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A ADDITIONAL ILLUSTRATION OF METHOD
A.1 Derivation of AP Risk
In a batch of videos𝑩 = {𝑽𝑖 ∈ X}𝑁

𝑖=1, recall that for a query video 𝑽𝑘 ,
the similarity scores of the relevant/irrelevant videos are denoted
as 𝑺𝑘+/𝑺𝑘− . For simplicity, let 𝑑𝑘

𝑗𝑖
= 𝑠𝑘 𝑗 − 𝑠𝑘𝑖 . As mentioned in

section 3.1, our goal is to maximize the AP score. This is achieved
by minimizing the AP risk, which is derived as follows:

𝐴𝑃
↓
𝑘
(𝑓 ) = 1 −𝐴𝑃𝑘 (𝑓 )

= 1 − 1
|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

R(𝑠𝑘𝑖 , 𝑺𝑘+)
R(𝑠𝑘𝑖 , 𝑺𝑘+ ∪ 𝑺𝑘−)

= 1 − 1
|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘

𝑗𝑖
)

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+∪𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

=
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

∑
𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+∪𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

=
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

∑
𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘

𝑗𝑖
) +∑

𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘
𝑗𝑖
)

=
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

î∑
𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)
ó
/
î
1 +∑

𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘
𝑗𝑖
)
ó

1 +
î∑

𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘
𝑗𝑖
)
ó
/
î
1 +∑

𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘
𝑗𝑖
)
ó

=
1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

ℎ

Ñ ∑
𝑠𝑘 𝑗 ∈𝑺𝑘− H (𝑑𝑘

𝑗𝑖
)

1 +∑
𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘

𝑗𝑖
)

é
,

where R(𝑠, 𝑺) = 1 +∑
𝑠′∈𝑺 H (𝑠′ − 𝑠) is the descending ranking of 𝑠

in 𝑺 , H (·) is the Heaviside function, ℎ(𝑥 ) = 𝑥
1+𝑥 is a monotonically

increasing function.
We substitute the Heaviside function in the numerator with

R− (𝑑𝑘
𝑗𝑖
;𝛿) in eq.(10) and introduce an additional parameter 𝜌 , which

forms the following surrogate AP risk:”𝐴𝑃↓𝑘 (𝑓 ) = 1
|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

ℎ

Ñ ∑
𝑠𝑘 𝑗 ∈𝑺𝑘− R

−(𝑑𝑘
𝑗𝑖
;𝛿)

1 + 𝜌
∑
𝑠𝑘 𝑗 ∈𝑺𝑘+ H (𝑑𝑘

𝑗𝑖
)

é
.

A.2 Proofs of QuadLinear-AP’s properties
In this subsection, we provide proofs for several properties of
QuadLinear-AP as outlined in section 3.3 of the main paper. Specif-
ically, we focus on the proofs of R−(𝑥 ;𝛿) since it determines these
properties of QuadLinear-AP.

A.2.1 Differentiability. Note that it is unnecessary to replace H (·)
for the positive-positive pair since it only plays a role of weight for
precisely measuring each term in eq. (8). Therefore, we only need
to ensure the R−(𝑥 ;𝛿) is differentiable, which is proved as follows.

First, the R−(𝑥 ;𝛿) can be reformatted as:

R−(𝑥 ;𝛿) =


2
𝛿
𝑥 + 1, if 𝑥 ≥ 0.
1
𝛿2
𝑥2 + 2

𝛿
𝑥 + 1, if − 𝛿 ≤ 𝑥 < 0.

0, if 𝑥 < −𝛿.

Clearly, R−(𝑥 ;𝛿) is differentiable on its three segments. Now,
we only need to verify that it is differentiable at the points where
𝑥 = −𝛿 and 𝑥 = 0.

When 𝑥 = −𝛿 , we have:

𝑑R−(𝑥− ;𝛿)
𝑑𝑥−

= lim
𝑥−→−𝛿

R−(𝑥− ;𝛿) − R−(−𝛿 ;𝛿)
𝑥− − (−𝛿) = 0,

𝑑R−(𝑥+;𝛿)
𝑑𝑥+

= lim
𝑥+→−𝛿

R−(𝑥+;𝛿) − R−(−𝛿 ;𝛿)
𝑥+ − (−𝛿) = 0,

𝑑R−(𝑥− ;𝛿)
𝑑𝑥−

=
𝑑R−(𝑥+;𝛿)

𝑑𝑥+
=
𝑑R−(𝑥 ;𝛿)

𝑑𝑥 |𝑥=−𝛿
= 0.

When 𝑥 = 0, we have:

𝑑R−(𝑥− ;𝛿)
𝑑𝑥−

= lim
𝑥−→0

R−(𝑥− ;𝛿) − R−(0;𝛿)
𝑥− − 0

=
2
𝛿
,

𝑑R−(𝑥+;𝛿)
𝑑𝑥+

= lim
𝑥+→0

R−(𝑥+;𝛿) − R−(0;𝛿)
𝑥+ − 0

=
2
𝛿
,

𝑑R−(𝑥− ;𝛿)
𝑑𝑥−

=
𝑑R−(𝑥+;𝛿)

𝑑𝑥+
=
𝑑R−(𝑥 ;𝛿)

𝑑𝑥 |𝑥=0
=

2
𝛿
.

Therefore, it is proven thatR− (𝑥 ;𝛿) is differentiable at each point,
allowing backpropagation to be performed effectively during the
optimization process to update model parameters. The derivative
function of R−(𝑥 ;𝛿) can be formulated as follows:
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𝑑R−(𝑥 ;𝛿)
𝑑𝑥

=


2
𝛿
, if 𝑥 ≥ 0.
2
𝛿2
𝑥 + 2

𝛿
, if − 𝛿 ≤ 𝑥 < 0.

0, if 𝑥 < −𝛿.

A.2.2 Smoothness. To prove the smoothness of R−(𝑥 ;𝛿) is equiv-
alent to proving that the derivation function of R−(𝑥 ;𝛿) is con-
tinuous. This continuity is essential for ensuring stable gradient
changes for efficient optimization and smooth convergence of the
model. For the sake of presentation, let D−(𝑥 ;𝛿) = 𝑑R− (𝑥 ;𝛿)

𝑑𝑥
.

Clearly, D−(𝑥 ;𝛿) is continuous on its three segments, thus we
only need to verify that it is continuous at the points where 𝑥 = −𝛿
and 𝑥 = 0, which is presented as follows:

lim
𝑥−→−𝛿

D−(𝑥− ;𝛿) = lim
𝑥+→−𝛿

D−(𝑥+;𝛿) = D−(−𝛿 ;𝛿) = 0,

lim
𝑥−→0

D−(𝑥− ;𝛿) = lim
𝑥+→0

D−(𝑥+;𝛿) = D−(0;𝛿) =
2
𝛿
.

Therefore, it is proven thatR− (𝑥 ;𝛿) is smooth, and the derivative
function of R−(𝑥 ;𝛿) is continuous at each point.

A.2.3 Convexity. First, it is obvious that R−(𝑥 ;𝛿) is convex on its
three segments, thus we only need to verify three situations by
proving 𝑡R−(𝑥1;𝛿) + (1 − 𝑡 )R−(𝑥2;𝛿) − R−(𝑡𝑥1 + (1 − 𝑡 )𝑥2;𝛿) ≥ 0
for the given 0 ≤ 𝑡 ≤ 1 and 𝑥1 < 𝑥2.

1) When −𝛿 ≤ 𝑥1 < 0 ≤ 𝑥2, we have:

𝑡R−(𝑥1;𝛿) + (1 − 𝑡 )R−(𝑥2;𝛿)

= 𝑡

Å
1
𝛿2

𝑥21 +
2
𝛿
𝑥1 + 1

ã
+ (1 − 𝑡 )

Å
2
𝛿
𝑥2 + 1

ã
.

If 𝑡𝑥1 + (1 − 𝑡 )𝑥2 ≥ 0 then:

R−(𝑡𝑥1 + (1 − 𝑡 )𝑥2;𝛿) =
2
𝛿
[𝑡𝑥1 + (1 − 𝑡 )𝑥2] + 1.

𝑡R−(𝑥1;𝛿) + (1 − 𝑡 )R−(𝑥2;𝛿) − R−(𝑡𝑥1 + (1 − 𝑡 )𝑥2;𝛿)

=
𝑡

𝛿2
𝑥21

> 0.

If −𝛿 ≤ 𝑡𝑥1 + (1 − 𝑡 )𝑥2 < 0 then:

R−(𝑡𝑥1 + (1 − 𝑡 )𝑥2;𝛿) =
ß
1
𝛿
[𝑡𝑥1 + (1 − 𝑡 )𝑥2] + 1

™2
.

𝑡R−(𝑥1;𝛿) + (1 − 𝑡 )R−(𝑥2;𝛿) − R−(𝑡𝑥1 + (1 − 𝑡 )𝑥2;𝛿)

=
𝑡

𝛿2
𝑥21 −

1
𝛿2

[𝑡𝑥1 + (1 − 𝑡 )𝑥2]2

=

ñ√
𝑡

𝛿
𝑥1 −

𝑡

𝛿
𝑥1 −

1 − 𝑡

𝛿
𝑥2

ô ñ√
𝑡

𝛿
𝑥1 +

𝑡

𝛿
𝑥1 +

1 − 𝑡

𝛿
𝑥2

ô
>

ñ√
𝑡

𝛿
𝑥1 −

1
𝛿
𝑥2

ô ñ√
𝑡

𝛿
𝑥1 +

1
𝛿
𝑥1

ô
> 0.

For the other two situations, i.e., 𝑥1 < −𝛿 < 0 ≤ 𝑥2 and 𝑥1 <

−𝛿 ≤ 𝑥2 < 0, the proof process is similar to the situation discussed
above, and is therefore omitted for brevity.

In summary, R−(𝑥 ;𝛿) is convex at each point, which facilitates
finding the optimal solution while maintaining good convergence
speed and stability.

A.2.4 Non-strictly Monotonically Increasing. First, it is obvious
that R−(𝑥 ;𝛿) is non-strictly monotonically increasing on its three
segments, thus we only need to verify the following three situations:

1) When −𝛿 ≤ 𝑥 < 0, for given 𝜀 > 0, if 𝑥 + 𝜀 ≥ 0 we have:

R−(𝑥 + 𝜀;𝛿) − R−(𝑥 ;𝛿)

=
2
𝛿
(𝑥 + 𝜀) + 1 −

Å
1
𝛿2

𝑥2 + 2
𝛿
𝑥 + 1

ã
=

1
𝛿

Å
2𝜀 − 1

𝛿
𝑥2
ã

≥ 1
𝛿

Å
−2𝑥 + 1

𝑥
· 𝑥2
ã

> 0.

2) When 𝑥 < −𝛿 , for given 𝜀 > 0, if −𝛿 ≤ 𝑥 + 𝜀 < 0 we have:

R−(𝑥 + 𝜀;𝛿) − R−(𝑥 ;𝛿)

=
1
𝛿2

(𝑥 + 𝜀)2 + 2
𝛿
(𝑥 + 𝜀) + 1

=

ï
1
𝛿
(𝑥 + 𝜀)

ò2
> 0.

3) When 𝑥 < −𝛿 , for given 𝜀 > 0, if 𝑥 + 𝜀 ≥ 0 we have:

R−(𝑥 + 𝜀;𝛿) − R−(𝑥 ;𝛿) =
2
𝛿
(𝑥 + 𝜀) + 1 > 0.

In summary, R−(𝑥 ;𝛿) is non-strictly monotonically increasing,
which can also be supported by the fig. 4c in the main paper.

A.2.5 Upper Bound of Heaviside Function. Here we prove R− (𝑥 ;𝛿)
is the upper bound of H (𝑥), which is equivalent to prove the
R−(𝑥 ;𝛿) −H (𝑥 ) ≥ 0. Let P−(𝑥 ;𝛿) = R−(𝑥 ;𝛿) −H (𝑥 ), we have:

P−(𝑥 ;𝛿) =


2
𝛿
𝑥, if 𝑥 ≥ 0.
1
𝛿2
𝑥2 + 2

𝛿
𝑥 + 1, if − 𝛿 ≤ 𝑥 < 0.

0, if 𝑥 < −𝛿.

Obviously, P− (𝑥 ;𝛿) ≥ 0, which illustrates the R− (𝑥 ;𝛿) is the upper
bound ofH (𝑥 ).

A.3 Description of the Basic Loss
As outlined in section 3.4, following previous methods on rank-
ing optimization [3, 21], we combine the AP losses with a basic
loss L𝑏𝑎𝑠𝑒 , which comprises the InfoNCE loss [16] and an SSHN
loss [11].

The InfoNCE loss is widely used in self-supervised contrastive
learning tasks due to its effectiveness and adaptability. For a query
video 𝑽𝑘 , the InfoNCE loss is calculated by:

L𝑘
𝑁𝐶𝐸 = − 1

|𝑺𝑘+ |

∑︁
𝑠𝑘𝑖 ∈𝑺𝑘+

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑘𝑖/𝜏)

𝑒𝑥𝑝 (𝑠𝑘𝑖/𝜏) +
∑
𝑠𝑘 𝑗 ∈𝑺𝑘− 𝑒𝑥𝑝

(
𝑠𝑘 𝑗/𝜏

) .
Using the InfoNCE enables the model to support representation
learning by distinguishing between positive and negative instances,
thus promoting collaborative optimization between ranking and
representation learning.

The SSHN loss promotes self-similarity towards 1 by compen-
sating for the CNN block 𝜓 , which tends to make 𝑠𝑘𝑘 less than 1.
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Additionally, it performs hard negative mining by reducing the sim-
ilarity of the most challenging negative instances, thus enhancing
the distinction between similarities. The SSHN loss can be formu-
lated as follows:

L𝑘
𝑆𝑆𝐻𝑁 = −𝑙𝑜𝑔 (𝑠𝑘𝑘 ) − 𝑙𝑜𝑔

Ç
max

𝑠𝑘𝑖 ∈𝑺𝑘−
(1 − 𝑠𝑘𝑖 )

å
.

Finally, we integrate these two losses as the following basic loss
function, where 𝜆𝑠 is hyperparameters to adjust the weights of the
two losses.

L𝑏𝑎𝑠𝑒 =
1
𝑁

𝑁∑︁
𝑘=1

(L𝑘
𝑁𝐶𝐸 + 𝜆𝑠L𝑘

𝑆𝑆𝐻𝑁 ). (1)

B DETAILED DESCRIPTION OF EXPERIMENTS
B.1 Datasets
The detailed description of the datasets used in our experiments is
as follows:

• VCDB [8] is designed for the task of partial video copy detec-
tion. It contains a labeled core dataset denoted as VCDB (C)
and a large-scale unlabeled dataset with 100,000 distractor
videos denoted as VCDB (D). In our experiments, we only
use the VCDB (D) for self-supervised training of the model.

• EVVE [20] is used as a benchmark video dataset for the
task of event-based video retrieval. It includes 620 query
videos and 2,373 database videos manually annotated into
13 event categories. Due to the absence of some videos, only
504 query videos and 1,906 database videos can be obtained.

• SVD [7] is designed for the task of near-duplicate video
retrieval, containing 1,206 queries and 526,787 unlabelled
videos in total. The dataset is organized into a training set
and a test set. For evaluation in the experiments, we exclu-
sively employ the test set, which includes 206 queries with
6,355 labeled video pairs and 526,787 unlabelled videos as
distractors.

• FIVR-200K [9] is specifically designed for fine-grained in-
cident video retrieval, comprising 100 queries and 225,960
database videos. It contains three distinct video retrieval
subtasks: Duplicate Scene Video Retrieval (DSVR), Comple-
mentary Scene Video Retrieval (CSVR), and Incident Scene
Video Retrieval (ISVR). Additionally, it also contains three
distinct video detection subtasks: Duplicate Scene Video
Detection (DSVD), Complementary Scene Video Detection
(CSVD), and Incident Scene Video Detection (ISVD).

• FIVR-5K [11], a subset of FIVR-200K, which includes 50
queries and 5,000 database videos, containing the same sub-
tasks as FIVR-200K. This dataset is also utilized in our exper-
iments to facilitate swift comparative analysis.

Generally, we use the origin videos from VCDB (D) to train our
model and conduct evaluation on EVVE, SVD, FIVR-200K as well as
FIVR-5K. Following the previous works [11], we use the extracted
features of the evaluation datasets in our experiments. A summary
of the descriptions for these datasets is presented in table 1.

B.2 Evaluation Metrics
Mean Average Precision. Mean Average Precision (mAP), also

known as macro Average Precision [18], serves as the primary
metric to evaluate the overall performance of retrieval tasks. Specif-
ically, AP computes the average ranking of positive instances in
the retrieval set for a particular query, while mAP calculates the
mean of these AP values across all queries. The definition of mAP is
given in eq. (2), where 𝑛 𝑗 denotes the number of positive instances
for a particular query, 𝑟𝑖 represents the ranking of the i-th retrieved
positive instance in the retrieval set, and |𝑸 | is the number of query
instances.

𝑚𝐴𝑃 =
1
|𝑸 |

|𝑸 |∑︁
𝑗=1

1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

𝑖

𝑟𝑖
(2)

Micro Average Precision. Micro Average Precision (𝝁AP) is a
metric employed in prior research [11, 13, 19] to evaluate the per-
formance of detection tasks. In contrast to mAP, 𝜇AP considers the
joint distribution of similarities across all queries by calculating the
AP across all queries simultaneously, which reflects the model’s
capability to consistently apply a uniform threshold across various
queries to detect relevant instances. 𝜇AP is computed as outlined
in eq. (3), where |𝑹 | is the number of all reference instances, 𝑝(𝑖)
represents the precision of i-th instance and Δ𝑟 (𝑖) denotes the dif-
ference of recall between i-th and its adjacent instance in the sorted
list according to similarity scores.

𝜇𝐴𝑃 =

|𝑹 |∑︁
𝑖=1

𝑝(𝑖)Δ𝑟 (𝑖) (3)

B.3 Implementation Details
In this subsection, we provide additional descriptions of implemen-
tation details including the data processing, experiment configura-
tion, and hyperparameter settings.

Data processing. We adopt a self-supervised learning approach
as introduced in [11], where videos in a batch are subjected to weak
and strong augmentations to simulate common video copy transfor-
mations in actual situations. The weak augmentation function set
𝑨𝑤 includes traditional geometric transformations such as random
cropping and horizontal flipping, applied to the frames of the entire
video. The strong augmentation function set 𝑨𝑠 , on the other hand,
involves more complex transformations: 1) Global transformations
apply different geometric and optical image transformations on all
frames consistently by RandAugment [2]; 2) Frame transformations
encompass overlaying emojis and text on randomly selected frames
and applying blur to frames [19]; 3) Temporal transformations, in-
cluding fast forward, slow motion, reverse play, frame pause, and
sub-clip shuffle/dropout [10, 11], are utilized to create intense tem-
poral manipulations; 4) Video mix-up transformation, down-scales
a video and embeds it within another video [11].

Experiment configuration. For the training video data, follow-
ing the previous work [10, 12, 22], we first extract one frame per
second for each video. Subsequently, we resize the frames to 256
pixels and crop them to 224 pixels, then randomly select 28 con-
secutive frames to constitute a video clip. For the backbone fea-
ture extractor 𝑔(·), following previous literature [10–12], we adopt



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Summary of the descriptions for the VCDB, EVVE, SVD, FIVR-200K, and FIVR-5K datasets.

Dataset Video Task # of Query Videos # of Database Videos

VCDB Partial Video Copy Detection 528 100,000
EVVE Event-based Video Retrieval 620 2,373
SVD Near-duplicate Video Retrieval 206 526,787

FIVR-200K DSVR / DSVD Duplicate Scene Video Retrieval / Detection 200 225,960
FIVR-200K CSVR / CSVD Complementary Scene Video Retrieval / Detection 200 225,960
FIVR-200K ISVR / ISVD Incident Scene Video Retrieval / Detection 200 225,960
FIVR-5K DSVR / DSVD Duplicate Scene Video Retrieval / Detection 50 5,000
FIVR-5K CSVR / CSVD Complementary Scene Video Retrieval / Detection 50 5,000
FIVR-5K ISVR / ISVD Incident Scene Video Retrieval / Detection 50 5,000

ResNet50 [6] pretrained on ImageNet [4]. The backbone feature
extractor 𝑔(·) performs the mapping 𝑔 : R𝑇×𝐻×𝑊 ×𝐶 → R𝑇×𝑅×𝐷 ,
where 𝑇 = 28, 𝐻 = 224,𝑊 = 224,𝐶 = 3, 𝑅 = 9, 𝐷 = 512. For the fea-
ture extractor𝑔′(·) in the pseudo label generator, we utilize DINO [1]
pretrained ViT-small [5] with a patch size of 16. The feature extrac-
tor 𝑔′(·) performs the mapping 𝑔′ : R𝑇×𝐻×𝑊 ×𝐶 → R𝑇×𝐷 ′

, where
𝑇 = 28, 𝐻 = 224,𝑊 = 224,𝐶 = 3, 𝐷′ = 384.

Hyperparameter settings. Our model is trained for 30,000 itera-
tions with a batch size of 64. We use AdamW [15] with the Cosine
Annealing scheduler for parameters optimization. The learning rate
is set to 4 × 10−5 with a warm-up period [14] of 1,000 iterations,
and weight decay is set to 1 × 10−2. For the hyperparameters con-
cerning QuadLinear-AP, we choose 𝛿𝑣 = 0.05, 𝜌𝑣 = 0.10 for L𝑉

𝑄𝐿𝐴𝑃
,

and 𝛿𝑓 = 0.05, 𝜌 𝑓 = 5.00 for L𝐹
𝑄𝐿𝐴𝑃

. The weights of L𝑉
𝑄𝐿𝐴𝑃

and
L𝐹
𝑄𝐿𝐴𝑃

are selected as 𝜆𝑣 = 4 and 𝜆𝑓 = 6, respectively. The top
and bottom rates for dividing positive and negative frame instances
in the pseudo label generator are set to 𝑟𝑡 = 0.35 and 𝑟𝑏 = 0.35.
The top-k rates of TopK-Chamfer Similarity within spacial and
temporal correlation aggregation are set to 𝑘𝑠 = 0.10 and 𝑘𝑡 = 0.03,
respectively.

Generally, the settings and hyperparameters for our HAP-VR
framework within the training process are summarized in table 2.
All experiments in this work are conductedwith Pytorch [17] library
on a Linux machine equipped with an Intel Gold 6230R CPU and
two NVIDIA 3090 GPUs.

B.4 Additional Ablation Study
In this section, we explore the impact of hyperparameters in our
framework on performance. Except for the specific hyperparame-
ters being investigated, we maintain consistency in all other exper-
imental settings to ensure a fair comparison.

Impact of 𝛿𝑣 and 𝛿𝑓 . The results of our model trained with dif-
ferent 𝛿𝑣 and 𝛿𝑓 are presented in table 3 and table 4, respectively.
The performance decreases for both hyperparameters when set
above or below 0.05. This highlights the importance of selecting
the appropriate 𝛿𝑣 and 𝛿𝑓 values to effectively balance the margin
for correctly ranked positive-negative pairs and the penalty for
incorrectly ranked positive-negative pairs.

Impact of 𝜌𝑣 and 𝜌 𝑓 . The results of our model trained with dif-
ferent 𝜌𝑣 and 𝜌 𝑓 are presented in table 5 and table 6, respectively.

Table 2: The settings and hyperparameters for our HAP-VR
framework within the training process.

Hyperparameter Notation Value

Training process

Iterations / 30,000
Warm-up iterations / 1,000
Batch size / 64
Learning rate / 4 × 10−5
Optimizer / AdamW
Learning rate scheduler / Cosine
Weight decay / 1 × 10−2

Backbone feature extractor

# of frames in a clip 𝑇 28
Frame size 𝐻 ,𝑊 224
# of ResNet50 feature patch 𝑅 9
# of ResNet50 feature dim. 𝐷 512

Pseudo label generator

# of frames in a clip 𝑇 28
Frame size 𝐻 ,𝑊 224
# of ViT-small feature dim. 𝐷 ′ 384
ViT-small patch size / 16
Top frame rate 𝑟𝑡 0.35
Bottom frame rate 𝑟𝑏 0.35

QuadLinear-AP

Video-level Pos-neg margin 𝛿𝑣 0.05
Video-level Pos-pos weight 𝜌𝑣 0.10
Video-level AP loss weight 𝜆𝑣 4.00
Frame-level Pos-neg margin 𝛿𝑓 0.05
Frame-level Pos-pos weight 𝜌𝑓 5.00
Frame-level AP loss weight 𝜆𝑓 6.00

TopK-Chamfer Similarity

Spacial top-k rate 𝑘𝑠 0.10
Temporal top-k rate 𝑘𝑡 0.03
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For L𝑉
𝑄𝐿𝐴𝑃

, setting 𝜌𝑣 as a small value such as 0.2 provides optimal
benefits as it more effectively adjusts the weight of positive-positive
pairs and thus achieves a trade-off with positive-negative pairs. For
L𝐹
𝑄𝐿𝐴𝑃

, which deals with more ambiguous inter-frame correlations,
tuning 𝜌 𝑓 within the range of 0.2 to 5 allows the model to better
adapt to the varying distributions of positive and negative instances
across different subtasks.

Impact of 𝜆𝑣 and 𝜆𝑓 . In table 7, we report the results of our
model trained with various values of 𝜆𝑓 while keeping 𝜆𝑣 fixed
at 4 to simplify the comparative analysis. It can be observed that
increasing 𝜆𝑓 beyond 𝜆𝑣 leads to an obvious performance gain. This
is expected as more challenging frame-level similarities require
greater weight for effective optimization. Furthermore, finding a
balance between 𝜆𝑓 and 𝜆𝑣 with the weight of L𝑏𝑎𝑠𝑒 can jointly
promote ranking and representation learning, thereby enhancing
the overall performance of the model.

Impact of 𝑟𝑡 and 𝑟𝑏 . In table 8, we report the results of our model
trained with various combinations of 𝑟𝑡 and 𝑟𝑏 . When 𝑟𝑡 and 𝑟𝑏 are
equal, setting higher values leads to similar frames being forcibly
divided as positive and negative instances, thereby decreasing the
model’s discriminating ability. Conversely, setting lower values may
cause the model to focus only on easier instances, thus resulting in
insufficient learning and optimization. When 𝑟𝑡 and 𝑟𝑏 are different,
the performance tends to decrease due to the uneven distribution
of positive and negative instances increasing the complexity of
similarity learning.

Table 3: Results on FIVR-5K in video retrieval and detection
taskswithmAP (%) and 𝝁AP (%) for 𝛿𝑣 withinL𝑉

𝑄𝐿𝐴𝑃
. The first

and second best results are marked with bold and underline.

𝛿𝑣

Retrieval Detection

DSVR CSVR ISVR DSVD CSVD ISVD

0.01 87.32 86.66 80.27 73.53 72.15 63.58
0.05 88.86 87.79 80.34 78.15 76.29 65.88
0.10 88.52 87.38 80.37 76.94 75.40 65.60
0.15 87.34 86.62 80.42 73.27 72.37 64.11

Table 4: Results on FIVR-5K in video retrieval and detection
taskswithmAP (%) and 𝝁AP (%) for 𝛿𝑓 withinL𝐹

𝑄𝐿𝐴𝑃
. The first

and second best results are marked with bold and underline.

𝛿𝑓

Retrieval Detection

DSVR CSVR ISVR DSVD CSVD ISVD

0.01 90.30 89.19 81.52 81.17 78.37 69.98
0.05 90.37 89.11 80.94 83.62 80.47 69.30
0.10 89.85 88.52 79.93 82.29 79.57 67.15
0.15 89.55 88.05 79.37 82.29 79.40 65.78

Table 5: Results on FIVR-5K in video retrieval and detection
taskswithmAP (%) and 𝝁AP (%) for 𝜌𝑣 withinL𝑉

𝑄𝐿𝐴𝑃
. The first

and second best results are marked with bold and underline.

𝜌𝑣

Retrieval Detection

DSVR CSVR ISVR DSVD CSVD ISVD

0.02 89.52 88.45 80.84 78.34 76.39 65.98
0.2 90.28 89.10 81.09 81.39 78.64 68.79
1.0 89.89 88.81 81.03 80.41 78.64 69.41
5.0 89.51 88.31 80.77 80.00 77.59 67.20
50 89.37 88.16 80.89 79.92 77.19 66.91

Table 6: Results on FIVR-5K in video retrieval and detection
taskswithmAP (%) and 𝝁AP (%) for 𝜌 𝑓 withinL𝐹

𝑄𝐿𝐴𝑃
. Thefirst

and second best results are marked with bold and underline.

𝜌𝑓

Retrieval Detection

DSVR CSVR ISVR DSVD CSVD ISVD

0.02 89.71 88.01 79.44 82.73 78.98 65.80
0.2 90.21 89.01 80.92 83.81 80.59 69.13
1.0 90.37 89.11 80.94 83.62 80.47 69.30
5.0 90.17 89.07 81.29 82.93 80.18 70.99
50 88.77 87.74 81.18 79.76 78.46 70.73

Table 7: Results on FIVR-5K in video retrieval and detection
tasks with mAP (%) and 𝝁AP (%) for the weight of L𝐹

𝑄𝐿𝐴𝑃
, i.e.,

𝜆𝑓 . The first and second best results are marked with bold
and underline.

𝜆𝑓

Retrieval Detection

DSVR CSVR ISVR DSVD CSVD ISVD

2 89.73 88.50 80.42 80.45 77.89 66.32
4 90.21 89.08 81.33 83.15 80.69 70.61
6 90.26 89.18 81.47 83.05 80.11 70.32
8 90.07 88.91 81.30 84.20 80.97 70.63

Table 8: Results on FIVR-5K in video retrieval and detection
tasks with mAP (%) and 𝝁AP (%) for 𝑟𝑡 and 𝑟𝑏 . The first and
second best results are marked with bold and underline.

𝑟𝑡 𝑟𝑏

Retrieval Detection

DSVR CSVR ISVR DSVD CSVD ISVD

0.30 0.30 90.17 88.92 80.90 83.08 80.10 69.02
0.35 0.35 90.21 89.08 81.33 83.15 80.69 70.61
0.40 0.40 90.17 89.07 81.29 82.93 80.18 70.99
0.45 0.45 89.63 88.37 80.89 82.28 79.38 70.18
0.30 0.40 89.73 88.62 81.18 82.67 79.68 69.18
0.40 0.30 89.82 88.58 80.62 82.28 79.33 69.18
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Figure 1: Heatmaps of frame-level similarity matrices generated by various losses. In contrast, our QuadLinear-AP distinguishes
between relevant and irrelevant instances more clearly. A brighter color indicates a higher similarity score.

C ADDITIONAL VISUALIZATION
In this section, we provide additional examples to compare frame-
level similarity matrices under different losses through visualization
for intuitive analysis. The experiment settings remain consistent
with those described in section 4.3 of the main paper. By analyzing
these heatmaps, we can make the following observations: 1) Circle
loss struggles to distinguish instances clearly even after parameter
adjustments, likely due to its sensitivity of data distribution making
it perform poorly in challenging video data with an imbalanced
distribution. 2) Triplet loss is prone to become overconfident, which
may lead to more irrelevant instances being predicted as relevant,
thus increasing the risk of overfitting. 3) While other loss func-
tions can discriminate between instances, there is still room for
improvement in their performance. 4) Compared to other competi-
tors, our proposed QuadLinear-AP provides a clearer distinction
between relevant and irrelevant instances, making it effective for
video retrieval tasks.
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