties of a given chemical compound based on its
structure. You have extensive knowledge of chemical structures,
solubility principles, and structure-property relationships.
Consider the followmg mformation about the molecule: its
molecular weight is 302.23800000000006 g/'mol, and it has 5 H-
bond doners. Usmng your expertise, analyze the given Smules TaSK_
representation of the molecule, considering factors such as - Instruction
polarity, molecular weight, H-bond donors, and other functional
groups that influence solubility. Based on this analysis, provide
your best prediction of the measured log solubility in mols per
litre for the following Smiles string:
Ocleec(e(O)el)e3oc2ec(O)ec(O)e2e(=0)c30 . You don't need any
extra information for this task. Your task 1s to predict the answer
only. The predicted output should only be a number of log
solubility 1n mols per litre.

Smiles: Nelceeee1CILog Solubility: -1.52 Examples
Smiles: Oclcecc2neceel2 Log Solubility: -2.54
Below 1s the molecule who's property you have to predict. Along .
with 1s the image structure of the molecule. Question
Smiles: Ocleec(e(O)el)e3o0c2ee(O)ec(O)e2e(=0)e30 Log
Solubility:
Answer
-3.083

Figure 11: Example prompt: The figure outlines a task for predicting the log solubility of molecules
based on their SMILES string representation, using the ESOL dataset. The general outline and
specific instructions require a numerical output for log solubility in mols per litre. Two example
molecules (k=2) are provided to illustrate the task, followed by the main question, which includes the
SMILES string and structure of the target molecule, generated with RDKit.

26



HO
OH

Image
H,N Prompt

You are an expert chemist, your task is to generate
descriptive captions for molecules based on their chemical
structure and properties.

General
Outline

Given the Smiles string and molecular properties above,
generate a descriptive caption for this molecule. The
caption should describe the molecular structure, functional Task
groups, potential applications, and any other relevant | Instruction
chemical properties. Be specific and technical in your
description.

Example 1:
Smiles: Nc1cce(N)ce
Description: The molecule is a phenylenediamine in which
the amino functions are at positions 1 and 4 of the
benzene nucleus. It has a role as a hapten, a dye, a
reagent and an allergen.
Examples
Example 2:

Smiles: CCCCCOC(=0)c1ccccc1C(=0)0
Description: The molecule is a phthalic acid monoester
obtained by formal condensation of one of the carboxy

groups of phthalic acid with the hydroxy group of pentanol.
It has a role as a xenobiotic metabolite, an anti-estrogen
and a rat metabolite. It derives from a pentan-1-ol.

You are instructed to predict the target description caption
of the molecule below. You are provided with the image of
the target molecule below as a reference. Use the visual
information from the image to support your analysis and
reasoning, helping you generate a more accurate and
comprehensive description caption of the molecule.
Target Molecule (Smiles):
NC(CC(=0)0)c1ccc(O)cct
Description:

Question

v

The molecule is zwitterionic form of 3-amino-3-(4-
hydroxyphenyl)propanoic acid arising from migration of a
proton fron the carboxy to the amino group; major species | Answer

at pH 7.3. It has a role as a bacterial metabolite. It is a
tautomer of a 3-amino-3-(4-hydroxyphenyl)propanoic acid.

Figure 12: Example Molecular Description prompt: The figure outlines a task for predicting the
Molecular Description based on their SMILES string representation, using the Chebi dataset. The
general outline and specific instructions requires a captioning output.
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You are an expert chemist, your task is to predict the
. . X General
property of molecule using your experienced chemical X
o Outline
property prediction knowledge.

You are an expert chemist tasked with predicting whether
a molecule can penetrate the blood-brain barrier (BBB)
based on its structure. Please follow this step-by-step
reasoning process:

1. Analyze the molecular representation:

- Identify key functional groups
- Note molecular size and lipophilicity indicators
- Look for charged groups or ionizable centers
2. Consider important factors for BBB penetration:
- Molecular weight (optimal range: 400-500 Da)
- Lipophilicity (LogP between 1-4)
- Number of H bond donors (<3) and acceptors (<7)
- Polar surface area (optimal <70 A...Az?)
- Rotatable bonds (preferably <8)
3. Examine structural features:
- Check for presence of aromatic rings
- Identify potential P-glycoprotein substrates
- Look for CNS-unfavorable groups (acids, quaternary
amines)
4. Assess drug-like properties:
- Evaluate adherence to Lipinski's Rule of Five
- Check for presence of known BBB penetration
enhancers
- Consider potential metabolic stability
5. Compare to known BBB penetrators and non-
penetrators:
- Analyze structural similarities with example molecules
- Note any significant structural differences
- Consider known structure-activity relationships
6. Weigh the evidence:
- List factors favoring BBB penetration
- List factors opposing BBB penetration
- Consider the overall balance of properties
7. Make a prediction:
- Based on your analysis, predict BBB penetration
- State your final prediction as either "Yes" (penetrates)
or "No" (does not penetrate)
Please provide your reasoning for each step before giving
your final prediction.

Task
Instruction

Now, predict the BBB penetration for the following
molecule:
Smiles: C1=C(SC=C1)C2(C(CCCC2)=0)NCC

Penetration: .

Question

Please follow the steps outlined above and provide your

reasoning for each step before giving your final prediction

of Yes or No.

Yes Answer

Figure 13: Example CoT prompt: The figure outlines a task for predicting the Brain Penetration of
molecules based on their SMILES string representation, using the BBBP dataset. The general outline
and specific instructions requires a binary output (Yes/No).
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