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Abstract
Over the last several decades, software has been woven into the fabric of every
aspect of our society. As software development surges and code infrastructure of
enterprise applications ages, it is now more critical than ever to increase software
development productivity and modernize legacy applications. Advances in deep
learning and machine learning algorithms have enabled breakthroughs in computer
vision, speech recognition, natural language processing and beyond, motivating
researchers to leverage AI techniques to improve software development efficiency.
Thus, the fast-emerging research area of “AI for Code” has garnered new interest
and gathered momentum. In this paper, we present a large-scale dataset CodeNet,
consisting of over 14 million code samples and about 500 million lines of code
in 55 different programming languages, which is aimed at teaching AI to code.
In addition to its large scale, CodeNet has a rich set of high-quality annotations
to benchmark and help accelerate research in AI techniques for a variety of crit-
ical coding tasks, including code similarity and classification, code translation
between a large variety of programming languages, and code performance (runtime
and memory) improvement techniques. Additionally, CodeNet provides sample
input and output test sets for 98.5% of the code samples, which can be used as
an oracle for determining code correctness and potentially guide reinforcement
learning for code quality improvements. As a usability feature, we provide several
pre-processing tools in CodeNet to transform source code into representations that
can be readily used as inputs into machine learning models. Results of code classi-
fication and code similarity experiments using the CodeNet dataset are provided as
a reference. We hope that the scale, diversity and rich, high-quality annotations of
CodeNet will offer unprecedented research opportunities at the intersection of AI
and Software Engineering.

1 Introduction
There is a growing trend towards leveraging AI for building tools that support software engineering
and development [1, 2]. AI can manipulate and generate computer code, but can it do so with
high quality? Many researchers are fascinated by this possibility, encouraged by AI successes in
other domains and tantalized by the vision of computers programming computers. Some recent
deep-learning models [3, 4] for code have received a lot of publicity: trained on vast amounts of
data and using novel architectures with billions of parameters, they sometimes generate surprisingly
plausible code.

Given the success of non-AI tools for code, why should we consider AI to augment or possibly
replace them? Firstly, AI can help refine and re-tune the heuristics used by traditional coding tools.
Secondly, based on the training data from past experience, AI can help prioritize when there is more
than one sound answer [5]. Thirdly, an AI-based tool may handle incomplete or invalid code more
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robustly, thus expanding its scope. Finally, AI can incorporate signals usually ignored by traditional
tools for code, such as the natural language in identifiers or comments.

In the enterprise environment, developers often face code written by large teams over many years
and geographies. Developers must manipulate such code to modernize it, fix bugs, improve its
performance, evolve it when requirements change, make it more secure, and/or comply with regu-
lations. These tasks are challenging, and it is crucial to provide tool support for developers to be
more productive at performing them. It is well known that the latest advancements in deep learning
algorithms rely on best-of-breed datasets, such as ImageNet, to create increasingly complex and
powerful models. In this paper, we present "CodeNet", a first-of-its-kind dataset in scale, diversity,
and quality, to accelerate the algorithmic advances in AI for Code.

To promote widespread adoption of CodeNet, we will be launching contests involving use cases based
on the dataset. The first contest [6] will focus on diversity, inclusion and spurring interest among
aspiring data scientists. We are partnering with the Global Women in Data Science organization (with
presence in over 50 countries) founded by Stanford University [7] and targeting teams with at least
fifty percent women. We are planning follow-up contests that target experienced AI practitioners.

The rest of the paper is organized as follows. Section 2 introduces the CodeNet dataset. Related
datasets are discussed in Section 3, and the differentiation of CodeNet with respect to these related
datasets is elaborated in Section 4. Section 5 describes how CodeNet was curated and Section 6
enumerates the usability features of CodeNet with several pre-processing tools to transform source
codes into representations that can be readily used as inputs into machine learning models. Section 7
discusses the upcoming CodeNet contest and Section 8 describes important baseline experiments
with the CodeNet dataset. Section 9 presents further uses of the CodeNet dataset and Section 10
concludes the paper.

2 The CodeNet Dataset

The CodeNet dataset consists of a large collection of code samples with extensive metadata. It
also contains documented tools to transform code samples into intermediate representations and to
access the dataset and make tailored selections. Our goal is to provide the community with a large,
high-quality curated dataset that can be used to advance AI techniques for source code.

CodeNet is derived from the data available on two online judge websites: AIZU [8] and AtCoder [9].
Online judge websites pose programming problems in the form of courses and contests. The dataset
consists of submissions to these problems, which are judged by an automated review process for
correctness. Problem descriptions, submission outcomes, and associated metadata are available via
various REST APIs.

Scale and Statistics. CodeNet contains a total of 13,916,868 submissions, divided into 4053
problems. Among the submissions, 53.6% (7,460,588) are accepted (compilable and pass the
prescribed tests), 29.5% are marked with wrong answer, and the remaining rejected due to their
failure to meet run time or memory requirements. To our knowledge, this is the largest dataset so
far among similar kinds. Submissions are in 55 different languages; 95% of them are coded in C++,
Python, Java, C, Ruby, and C#. C++ is the most common language, with 8,008,527 submissions (57%
of the total), of which 4,353,049 are accepted. With the abundance of code samples, users can extract
large benchmark datasets that are customized to their downstream use. See Figure 1 for a summary.

Diversity. The problems in CodeNet are mainly pedagogical and range from elementary exercises
to sophisticated problems that require advanced algorithms. The submitters range from beginners
to experienced coders. Some submissions are correct while others contain different types of errors,
accordingly labeled. The submissions are in many different languages.

Code Samples. Each code sample is a single file and includes inputting the test cases and printing out
the computed results. The file name uses standard extensions that denote the programming language,
e.g., .py for Python. The majority of code samples contain only one function, although submissions
to more complex problems might have several functions.

Metadata. The metadata enables data queries and selections among the large collection of problems,
languages, and source files. The metadata is organized in a two level hierarchy. The first is the
dataset level, which describes all problems. The second is the problem level, which details all the
submissions to a single problem. Metadata and data are separated in the dataset structure.
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(a) Languages (b) Status

Figure 1: Percentage of submissions per language (left) and per status (right).

At the dataset level, a single CSV file lists all problems and their origins, along with the CPU time
and memory limits set for them. Additionally, every problem has an HTML file with a detailed
description of the problem, the requirements and constraints, and the IO examples.

At the problem level, every problem has a CSV file. The metadata for each submission is summarized
in Table 8 in the supplement, which lists the fields contained in each CSV file as well as the
corresponding descriptions.

Limitations. All code samples in CodeNet may not be extensively commented, and these comments
may be in multitude of languages. Therefore, AI techniques that rely on learning from preponderance
of comments in the code may face challenges. The code samples are solutions to high-school and
beginning college level programming problems. This dataset is not suitable for users looking for code
with enterprise API’s and advanced design patterns.

3 Related Datasets
A wide variety of datasets for source code exist, with many targeting one or a small number of
tasks. Such tasks include clone detection, vulnerability detection [10, 11], cloze test [12], code
completion [13, 14], code repair [15], code-to-code translation, natural language code search [16],
text-to-code generation [17], and code summarization [16]. A detailed discussion of several of these
tasks and their respective datasets is available in CodeXGLUE [18], which is a collection of existing
datasets. CodeNet, on the other hand, is a new dataset curated from scratch, that aims to support a
broad set of use cases. Popular datasets of a similar kind are POJ-104 [19] (which is incorporated as
part of CodeXGLUE as well) and GCJ [20] (derived from Google Code Jam). We compare CodeNet
to these datasets in the following.

3.1 POJ-104

POJ-104 was collected from a pedagogical online judge system. The code samples are submissions
to 104 programming problems. With 500 submissions to each problem, there is a total of 52,000 code
samples in the dataset. This dataset has been used by many authors for code classification [19] and
code similarity [21].

POJ-104 is faced with several limitations.

1. The code samples are in C and C++, but the two languages are not distinguished. Although they are
closely related, mixing them leads to parsing errors and a reduction of useful code samples [21].

2. Useful metadata such as the results of the judging system (acceptance, error types etc.) are missing.
Therefore, for certain applications where compilabilty or code correctness is important, additional
pre-processing efforts are needed and useful code samples are reduced [21]. The dataset does
not contain the problem statement, although some example problems are described in [22], and
information on how to execute the code samples is absent.

3. Some problems are identical (e.g., problems 26 and 62), and some submissions are near duplicates
of each other, although the percentage of such cases is low compared to other datasets.
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3.2 GCJ

GCJ [20] was collected from the submissions to the Google Code Jam competitions from 2008 to
2020. Similar to CodeNet, the submissions cover a wide variety of programming languages, with
C++, Java, Python, and C being the predominant ones. The C++ subset has been extracted into a
POJ-104-like benchmark and used in some publications. This benchmark dataset, GCJ-297 [23],
has 297 problems and approximately 280K submissions. The number of submissions is imbalanced
among problems.

GCJ is advantageous over POJ-104 in size and language diversity, but we believe that an even
larger dataset such as CodeNet can better serve the community. GCJ contains neither metadata nor
information on identical problems and near duplicates.

4 CodeNet Differentiation
Table 1: Related datasets comparison

CodeNet GCJ POJ
Total number of problems 4053 332 104
Number of programming languages 55 20 2
Total number of code samples 13,916,828 2,430,000 52,000
C++/C subset data size (code samples) 8,008,527 280,000 52,000
Percentage of problems with test data 51% 0% 0%
Task: Memory Consumption Prediction Yes No No
Task: Runtime Performance Comparison Yes No No
Task: Error Prediction Yes No No
Task: Near duplicate prediction Yes No No

A high quality code dataset has certain desired properties. We constructed CodeNet according to
these requirements. In the following, we discuss how CodeNet differentiates itself from the existing
datasets along these lines. Table 1 is a comparison with related datasets.

Large scale. A useful dataset should contain a large number and variety of data samples to expose
the realistic and complex landscape of data distributions one meets in practice. CodeNet is the
largest dataset in its class - it has approximately 10 times more code samples than GCJ and its C++
benchmark is approximately 10 times larger than POJ-104.

Rich annotation. For the dataset class in question, it is important to include information beyond
which problem a code sample solves to enable a wide range of applications and use cases. It is useful
to know whether a code sample solves the problem correctly, and if not, the error category (e.g.,
compilation error, runtime error, and out-of-memory error). Since the source code is supposed to
solve a programming problem, it is advantageous to know the problem statement and have a sample
input for execution and a sample output for validation. All such extra information is part of CodeNet
but absent in GCJ and POJ-104.

Clean samples. For effective machine learning, the data samples are expected to be independent
and identically distributed (iid); otherwise, the resulting performance metric could be significantly
inflated [24]. The existence of duplicate and/or near duplicate code samples makes the iid assumption
dubious. Hence, it is crucial to identify the near duplicates. The presence of identical problems in the
dataset poses an even bigger issue. In CodeNet, we analyzed the code samples for (near) duplication
and used clustering to find identical problems. While this process does not make our dataset satisfy
the iid property, providing this information as part of the dataset release allows more flexibility for
the users to customize benchmarks for their specific use cases. The near-duplicate information is not
available in GCJ and POJ-104.

5 Construction of CodeNet

5.1 Collection of Code Samples

The CodeNet dataset contains problems, submissions, and metadata, scraped from the AIZU and
AtCoder online judging systems. For AIZU, we used the provided REST APIs to download all the
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metadata. For AtCoder, due to the absence of a REST API, we scraped the problems, submissions,
and metadata directly from the web pages. We considered only public and non-empty submissions
that did not contain errors or inconsistencies in the metadata. We manually merged the information
from the two sources and adopted a unified format to create a single dataset.

5.2 Cleansing
Because data are collected from different sources, we apply a consistent character encoding (UTF-8)
on all raw data files. Additionally, we remove byte-order marks and use Unix-style line-feeds as the
line ending.

As indicated in section 4, we identify near-duplicates. We follow Allamanis [24] and use Jaccard
similarity [25] as a metric to score code pairs. Each code sample is tokenized and stored as a
bag-of-tokens multiset. In our case, we keep all tokens except comments and preprocessor directives.
We compute the set and multiset Jaccard indices and respectively use 0.9 and 0.8 as the near-duplicate
thresholds.

Besides similar code samples, identical problems are also likely because they have been gathered over
many decades. We go through the problem description files (in HTML format) and apply fdupes to
extract identical problem pairs. Additionally, using the near-duplicate information calculated for code
samples, we consider a problem pair to be a potential duplicate when the number of near-duplicate
code pairs exceeds a threshold. Clustering of duplicate problems is illustrated by the graphs in
Figure 2, where each node denotes a problem and an edge between two nodes is labeled by the
number of near-duplicate code pairs. Each connected graph is then a cluster of potential duplicate
problems and we manually inspect the problem descriptions to verify the correctness of this duplicate
detection.
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Figure 2: An example of a near-duplicate problem graph.

5.3 Benchmark Datasets

CodeNet has a rich set of code samples, and the user can assemble a customized benchmark according
to his/her need. Following POJ-104, we extracted benchmark datasets from CodeNet in C++, Python,
and Java. The benchmark characteristics are shown in Table 2. For the C++ benchmarks, the number
of problems and their solutions are chosen to make the benchmark challenging. The benchmarks are
filtered in the following ways. Each code sample is “unique” in the sense that it is not a near-duplicate
of another code sample. The same is true of each problem. Samples with a large fraction of dead code
are excluded. Each code sample has successfully passed through the tokenizer, the SPT generator,
and the graph generator, all described in the next section. This step is to ensure that proper processing
can be done to convert a code sample to a machine learning model input.

6 Code Representation and Tools

Machine learning with source code requires proper abstractions of the code. The abstractions are
instantiated as representations in specific formats. As a usability feature, we provide several pre-
processing tools to transform source codes into representations that can readily be used as inputs into
machine learning models. They are described as follows.

Tokenizer. We offer fast C implementations of tokenizers for C, C++, Java, Python, and JavaScript.
Additionally, the parse-tree generator described next can also produce token streams for C, C++, Java,
and Python and can easily be extended to more languages.
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Simplified Parse Tree (SPT) Simplified parse trees are derived from parse trees generated using
ANTLR4 [26]. We traverse the ANTLR4 parse tree and remove internal nodes that only have one
child. By doing so, we maintain the essential structure of the parse tree while pruning out unnecessary
parser production rules. Finally, we adopt Aroma’s [27] naming convention: leaf nodes are named by
their literal strings and internal nodes are named by a concatenation of their children’s names (only
reserved words are kept while others are replaced by a hash mark #). We produce features for each
node: (1) node type (token or parsing rule); (2) token type (e.g., an identifier), when applicable; (3)
parsing rule type (e.g., an expression), when applicable; and (4) whether it is a reserved word. We
adopt an extensible JSON graph schema so that edges can be augmented with types when needed.
Currently, we support generating SPTs for four languages: C, C++, Java, and Python. Table 2
summarizes the SPT statistics for the four benchmarks.

Table 2: Benchmark statistics.
C++1000 C++1400 Python800 Java250

#problems 1,000 1,400 800 250
#samples 500,000 420,000 240,000 75,000
#SPT-nodes 188,449,294 198,258,050 55,744,550 25,449,640
#SPT-edges 187,949,294 197,838,050 55,504,550 25,374,640

Code graphs. We augment the tool chain with a code graph generator using WALA [28], a general
framework for program analysis. The backbone of a code graph is a system dependence graph, which
is an inter-procedural graph of program instructions (e.g. call, read) expressing control flow and
data flow information as edges. We also generate inter-procedural control flow graphs, which are
control flow graphs of all the methods in the program, stitched together to connect call sites with
target methods. Our code graph tool currently supports only Java and Python, but we plan to support
more languages such as Javascript.

7 CodeNet Challenge
The launch of CodeNet was well received by the AI community and the media, with coverage
from Forbes[29], VentureBeat[30], ZDNet[31] and others. Within a short span of 3 months, our
github received 1000 stars and has been forked over 119 times. Our vision is to use CodeNet as an
umbrella to curate AI for code datasets for widespread adoption and to drive innovation in AI for
code. To leverage the momentum of CodeNet, we will be launching CodeNet challenges to create
excitement in the AI community. The first contest [6] is mainly pedagogical and targets aspiring
data scientists. In addition, we are partnering with the Global Women in Data Science organization
(with presence in over 50 countries) founded by Stanford University [7] to emphasize diversity and
inclusion (teams must have at least fifty percent women). We will organize workshops to introduce
the topic, code similarity, and provide educational materials. This contest will be kicked off in late
September and the winner will be announced in early December, around the NeurIPS2021 time
frame. The conclusion of the first contest will be followed by a contest that will target experienced AI
practitioners. Potential contest topics will revolve around practical and compelling use cases such as
code language translation, code repair, code performance improvement, and code memory reduction.

8 Experiments with the CodeNet Dataset

In this section, we report the results of a code classification task, a similarity task, a generalization
task, and a token inference task, using the four benchmark datasets (see Table 2) extracted from
CodeNet. For this paper, these experiments are not meant to achieve the best-of-breed results using
the state of the art. Our intention is to provide a set of baseline results as a reference. The experiments
are typically performed on a Xeon machine using P100 or V100 GPUs. Details of the experiments
are in appendices D, E, and F and their code and scripts are in the model-experiments folder of the
CodeNet repository [32], when third party licenses allow.

8.1 Code Classification

In the classification task, each problem corresponds to a class: a code sample belongs to a class if it
is a submission to the corresponding problem. For each experiment, 20% of the code samples are
used for testing, while the rest are split in 4:1 for training and validation, respectively. We experiment
with a diverse set of machine learning methods: bag of tokens, sequence of tokens, BERT model, and
graph neural networks (GNNs).
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1. MLP with bag of tokens. A code sample is represented by a vector of relative frequencies of
token occurrences. Only operator and keyword tokens are used. The model is a 3-layer multilayer
perceptron (MLP).

2. CNN with token sequence. We use the same set of tokens as above but retain their order to form
a sequence. All sequences have the same length under zero padding. The classification model is a
convolutional neural network (CNN) with an initial token embedding layer.

3. C-BERT with token sequence. Treating a code sample as a piece of natural language text, we
build a C-BERT model [33] through pretraining on 10K top starred Github projects written in C.
We use the Clang C tokenizer and Sentencepiece to tokenize each code sample. The pretrained
model is fine-tuned on each benchmark.

4. GNN with SPT. Based on the parse tree representation, we use graph convolutional networks
(GCN) [34] and graph isomorphism networks (GIN) [35] as well as their variants as the prediction
model. The variant adds a virtual node to the graph to enhance graph message passing [36].

5. GNN with Code Graph. We also apply GCN on the code graph representation of the code.

Table 3: Classification accuracy (in %).
Java250 Python800 C++1000 C++1400

MLP w/ bag of tokens 71.00±0.29 67.80±0.15 68.26±0.21 64.50±0.13
CNN w/ token sequence 89.52±0.59 87.46±0.25 93.96±0.18 93.71±0.18
C-BERT 97.40±0.19 97.09±0.18 93.79±0.01 91.83±0.06
GNN (GCN) 92.70±0.25 93.82±0.16 95.76±0.12 95.26±0.13
GNN (GCN-V) 93.02±0.81 94.30±0.15 96.09±0.17 95.73±0.07
GNN (GIN) 93.26±0.23 94.17±0.19 96.34±0.15 95.95±0.13
GNN (GIN-V) 92.77±0.66 94.54±0.12 96.64±0.10 96.36±0.10
Code Graph+GCN 94.10±.001 87.80±.007 N/A N/A

Table 3 summarizes the classification accuracy for all models on all benchmarks. Despite the
simplicity of bag of tokens, it achieves well over 60% accuracy. Maintaining token ordering,
CNN with token sequence offers significant improvement, reaching approximately 90% across all
benchmarks.

More complex neural models sometimes further improve the prediction performance, as witnessed by
C-BERT, which reaches approximately 97% for both Java and Python. It is interesting to note that
even though C-BERT is pre-trained with C programs, its performance on the two C++ benchmarks is
less impressive. We speculate that such a lower performance is related to programming practices. For
C++, it is common to have identical program construction, such as declaration of constants (e.g., pi
and epsilon) and data structures, appear across C++ submissions to different problems, but such a
practice is rare in Java and Python.

Overall, the GNN models exhibit competitive performance. They are consistently the top performers,
if not the best. The code graph representation slightly improves over the SPT representation on Java,
but performs less well on Python.

8.2 Code Similarity

In the similarity task, two pieces of code samples are considered similar if they solve the same problem
(type-4 similarity in [37]). Note that textual similarity does not guarantee similarity in functionality.
For example, programs that differ by only one token might behave very differently; hence, they are
not considered similar. For the token-based experiments, we treat the problem as binary classification.
We use the same training, validation and testing split as in classification. Code pairs are randomly
sampled within each subset. The number of similar pairs is the same as dissimilar ones. For the SPT
representation, we experiment with several popular techniques, including AROMA [27], MISIM [21],
and GMN [38]. The following contains more details about the models and methods.

1. MLP with bag of tokens. This model is the same as the one for code classification, except that
the input is a concatenation of the two bag-of-tokens vectors from each program.

2. Siamese network with token sequence. The token sequence is the same as the one for code
classification. The model is a Siamese network with two CNNs with shared weights.
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3. SPT with handcrafted feature extraction: The method AROMA [27] uses normalized SPT
node names and handcrafted rules to extract feature vectors for each SPT. Then, similarity is
computed as a dot product of the extracted feature vectors.

4. GNN with SPT: With the same SPT, on the other hand, MISIM [21] uses a graph neural network
to extract high-level features, and uses the cosine similarity of the extracted features to compute
similarity. Additionally, we apply graph matching network (GMN) [38], which uses a cross-graph
attention mechanism to learn pair-wise structural similarity of graphs, on the SPT pairs to predict
similarity. The implementation is adapted from [39].

Table 4: Similarity accuracy (in %).
Java250 Python800 C++1000 C++1400

MLP w/ bag of tokens 81.80±0.06 86.61±0.08 85.82±0.05 86.54±0.07
Siamese w/ token sequence 89.70±0.18 94.67±0.12 96.19±0.08 96.56±0.07

Table 4 summarizes the classification accuracy for the first two models. The performance of bag
of tokens is modest, considering that the problem is a binary classification with perfectly balanced
classes. On the other hand, the Siamese model significantly outperforms bag of tokens, as expected.

Table 5: Similarity MAP@R score.
Java250 Python800 C++1000 C++1400

Rule-based w/ SPT (AROMA) 0.19 0.19 0.17 0.15
GNN w/ SPT (MISIM) 0.64±0.007 0.65±0.003 0.78±0.005 0.77±0.002

Table 5 summarizes the MAP@R [40] score for two SPT-based approaches with solutions for 50%
problems used for training, 25% for validation, and 25% for test. MISIM GNN model is trained for
1000 epochs. AROMA results in a relatively low score because the feature extraction is rule-based
and no model is learned, whereas MISIM uses a neural network to extract features through supervised
training.

Table 6: Similarity MAP@R score on Java250.
(p4, s5) (p3, s300) (p10, s300)

GNN w/ SPT (MISIM, structure only) 0.472±0.023 0.194±0.010 0.096±0.009
GNN w/ SPT (GMN, structure only) 0.679±0.056 0.432±0.035 0.256±0.015
GNN w/ SPT (GMN + MISIM node attributes) 0.985±0.015 0.794±0.036 0.780±0.026

Exploring further into the Java250 benchmark, Table 6 summarizes the MAP@R score with a variety
of test sets: (p4, s5), (p3, s300), and (p10, s300), indicating 4, 3, and 10 problems with 5, 300 and
300 solutions each respectively. Across all test sets, GMN outperforms MISIM if both are trained
with only the SPT structure; when combined with MISIM node attributes, GMN further improves the
score significantly.

8.3 Generalization Across Datasets

Models trained on the CodeNet benchmark datasets can benefit greatly from their high quality. To
demonstrate this, we compare C++1000 to one of the largest publicly available datasets of its kind,
GCJ-297 [23]. For the purpose of this comparison, we train the same MISIM model on C++1000 and
GCJ-297 and test the two trained models on a third, independent dataset - POJ-104. The result of this
comparison is plotted in Figure 3.

The x-axis of this plot is the number of training epochs used and the y-axis is the MAP@R score.
The MISIM model for both datasets is trained for 500 epochs and the MAP@R score for validation
and test is computed after every ten epochs. There are a total of four curves - a validation and a test
curve for GCJ-297 and a validation and a test curve for C++1000.

The training curves show that a 10% higher validation score can be achieved with GCJ-297 compared
to C++1000. However, when tested on POJ-104, the model trained on GCJ-297 achieves a 12% lower
score compared to the model trained on C++1000. We believe C++1000 has better generalization than
GCJ-297 mainly for two reasons: i) high data bias in GCJ-297 because the top 20 problems with the
most number of submissions account for 50% of all submissions and ii) cleaning and de-duplication
of submissions in CodeNet dataset (as described in Section 5.2).

8



0.25

0.35

0.45

0.55

0.65

0.75

0 100 200 300 400 500

Number of training epochs

M
ea

n
 A

v
er

ag
e 

P
re

ci
si

o
n

 @
 R

 s
co

re
POJ-104 (Test for GCJ-297)

GCJ-297 (Validation)
C++1000 (Validation)

POJ-104 (Test for C++1000 )

10%

12%

Figure 3: Test score on POJ-104 is 12% higher when a model is trained on C++1000 as compared to
a model trained on GCJ-297, even though the validation score for GCJ-297 model is 10% higher than
the validation score for C++1000 model.

8.4 Masked Language Modelling for Token Inference

A task such as code completion relies on the ability to predict a token at a certain position in a
sequence. To accomplish this we can build a masked language model (MLM) using a technique that
randomly masks out tokens in an input sequence and aims to correctly predict them in an as-yet-
unseen test set. We train a popular BERT-like attention model on the C++1000 CodeNet benchmark
after tokenization to a vocabulary of over 400 tokens and obtain a top-1 prediction accuracy of 0.9104
(stddev: 0.002) and a top-5 accuracy of 0.9935 (stddev: 0.0005).

9 Future Work and Experiments under Consideration

To explore and leverage the richness of CodeNet, we plan to consider the following experiments,
some of which are in progress. Since the CodeNet dataset is multilingual, it is natural to perform code
similarity across different programming languages. Our deep learning architecture for single language
code similarity is a convolution Siamese neural network. To handle cross language similarity, the
Siamese branches of the network do not share their weights. Moreover, the layers of those branches
may have different sizes, as they process token sequences of different languages. Our first experiments
achieved 73.5% accuracy for code similarity across C++ and Java, using the C++1400 and the
Java250 benchmark datasets, and 87.49% accuracy across C++ and Python, using the C++1400 and
the Python800 benchmark datasets. This cross-language similarity engine facilitates the construction
of relationships between submissions within each language and across different languages, which will
be useful in extracting supervised training datasets for automatic programming language translation.

Code repair [41, 42, 43] is the task of identifying and correcting programs that have errors, which is
challenging, especially for logical errors. CodeNet provides a large number of correct code samples
across many languages, which can serve as the basis for error injection to create large training datasets.
Such synthesized error injections provide an excellent mechanism to create standardized validation
datasets with controllable distributions of error types and difficulties. Furthermore, the rich metadata
of CodeNet provide information about accepted and rejected submissions for the same problem by
the same author in a chronological manner, which allows us to create ’good/bad’ code pairs in a
realistic setting. Using these datasets, we are investigating code repair using a transformer neural
network.

We plan to expand our Graph Neural Network effort by applying GNN-based techniques to bridge
the gap between natural language and source code for text-to-code applications such as code search,
code completion and generation. To achieve this goal, we are exploring richer representations of both
natural language and source codes along with a mix of supervised and unsupervised training strategies.
We plan to exploit the pre-training/fine-tuning paradigm and leverage the foundational generative
models like GPT-2 and GPT-Neo. Unsupervised pre-training can be performed on code samples from
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the CodeNet dataset and data collected from community discussion forums like Stack Overflow. Our
initial focus is on text to code generation and we plan to fine-tune GPT-Neo on a combination of the
APPS dataset [44] and CodeNet, since CodeNet also contains problem specifications and test inputs.

10 Further Uses of CodeNet
The rich metadata and language diversity open CodeNet to a plethora of use cases. The problem-
submission relationship in CodeNet corresponds to type-4 similarity [37] and can be used for code
search and clone detection. A large number of code samples come with inputs so that we can execute
the code to extract the CPU run time and memory footprint, which can be used for regression studies
and prediction.

CodeNet may also be used for program translation, given its wealth of programs written in a multitude
of languages. Translation between two programming languages is born out of a practical need to port
legacy codebases to modern languages in order to increase accessibility and lower maintenance costs.
With the help of neural networks, machine translation models developed for natural languages [45]
were adapted to programming languages, producing pivotal success [4]. One considerable challenge of
neural machine translation is that model training depends on large, parallel corpora that are expensive
to curate [46], especially for low-resource languages (e.g., legacy code). Recently, monolingual
approaches [47, 4] were developed to mitigate the reliance on parallel data, paving ways to build
models for languages with little translation. Compared with current popular datasets (e.g., [4, 48]),
CodeNet covers a much richer set of languages with ample training instances.

11 Conclusion
Artificial intelligence has made great strides in understanding human language. Computer scientists
have been fascinated by the possibility and tantalized by the vision of computers (AI) programming
computers. In this paper, we presented "CodeNet", a first-of-its-kind very large-scale, diverse and
high-quality dataset to accelerate the algorithmic advances in AI for Code. This dataset is not
only unique in its scale, but also in the diversity of coding tasks it can help benchmark: from code
similarity and classification for advances in code recommendation algorithms, and code translation
between a large variety of programming languages, to advances in code performance improvement
techniques. We hope that the scale, diversity and rich, high-quality annotations of CodeNet will offer
unprecedented research opportunities at the intersection of AI and Software Engineering.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Please see Sections 2, 3, and 4.

(b) Did you describe the limitations of your work? [Yes] Please see the paragraph on
Limitations in Section 2.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The
CodeNet dataset is about code written for pedagogical purposes. We believe that
it does not have any negative societal impact. On the contrary, we are launching
a challenge/contest based on the CodeNet dataset with the Global Women in Data
Science organization with presence in over 50 countries to promote diversity, inclusion
and data science education in the field of AI for Code.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] The paper presents a dataset with code samples submitted by students to
simple programming problems. The dataset neither does harm to living beings, nor
raise any security and economic concerns, human rights and surveillance issues, nor
damage the environment, nor deceive people and damage their livelihood. We have
anonymized each submitter’s user id, and tried filtering offensive words. We have also
followed the term of service of the website from which we download the dataset.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] The source
code and instructions of the experiments are available in the model-experiments folder
at https://github.com/IBM/Project_CodeNet, when third-party licenses allow.
The datasets used in the experiments are available in https://developer.ibm.com/
technologies/artificial-intelligence/data/project-codenet.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section 8 and appendix D, appendix E, and appendix F
in the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see Section 8.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section 8 and
appendix D, appendix E, and appendix F in the supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A] Our work is
creating/releasing new assets

(b) Did you mention the license of the assets? [Yes] The license of the dataset is
CDLA Permissive v2.0. It is mentioned in https://developer.ibm.com/
technologies/artificial-intelligence/data/project-codenet and
https://www.linuxfoundation.org/press-release/enabling-easier-
collaboration-on-open-data-for-ai-and-ml-with-cdla-permissive-
20/.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The new assets are available at https://developer.ibm.com/technologies/
artificial-intelligence/data/project-codenet.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We have looked into the terms of service, and ensured that the
code samples can be used for research purposes and we also contacted the respective
communities.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Please see Section 2. We have anonymized
the user ids in the submissions. The data samples are computer code for solving
context problems and in principle should not have any offensive content. While we
cannot guarantee that there is no personal information (e.g. name of a person) and
potential offensive content, but we have made every possible effort to minimize any
such possibility.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not use crowdsourcing or conduct research with human
subjects

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We did not use crowdsourcing or conduct
research with human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not use crowdsourcing or conduct
research with human subjects
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A Additional details about CodeNet

A.1 URL

https://developer.ibm.com/technologies/artificial-intelligence/data/project-
codenet/ is the landing page of the dataset. It contains links to download the full dataset and the
benchmarks datasets (similar to POJ-104) in C++, Python and Java, which users can use to perform
similarity and classification experiments.

https://github.com/IBM/Project_CodeNet is the link to the Project CodeNet repository,
which contains software that supports and complements the CodeNet dataset. There are productivity
tools to aggregate codes samples based on user criteria and pre-processing tools to transform code
samples into sequence of tokens, simplified parse trees and code graphs. The repository also contains
notebooks that illustrate the usage of some of the tools and source code and scripts we used to perform
the experiments in the paper.

The URLs are all accessible to the general public.

A.2 Author statement

IBM represents and warrants it is the original author of the dataset and has the right to re-publish
associated third-party code under open source license terms. IBM further represents and warrants it
has the authority to grant the rights and licenses (CDLA Permissive v2.0) associated with the dataset
to third parties.

A.3 Hosting and maintenance plan

The CodeNet dataset is hosted under the IBM Data Asset eXchange (DAX) platform, which is an
online hub open to IBM and external developers and data scientists to find free and open data sets
under open data licenses. For developers, DAX offers a trusted source for open data sets for artificial
intelligence (AI). These data sets are ready to use in enterprise AI applications and are supplemented
with relevant notebooks and tutorials. DAX was launched in 2019 and maintained by the Center for
Open-Source Data & AI Technologies (CODAIT) team, who has been working on steadily adding
new data sets to the exchange, as well as resources that help explore these data sets.

The Project CodeNet repository is hosted under github.com/IBM and is maintained by the Project
CodeNet team in IBM Research.

A.4 How to read the CodeNet dataset

The data and metadata are organized in a rigorous directory structure. The top level Project_CodeNet
directory contains several sub-directories: data, metadata, problem_descriptions, and
derived. The code samples or submissions reside under the data directory. The data directory
is organized as (problem_id)/(language)/(submission), so the file path data/p00023/C++/
s006384060.cpp denotes a submission to problem p00023 in C++ with id s006384060. Detailed
statement of the problems can be found in problem_descriptions/(problem_id).html. The
meta data for the dataset is contained in the metadata directory. metadata/problem_list.csv
contains metadata for all the problems in the dataset, which is summarized in Table 7. metadata/
(problem_id).csv contains the metadata for all the submissions to problem problem_id, which is
described in Table 8. Each submission comes with cpu time, memory usage and status with possible
values described in Table 9. The derived directory contains information derived from the dataset,
such as near-duplicate information for submissions to specific languages, token sequences for code
samples, and information on identical problems.

A.5 Long term preservation

The dataset is hosted in the IBM Data Asset eXchange and is stored on IBM Cloud. Project CodeNet
is IBM’s long term research effort to encourage open innovation at the intersection of AI and Software
Engineering. IBM has demonstrated a sustained commitment to open source innovation and the
CodeNet dataset and repository will be maintained and enhanced as long as is needed.
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Table 7: Metadata at the dataset level
name of column data type unit description
id string none unique anonymized id of the problem
name string none short name of the problem
dataset string none original dataset, AIZU or AtCoder
time_limit int millisecond maximum time allowed for a submission
memory_limit int KB maximum memory allowed for a submission
rating int none rating, i.e., difficulty of the problem
tags string none list of tags separated by "|"; not used
complexity string none degree of difficulty of the problem; not used

Table 8: Metadata at the problem level
name of column data type unit description
submission_id string none unique anonymized id of the submission
problem_id string none anonymized id of the problem
user_id string none anonymized user id of the submission

date int seconds date and time of submission in the Unix
timestamp format (seconds since the epoch)

language string none mapped language of the submission
(ex: C++14 ->C++)

original_language string none original language specification

filename_ext string none extension of the filename that indicates
the programminglanguage used

status string none acceptance status, or error type
cpu_time int millisecond execution time
memory int KB memory used
code_size int bytes size of the submission source code in bytes
accuracy string none number of tests passed; *Only for AIZU

A.6 License

The dataset is distributed under the CDLA Permissive v2.0 license (https://github.com/
Community-Data-License-Agreements/Working-Drafts/blob/main/CDLA-Permissive-
2.0.md and https://www.linuxfoundation.org/category/press-release/linux-
foundation-press-release/page/2/) The repository is under the Apache License 2.0
(https://www.apache.org/licenses/LICENSE-2.0).

A.7 Persistent dereferenceable identifier

The DOI for the Project CodeNet code repository is 10.5281/zenodo.4814770.
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Table 9: All the possible status values
status abbreviation numeric code

Compile Error CE 0
Wrong Answer WA 1
Time Limit Exceeded TLE 2
Memory Limit Exceeded MLE 3
Accepted AC 4
Judge Not Available JNA 5
Output Limit Exceeded OLE 6
Runtime Error RE 7
WA: Presentation Error PE 8
Waiting for Judging WJ
Waiting for Re-judging WR
Internal Error IE
Judge System Error

B Datasheet

B.1 Motivation
1. For what purpose was the dataset created?

The CodeNet dataset provides a very large dataset of software source code written in a diversity of
programming languages to drive algorithmic innovations in AI for code tasks like: code translation,
code similarity, code classification, code search etc.

2. Who created this dataset (e.g. which team, research group) and on behalf of which entity
(e.g. company, institution, organization)?
The CodeNet dataset is created by a team of scientists at IBM Research and MIT-IBM Watson AI
Lab comprising Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost,
Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss.

3. What support was needed to make this dataset?
Project CodeNet is a research project within the IBM Research Division, so it is funded by the
IBM Corporation.

B.2 Composition
1. What are the instances?(that is, examples; e.g., documents, images, people, countries) Are

there multiple types of instances? (e.g., movies, users, ratings; people, interactions between
them; nodes, edges)
The dataset consists of computer programs that are submissions to online judging sites and their
accompanying metadata. CodeNet does not have multiple types of instances.

2. How many instances are there in total (of each type, if appropriate)?
The dataset comprises 13,916,868 submissions, divided into 4053 problems (of which 5 are empty).
Of the submissions 53.6% (7,460,588) are accepted, 29.5% are marked as wrong answer and the
remaining suffer from one of the possible rejection causes. The data contains submissions in 55
different languages, although 95% of them are coded in the six most common languages (C++,
Python, Java, C, Ruby, C#). C++ is the most common language with 8,008,527 submissions (57%
of the total) of which 4,353,049 are accepted.

3. What data does each instance consist of ? “Raw” data (e.g., unprocessed text or images)?
Features/attributes?
The data are files of software programs as is. The character encoding of each file is UTF-8.

4. Is there a label or target associated with each instance? If so, please provide a description.
Yes, each instance of data (file) has associated metadata that may be interpreted as labels. The
problem that a certain instance (code sample) intends to solve may be used as a label in classi-
fication and similarity. The acceptance status of each code sample, the CPU time, and memory
footprint can also be used as labels.
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5. Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.
Some metadata values might not be available for all instances. This can be attributed to the source
not (or incorrectly) providing the metadata.

6. Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
Relationships between instances are explicitly available in the provided metadata. As an example,
multiple instances (code submissions) by the same person can be found by scanning the metadata
for that person’s (anonymized) id number. All submissions to a particular problem id are to be
found in a single metadata CSV file.

7. Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.
Data splits are left to the discretion of the user, since CodeNet can be used for a wide variety of
use cases. No such division is made in the dataset.

8. Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description.
It all depends on how errors, noise and redundancies are defined. There are probably minor errors
in the metadata directly attributable to the source: some non-Accepted programs are identified
with the wrong language, probably caused by a programmer making a wrong selection while
submitting his or her work. Some run-time data for incorrect programs are listed as a negative
number. It happens that some user or users submit the same program (data instance) multiple
times to the same or different problem tasks.

9. Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival
versions of the complete dataset (i.e., including the external resources as they existed at
the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associ-
ated with any of the external resources that might apply to a future user? Please provide
descriptions of all external resources and any restrictions associated with them, as well as
links or other access points, as appropriate.
The dataset is self-contained.

10. Does the dataset contain data that might be considered confidential (e.g. data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content
of individuals’ non-public communications)? If so, please provide a description.
No. Any personal information that is available in the metadata at the source websites is anonymized
in the dataset. However, it is possible that names or handles of persons still being present in the
source code instances themselves as variable, class or function names.

11. Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If so, please describe why.
We have done some filtering. In one case, the programming language name is offensive, so we
renamed it. It might be possible that people used offensive language in naming a variable in the
program, but we have made every possible effort to minimize any such possibility.

12. Does the dataset relate to people?
No.

B.3 Collection Process

1. How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or
language)? If data was reported by subjects or indirectly inferred/derived from other data,
was the data validated/verified? If so, please describe how.
The data are acquired from publicly accessible on-line judging websites. We used the AIZU
(https://judge.u-aizu.ac.jp/) and AtCoder (https://atcoder.jp/) online judging sites. The data are
accessible and observable by clicking specific url links.
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2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mech-
anisms or procedures validated?
Some of the data was available as archived zip files or a REST API for download, otherwise a
webpage scraper tool was used to retrieve the data (while observing any throttles on bandwidth).
No verification beyond mere manual inspection was applied to the downloaded data.

3. If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)?
No specific strategy: as much data as was available at the time (2020) was downloaded.

4. Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?
There were no third-party participants in the data collection.

5. Over what timeframe was the data collected? Does this timeframe match the creation time-
frame of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the timeframe in which the data associated with the instances was
created.
The data was collected in 2020 and the code samples might go back to a decade ago. The dataset
was first published on May 5, 2021.

6. Were any ethical review processes conducted (e.g. by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a
link or other access point to any supporting documentation.
No. The dataset was examined by IBM Corporation lawyers for suitability of public disclosure.

7. Does the dataset relate to people? If not, you may skip the remainder of the questions in
this section.
Only as far as the fact that the data instances are created/written by people.

8. Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g. websites)?
The data was collected indirectly from submitters via online judging websites.

9. Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and
provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.
They did consent directly to the respective online judging sites that we used as source. See e.g.
https://onlinejudge.u-aizu.ac.jp/term_of_use.

B.4 Data Preprocessing/Cleaning

1. Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, pro-
cessing of missing values)? If so, please provide a description. If not, you may skip the
remainder of the questions in this section.
Minor processing of the data instances was performed mainly to make all file name extensions
uniform and make sure the character encoding is UTF-8, all line endings adhere to the UNIX
standard (a single linefeed character), and any byte-order marks (BOM) are removed.
All metadata was carefully examined, anonymized where necessary and corrected or updated
when possible (e.g. the file size in bytes is part of the metadata and needed updating).

2. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to the
“raw” data.
The raw data is saved but considered not to be part of the published Project CodeNet dataset.

3. Is the software used to preprocess/clean/label the instances available? If so, please provide
a link or other access point.
Some of the software (mostly bash scripts) are available in our github https://github.com/
IBM/Project_CodeNet.
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4. Does this dataset collection/processing procedure achieve the motivation for creating the
dataset stated in the first section of this datasheet? If not, what are the limitations?
Yes. This dataset and its derived benchmark datasets offer the scale, diversity, and quality to drive
research in applying AI techniques to code.

B.5 Uses

1. Has the dataset been used for any tasks already? If so, please provide a description.
Yes. Several baseline experiments on code classification and similarity have been performed and
documented in the paper.

2. Is there a repository that links to any or all papers or systems that use the dataset? If so,
please provide a link or other access point.
Yes. https://github.com/IBM/Project_CodeNet.

3. What (other) tasks could the dataset be used for?
The rich metadata and diversity open Project CodeNet to a plethora of uses cases. The problem-
submission relationship in Project CodeNet corresponds to type-4 similarity and can be used for
code search and clone detection. The code samples in Project CodeNet are labeled with their
acceptance status and we can explore AI techniques to distinguish correct codes from problematic
ones. Project CodeNet’s metadata also enables the tracking of how a submission evolves from
problematic to accepted, which could be used for exploring automatic code correction. A large
number of code samples come with inputs so that we can execute the codes to extract the CPU run
time and memory footprint, which can be used for regression studies and predictions. Given its
wealth of programs written in a multitude of languages, Project CodeNet may serve as a valuable
benchmark dataset for source-to-source translation.

4. Is there anything about the composition of the dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact future uses? For example, is there anything
that a future user might need to know to avoid uses that could result in unfair treatment
of individuals or groups (e.g. stereotyping, quality of service issues) or other undesirable
harms (e.g. financial harms, legal risks) If so, please provide a description. Is there anything
a future user could do to mitigate these undesirable harms?
No.

5. Are there tasks for which the dataset should not be used? If so, please provide a description.
No.

B.6 Dataset Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g. company, insti-
tution, organization) on behalf of which the dataset was created? If so, please provide a
description.
Yes, the dataset will be distributed to the general public.

2. When will the dataset be released/first distributed? What license (if any) is it distributed
under? The dataset was released in May 2021 under the the CDLA Permissive v2.0 li-
cence https://github.com/Community-Data-License-Agreements/Working-Drafts/
blob/main/CDLA-Permissive-2.0.md.

3. How will the dataset be distributed (e.g. tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?
The dataset is made available as a downloadable gzipped tar file here: https://developer.
ibm.com/technologies/artificial-intelligence/data/project-codenet/. There is
no DOI yet.

4. Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU,
and provide a link or other access point to, or otherwise reproduce, any relevant licensing
terms or ToU, as well as any fees associated with these restrictions.
The dataset is made available under the CDLA Permissive v2.0 licence https://github.
com/Community-Data-License-Agreements/Working-Drafts/blob/main/CDLA-
Permissive-2.0.md.
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5. Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated
with these restrictions.
No, not as far as we know.

6. Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any supporting documentation.
No. These code samples are solutions to pedagogical programming problems at the high school
and beginning college level and should not be subject to export control.

B.7 Dataset Maintenance

1. Who is supporting/hosting/maintaining the dataset?
International Business Machines corporation.

2. How can the owner/curator/manager of the dataset be contacted (e.g. email address)?
The users can create an issue on our github or contact any of the listed authors.

3. Is there an erratum? If so, please provide a link or other access point.
No.

4. Will the dataset be updated (e.g. to correct labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by whom, and how updates will be communicated
to users (e.g. mailing list, GitHub)?
Yes, there are plans to add new instances to the dataset, in the next six months to a year’s time
frame. The update will be performed by IBM and communicated through the github.

5. If others want to extend/augment/build on this dataset, is there a mechanism for them to
do so? If so, please provide a description. Will these contributions be validated/verified? If
so, please describe how. If not, why not? Is there a process for communicating/distributing
these contributions to other users? If so, please provide a description.
There is no such mechanism yet, but it is under consideration. Interested parties are invited to
consider contacting the authors or creating an issue to that effect in our github.
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C Further information of CodeNet

Table 10 summarizes the metadata available for each code submission to a problem. Figure 4 gives
the distributions of problems based on number of submissions received.

Table 10: Submission metadata.
column unit/example description
submission_id s[0-9]{9} anonymized id of submission
problem_id p[0-9]{5} anonymized id of problem
user_id u[0-9]{9} anonymized user id
date seconds date and time of submission
language C++ consolidated programming language
original_language C++14 original language
filename_ext .cpp filename extension
status Accepted acceptance status, or error type
cpu_time millisecond execution time
memory kilobytes memory used
code_size bytes source file size
accuracy 4/4 passed tests (AIZU only)

Figure 4: Number of problems providing at least X submissions. The bars show both the numbers of
accepted submissions (blue) and rejected submissions (orange).

D Details of Experiments on Code Classification

D.1 MLP with Bag of Tokens

One of the simplest representations of a code sample is a bag of tokens. Here, the code sample is
represented by a vector of relative frequencies of token occurrences in the source code. The vector is
computed by the following steps:

1. Convert a given source code into a sequence of tokens using a tokenizer (i.e., lexical analyzer).
2. From this sequence, remove the tokens considered not useful for code classification.
3. Count the number of each token type in the reduced sequence and form a vector of counts.
4. Normalize the vector with respect to L2 norm.

We do not use all tokens available in the grammar of the programming language. Only some operators
and keywords are used. All identifiers, comments and literals are ignored. We also ignore some
operators and many keywords that in our opinion provide no significant information on the algorithm
the source code implements.

The vector representing a bag of tokens has the same length for every code sample, which makes
it convenient for processing with a neural network. The vector is usually short, which makes
training of a neural network fast. However, in a bag-of-tokens representation, information about the
number of occurrences and position of each token is lost. Hence, the accuracy of a classifier using a
bag-of-tokens representation is rather limited.
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Table 11 provides results of code classification of all four benchmarks. The columns give the
benchmark name, the test accuracy, the number of training epochs, the run time of each epoch, and
the number of token types considered. All networks are implemented using Keras API of TensorFlow
machine learning tool. Training is performed on a single V100 GPU, using Adam optimizer with
learning rate 1e-3, and batches of 32 samples. In each experiment, 20% of the samples are used for
testing, while the rest are split in 4:1 for training and validation, respectively.

Table 11: Code classification by MLP with bag of tokens.
Benchmark Accuracy Number Run time Number
dataset %% epochs sec/epoch tokens
Java250 71.00±0.29 30 2 81
Python800 67.80±0.15 22 7 71
C++1000 68.26±0.21 20 14 56
C++1400 64.50±0.13 17 12 56

Figure 5 shows the neural network used for solving the classification problem for the C++1400
benchmark. The neural networks used for classification of other benchmarks are similar to this one.
As we see in Table 11 their performance is quite similar.

Dense layer 56x128 with ReLU

Dense layer 128x256 with ReLU

Softmax

Dense layer 256x512

while for+ *=

Bag of tokens

0.1 0.3 0.1 0.02 0.0

Figure 5: MLP architecture for code classification.

From Table 11 we see that training is rather fast, the reason being that the network is simple. In
spite of simplicity, this neural network performs very well. The 64.50±0.13% test accuracy for
C++1400 benchmark dataset is significantly better than the potential 0.071% accuracy of random
guess. It indicates that the relative frequencies of source code tokens provide sufficient information
for classifying code.

D.2 CNN with Token Sequence

The sequence-of-tokens representation retains more information of a code sample than the bag-of-
tokens representation. For our experiments on code classification, we use the same set of tokens that
is used in the above bag-of-tokens approach. Similarly, we omit all comments and identifiers.

Table 12 shows results of code classification on all four benchmarks by using the sequence-of-tokens
representation. The columns give the benchmark name, the test accuracy, the number of training
epochs, the run time of each epoch, and the number of token types considered. All networks are
implemented using Keras API of TensorFlow machine learning tool. The training is performed on
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Table 12: Code classification by CNN with token sequence.
Benchmark Accuracy Number Run time Number
dataset %% epochs sec/epoch tokens
Java250 89.52±0.59 810 10 81
Python800 87.46±0.25 504 26 71
C++1000 93.96±0.18 235 59 56
C++1400 93.71±0.18 334 60 56

four V100 GPUs, using Adam optimizer in data parallel mode with learning rate 1e-3, and batches of
512 samples. In each experiment, 20% of the samples are used for testing, while the rest are split in
4:1 for training and validation, respectively.

We have experimented with several types of neural networks. Figure 6 shows the neural network
we choose for the C++1400 benchmark. It is a multi-layer convolutional neural network. It uses
categorical encoding of source code tokens. For batching, the sequences of tokens are padded with
zeros.

SoftMax

while ( < {) }+= * ;

Convolution 15x512 with ReLU

Convolution 5x320 with ReLU

Convolution 1x256

Dense layer 256x512 with ReLU

Dense layer 512x1024 with ReLU

Global Max Pooling

Dropout layer

Dense layer 1024x1000

Figure 6: CNN architecture for code classification.

Using this network we get a test accuracy 93.71±0.18% for C++1400 benchmark dataset, which is
significantly better than the accuracy shown by the bag-of-tokens approach. The neural networks
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used for classification of other benchmarks are similar to the one shown in Figure 6. As we see in
Table 12, their performance is similar.

D.3 C-BERT with Token Sequence

The sequence-of-tokens representation can be used with other neural networks of increasing capacity.
We build a C-BERT model (a transformer model introduced in [33]) by pre-training on 10,000 top
starred GitHub open source projects written in C, where we use Clang C tokenizer and Sentencepiece
to tokenize the pre-training data. The C-BERT model is then fine tuned on each classification
benchmark. Additionally, we experiment with the POJ-104 dataset, which contains code examples in
C and C++.

C-BERT achieves appealing results on binary classification and vulnerability detection with C source
code [10, 49]. However, it has not been used on multiclass classification tasks or with other languages
such as C++, Java, and Python. Because we use sub-word tokenization and different programming
languages share common tokens, we could apply the C-BERT model directly on the benchmarks.

After pretraining, we fine tune the model for five epochs on each benchmark, with a batch size 32 and
learning rate 2e-5. The fine-tuning was done on two V100 GPUs and it took 30 minutes to four hours,
depending on the size of the dataset. The sub-word vocabulary size is 5,000. Contexts larger than
512 tokens were truncated.

Table 13 summarizes the accuracies C-BERT achives on the four CodeNet benchmarks as well as the
POJ-104 dataset. C-BERT achieves high accuracy and performs the best on Java and Python.

Table 13: C-BERT results (accuracy, in %) for code classification.
POJ-104 C++1000 C++1400 Java250 Python800

C-BERT 98.41±0.01 93.79±0.01 91.83±0.06 97.40±0.19 97.09±0.18

The relatively low performance on C++ benchmarks is possibly related to the idiosyncrasies of the
dataset and certain programming practices. Manual inspection suggests that lack of detailed variable
names in C++ hurts the performance of the model, in problems appearing similar and having similar
solutions. Removing one of the similar problems improves the model performance on the other
problem. Moreover, one programming practice which could potentially confuse the models is that
certain C++ users copied common constants (e.g., pi and epsilon) and data structures (e.g., enums) to
all solutions they submitted. In many cases, these duplicate contents were not even used. We did not
observe such practices in Python and Java.

D.4 GNN with SPT

We experiment with four types of GNNs with SPT-based graph representations of the source code:
the Graph Convolutional Network (GCN) [34], the Graph Isomorphism Network (GIN) [35], and a
virtual-node-included variant for each (denoted by -V). The variant adds a virtual node to the graph
to enhance graph message passing [36]. We use the Adam optimizer with learning rate 1e-3 for
training. All GNN models have five layers. We have experimented with more than 5 layers (i.e., 8
and 10), however deeper GNNs do not improve performance, as deeper GNNs might suffer from
the over-smoothing problem (i.e., node features become less distinguishable after many rounds of
message passing) [50].

We conduct 6/2/2 random split for each of the 4 benchmarks: i.e., 60% training data, 20% testing
data, and 20% validation data. We run five folds for each benchmark with early stop ”patience”
set 20 (i.e., stop only when validation loss has not decreased in the past 20 epochs). Our model
training typically converges within 200 epochs in a 1-fold run. We modified OGB [51] code-base with
PyTorch Geometric [52] back-end over PyTorch 1.6.0 [53] to run our experiments. The experiments
are conducted on one NVIDIA V100 GPU. For large benchmarks such as C++1000 and C++1400, it
takes about 1 week to finish a 5-fold run. We summarize model accuracy, training time over 5-folds,
and training epochs over 5-folds in Table 14. As we can see, adding a virtual node improves GNN
performance (both GCN and GIN). Overall, GIN and its variants work better than GCN and its
variants, likely due to the fact that GIN theoretically generalizes the Weisfeiler-Lehman Isomorphism
Test and achieves maximum expressive power among GNNs [54].
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For the detailed model, hyper-parameter setup, data splits and etc, please refer to https://github.
com/IBM/Project_CodeNet/tree/main/model-experiments/gnn-based-experiments.

Table 14: GNN (SPT) results for code classification. Each task trains over 5-folds with early stopping
patience parameter set as 20. We record test accuracy (with standard deviation), total training time
over 5 folds, and total training epochs over 5 folds.

Java250 Python800 C++1000 C++1400
GCN 92.70±0.25 93.82±0.16 95.76±0.12 95.26±0.13

10.55 hrs 14.50 hrs 47.96 hrs 67.34 hrs
411 epochs 219 epochs 228 epochs 310 epochs

GCN-V 93.02±0.81 94.30 ±0.15 96.09±0.17 95.73±0.07
12.50 hrs 23.02 hrs 61.55 hrs 71.85 hrs

419 epochs 325 epochs 287 epochs 358 epochs
GIN 93.26±0.23 94.17±0.19 96.34±0.15 95.95±0.13

19.80 hrs 41.67 hrs 116.67 hrs 133.50 hrs
513 epochs 496 epochs 441 epochs 502 epochs

GIN-V 92.77±0.66 94.54±0.12 96.64±0.10 96.36±0.10
26.25 hrs 51.67 hrs 142.25 hrs 208.47 hrs

656 epochs 570 epochs 496 epochs 678 epochs

E Details of Experiments on Code Similarity

E.1 MLP with Bag of Tokens

For experiments on code similarity analysis, we use the same bag of tokens as for code classification.
The input to the neural network is constructed by concatenating two bags of tokens, one for each
source code file.

Table 15 provides results of code similarity analysis on all four benchmarks. The columns give the
benchmark name, the test accuracy, the number of training epochs, the number of samples in each
epoch, the run time of each epoch, the number of token types considered, and the number of test
samples. All networks are implemented using Keras API of TensorFlow machine learning tool. The
training is performed on a single V100 GPU, using Adam optimizer with learning rate 1e-3, and
batches of 256 samples.

Table 15: Similarity analysis by MLP with bag of tokens.
Benchmark Accuracy Number Size of Run time Number N test
dataset %% epochs epoch sec/epoch tokens samples
Java250 81.80±0.06 20 4,096,000 21 81 512,000
Python800 86.61±0.08 94 4,096,000 24 71 512,000
C++1000 85.82±0.05 64 4,096,000 21 56 512,000
C++1400 86.54±0.07 64 4,096,000 22 56 512,000

Figure 7 shows the neural network used for code similarity analysis on the C++1400 benchmark. The
neural networks used for code similarity analysis on other benchmarks are similar to this one. As we
see in Table 15, their accuracy is similar.

As we see in Table 15, the model accuracy is rather modest (<87%) for all benchmark datasets, which
is not very high for a binary classification problem of a fully balanced dataset. Obviously, the bag of
tokens is too primitive and misses many important details necessary for identifying similarity.

E.2 Siamese Network with Token Sequence

For experiments on code similarity, we use the same sequence of tokens as for code classification.
The neural network has two inputs, one for each source code file. After experimenting with various
neural network architectures, we select the siamese network for its good performance.

Table 16 provides results of code similarity analysis on all four benchmarks. The columns give the
benchmark name, the test accuracy, the number of training epochs, the number of samples in each
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Dense layer 4x1

Bag of tokens of Bag of tokens of 

Figure 7: MLP architecture for similarity analysis.

epoch, the run time of each epoch, the number of token types considered, and the number of test
samples. All networks are implemented using Keras API of TensorFlow machine learning tool. The
training is performed on four V100 GPUs, using Adam optimizer in data parallel mode with learning
rate 1e-3, and batches of 512 samples.

Table 16: Similarity analysis by Siamese network with token sequence.
Benchmark Accuracy Number Size of Run time Number N test
dataset %% epochs epoch sec/epoch tokens samples
Java250 89.70±0.18 29 51,200 114 75 512,000
Python800 94.67±0.12 110 64,000 89 71 512,000
C++1000 96.19±0.08 123 64,000 89 56 512,000
C++1400 96.56±0.07 144 64,000 96 56 512,000

The neural network for the C++1400 benchmark is depicted in Figure 8. The siamese parts of the
network have the same structure and share all their weights. If the inputs are identical, so are the
outputs. Therefore, by construction, the network guarantees detecting similarity of identical source
code samples. The outputs of the siamese parts are compared by computing the absolute difference.

The network shows 96.56±0.07% test accuracy for C++1400 benchmark dataset. We consider this a
good result, especially considering that the token sequence ignores all identifiers, comments, and
many keywords. The neural networks used for code similarity analysis of other benchmarks are
similar to the one shown in Figure 8. As we see in Table 16, their accuracy is quite similar.
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Figure 8: Siamese architecture for similarity analysis.

E.3 SPT-based experiments

Following MISIM [21], the train, validation, and test datasets for the SPT-based experiments draw
from entirely different problems. In our experiments, we use 50% problems for training, 25%
for validation, and 25% for test. The train, validation, and test split used for the experiments can
be found at [55]. Similarity scores in Table 5 and Table 6 report mean and standard deviation of
MAP@R [40] values evaluated with models trained using five random seeds. The models are trained
on a Xeon(R) CPU E5-2680 v4, 2.4GHz, 256 GiB memory using a NVIDIA V100 GPU. The SPTs
used in these experiments have nodes annotated with attributes derived by combining SPT features
(refer to Section 6), following the context-aware semantic structure (CASS) proposed in [21].

AROMA experiments are performed using the implementation in MISIM’s supplementary mate-
rial [23] and the input (SPTs) used for these experiments can be found at [55]. Due to the high
memory requirement for computing MAP@R on the test set of CodeNet benchmarks, we had to
reduce the feature set of AROMA. We estimate that AROMA results can improve by 10–25% when
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all features are used. AROMA is rule-based and no training is involved, hence we don’t report mean
and standard deviation in Table 5. For each of the four datasets – Java250, Python800, C++1000,
C++1400 – MISIM’s GNN model is trained for a total of 1000 epochs at a learning rate of 0.001
with Adam optimizer. Each epoch consists of 1000 iterations, and in each iteration, 16 problems
and 5 solutions per problem are randomly sampled, and all solution pairs are used for training as in
[21]. MISIM results for the four languages can be reproduced by downloading the MISIM code and
scripts [23] and using the provided CASS files [55] as input.

For the GMN experiments (row 2 and row 3 in Table 6), we adapt the implementation in [39] of
the GMN model [38] using SPTs [55] as graphs. We follow the recommendations in [38] for the
model configuration, as they produce the best and stable results in our experiments. Specifically,
we use 5 layers of propagation with weight sharing across layers, dot-product similarity for the
cross-graph attention mechanism, and GRU layer to update node embeddings from the propagation
scheme. For GMN training, given the large set of SPT pairs, we adopt an approach similar to [21] of
randomly sampling 16 problems with 5 solutions each. We use triplet loss with approximate hamming
similarity [38] for each sample, which is formed using a similar pair combined with a dissimilar SPT.
After every 100 iterations with a batch size of 64, another set of 16 problems and 5 solutions are
sampled randomly for a total of 150,000 iterations (1500 sampled sets). GMN results could improve
further with more training iterations. We use Adam optimizer with a learning rate of 1e-4 for training.

The first two rows of Table 6 compare similarity models trained on SPT graph structure only. The first
row in the table adapts the MISIM GNN model by masking the node labels to allow the model to learn
structural features only. The second row uses the GMN [38] model with cross-graph attention-based
matching for structural similarity using a node vector dimension of 32 and graph representation
dimension of 128.

For the GMN+MISIM node attributes experiment, row 3 in Table 6, we allow the GMN model to
learn features based on both node attributes and the SPT structure. Accordingly, we replace the node
encoder in the GMN, an MLP, with an embedding layer, for generating node feature vectors. We
explore different node feature vector dimensions, such as 64, 100, 128, and found 100 to produce
good results for the given number of training iterations. All other parameter settings remain the same
as the structure only GMN experiments from row 2 of Table 6. The GMN results can be reproduced
using the Java250 CASS files available at [55].

MAP@R score [40] is computationally expensive for GMN models because an embedding has to be
computed for all SPT pairs in the test set, and hence Table 6 reports results on smaller sampled test
sets.

F Details of MLM Experiment

Here we show how a masked language model (MLM) can be trained with CodeNet. We closely
follow the approach by Ankur Singh, documented in the blog [56]. The goal of the model is to infer
the correct token for an arbitrary masked-out location in the source text. We assume that in every text,
precisely one token is randomly masked. The original token at such position is then the golden label.

From each of the 1000 C++1000 problems, we randomly select 100 samples for training and another
100 for testing. Each C++ source file is tokenized into a vocabulary of 442 distinct tokens as
categorized in Table 17. For example, while is a keyword and strlen is a function literal.

Table 17: Token categories used for MLM.
Type Count Description
the keyword 95 all C++20 reserved words
the function 280 function names in common header files
the identifier 42 standard identifiers, like stderr, etc.
the punctuator 16 small set of punctuation symbols
# or ## 2 the C pre-processor symbols
0, 1 2 special case for these frequent constants
the token class 5 identifier, number, operator, character, string

This code snippet:

for (i = 0; i < strlen(s); i++) {}
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will be tokenized to:

for ( id = 0 ; id < strlen ( id ) ; id operator ) { }

The tokenized source files are read into a pandas dataframe and processed by the Keras Text Vector-
ization layer, to extract a vocabulary and encode all token lines into vocabulary indices, including the
special “[mask]” token. Each sample has a fixed token length of 256. The average number of tokens
per sample across the training set is 474. Short samples are padded with 0 and those that are too large
are simply truncated.

The model is trained with 100,000 samples in batches of 32 over five epochs, with a learning rate
of 0.001 using the Adam optimizer. We evaluate the trained model on a test set of 100,000 samples.
Each sample is pre-processed in the same way as the training samples and one token (never a padding)
is arbitrarily replaced by the “[mask]” symbol. Then, a prediction is generated and the top 1 and top
5 results are compared with the expected value. The achieved accuracies are top-1: 0.9104 (stddev:
0.002) and top-5: 0.9935 (stddev: 0.0005).
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