
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILS FOR OTGM

How to approximate the transport plan T can refer to Algorithm 1.

Algorithm 1 Computing OT Distance

Require: {xi}ni=1, {yj}mj=1, hyper-parameter λ
1: Compute intra-graph similarities:
2: [Cx]ij = cos(xi, xj), [Cy]ij = cos(yi, yj),
3: x′

i = g1(xi), y′j = g2(yj) // g1, g2 denote two MLPs
4: Compute cross-graph similarities:
5: Cij = cos(x′

i, y
′
j)

6: if T is shared then
7: Update L in Algorithm 3 (Line 8) with:
8: Lunified = λC + (1− λ)L
9: Obtain T by calculating Eq.(1).

10: Compute Dgot
11: else
12: Apply Algorithm 2 to obtain Dw

13: Apply Algorithm 3 to obtain Dgw

14: DOT = λDw + (1− λ)Dgw

15: end if
16: return DOT

Algorithm 2 Computing Wasserstein Distance

Require: {xi}ni=1, {yj}nj=1, β
1: σ ← 1

n1n, T
(1) ← 11⊤

2: Cij ← c(xi, yj), Aij ← e−
Cij
β

3: for t = 1, 2, 3, . . . do
4: Q← A⊙ T (t) // ⊙ is Hadamard product
5: for k = 1, 2, 3, . . . ,K do
6: δ ← 1

nσ , σ ←
1

nQ⊤δ

7: end for
8: T (t+1) ← diag(δ)Qdiag(σ)
9: end for

10: Dw ← ⟨C⊤, T ⟩ // ⟨·, ·⟩ is the Frobenius dot-product
11: return T,Dw

Algorithm 3 Computing Gromov-Wasserstein Distance

Require: {xi}ni=1, {yj}nj=1, probability vectors p, q
1: Compute intra-domain similarities:
2: [Cx]ij = cos(xi, xj), [Cy]ij = cos(yi, yj),
3: Compute cross-domain similarities:
4: Cxy = C2

x1m+ Cyq(C
2
y)

⊤

5: for t = 1, 2, 3, . . . do
6: // Compute the pseudo-cost matrix
7: L = Cxy − 2C⊤

x TCy

8: Apply Algorithm 1 to solve transport plan T
9: end for

10: Dgw = ⟨L, T ⟩
11: return T , Dgw

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROOF FOR THEOREM 1

Theorem 1 Consider a sample of NA labeled instances drawn from P̂A and NB instances drawn
from P̂B , and then for all λ > 0, with a = kλ, we have with probability at least 1 − δ for graph
matching as follows:

errB(f) <W1(P̂A, P̂B) +

√
2

c
log(

1

δ
)(

1√
NA

+
1√
NB

)

+ errA(f
∗) + errB(f

∗) + kL1ϕ(λ).

(13)

where NA, NB are the number of nodes in graphs GA and GB , respectively. c is a constant.

Proof 1 First of all, we have:

errB(f) = E(x,y)∼PB
L(y, f(x))

≤ E(x,y)∼PB
[L(y, f∗(x)) + L(f∗(x), f(x))]

(a)
= E(x,y)∼PB

[L(f(x), f∗(x))] + errB(f∗) (14)
(b)
= E(x,y)∼Pf

B
L(f(x), f∗(x)) + errT (f

∗) (15)

= errB(f∗)− errA(f∗) + errA(f∗) + errB(f∗) (16)
≤ |errB(f∗)− errA(f∗)|+ errA(f∗) + errB(f∗) (17)

Line (a) is due to the symmetry of the loss. Line (b) comes from the fact that:

E(x,y)∼PB
L(f(x), f∗(x)) = E(x,f(x))∼PB

L(f(x), f∗(x))
def
= errB(f∗(x)).

Now, we have

|errB(f∗)− errA(f∗)|

=

∣∣∣∣∫
X×C
L(y, f∗(x)) (PB(X = x, Y = y)

−PA(X = x, Y = y)) dxdy|

=

∣∣∣∣∫
X×C
L(y, f∗(x)) d(PB − PA)

∣∣∣∣
(a)

≤
∫
(X×C)2

|L(yB , f∗(xB))− L(yA, f
∗(xA))| dΠ∗((xA, yA), (xB , yB))

=

∫
(X×C)2

(L(yB , f∗(xB))− L(yA, f∗(xA))) dΠ
∗((xA, yA), (xB , yB))

(b)

≤
∫
(X×C)2

k|f∗(xB)− f∗(xA)| (L(yB , f∗(xA))− L(yA, f∗(xA)))

dΠ∗((xA, yA), (xB , yB))

(a)

≤ k ·M · ϕ(λ) +
∫
(X×C)2

k · d(xB , xA) (L(yB , f∗(xA))

−L(yA, f∗(xA))) dΠ
∗((xA, yA), (xB , yB))

(a)
= W1(PA,PB) + k ·M · ϕ(λ).

(18)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Line (a) is a consequence of the duality form of the Kantorovich-Rubinstein theorem saying that for
any coupling Π ∈ Π(PA,PB), we have:∥∥∥∥∫

Ω×C
L(y, f∗(x))d(PB − PA)

∥∥∥∥
=

∥∥∥∥∥
∫
(Ω×C)2

[L(yB , f∗(xB))− L(yA, f∗(xA))]

dΠ((xA, yA), (xB , yB))∥

≤

∥∥∥∥∥
∫
(Ω×C)2

[L(yB , f∗(xB))− L(yA, f
∗(xA))]

∥∥∥∥∥
dΠ((xA, yA), (xB , yB)).

(19)

Since the inequality is true for any coupling, it is then also true for Π∗. Inequality (b) is due to the
k-lipschitzness of the loss L in its second argument. Inequality (c) uses the fact that f∗ and Π∗ verify
the probabilistic transfer Lipschitzness property with probability 1− ϕ(λ), additionally, taking into
account that the deviation between 2 instances with respect to f∗ is bounded by M we have the
additional term kMϕ(λ) that covers the regions where the PTL does not hold. (c) is obtained by the
symmetry of d,the use of triangle inequality on L and by replacing kλ by α. Other inequalities above
are due the use of triangle inequality or properties of the absolute value. The last line (d) is due to
the definition of Π∗.

Now, note that by the use of triangle inequality:

W1(PA,P ′
B)

≤W1(PA, P̂s) +W1(P̂s, P̂
′
t) +W1(P̂

′
t ,P ′

B)

≤W1(P̂s, P̂
′
t) +

√
2

c′
log

(
2

δ

(
1√
Ns

+
1√
Nt

)) (20)

Indeed, the cost function

D((xA, yA), (xB , yB)) = αd(x1, x2) + L(y1, y2)

defines a distance over (Ω× C)2. Given that PA and P ′
B have bounded support and considering the

bounded nature of our loss function, we can apply Theorem E.1 (presented below) to W1(PA, P̂s) and
W1(P̂

′
t ,P ′

B) (with a probability of δ/2 each). It is important to note that the two settings may involve
different constants N and c′. In such cases, we take the maximum value of N and the minimum value
of c′ that are applicable to both scenarios.

In addition to the analysis presented in the paper, a notable connection can be drawn with classic
generalization bounds in the scenario where the two distributions are identical, i.e., PA = PB .
Specifically, if we can select f∗ as the true labeling function on both source and target domains such
that f∗ is strong ϕ-Lipschitz with respect to Π∗ (meaning ϕ(λ) is almost 0), then the bound aligns
with a classic generalization bound:

errB(f) <W1(P̂A, P̂B) +

√
2

c
log(

1

δ
)(

1√
NA

+
1√
NB

)

+ errA(f
∗) + errB(f

∗) + kL1ϕ(λ).

• In this case, terms involving f∗ become negligible, and using the same sample for the source
and target results in d(x1, x2) = 0 with respect to the optimal alignment.

• Consequently, only the label loss remains, which aligns with a classic supervised learning
loss.

This observation implies that under these conditions, our approach mirrors the familiar terrain of
classic generalization in supervised learning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Keypoint matching accuracy (%) on SPair-71k grouped by levels of difficulty in the viewpoint
of the matching pair.

Method Easy Medium Hard All

BBGM 84.7 78.9 73.6 82.1
ASAR 86.5 79.1 72.5 83.1

COMMON 86.6 81.4 76.4 84.5

OTGM 86.9 82.1 78.0 85.2

C DETAILS FOR EXPERIMENTS

Implementation details. Our method is implemented using PyTorch 1.10.0 and all evaluations
are conducted on an Ubuntu 20.04 OS with an NVIDIA 3090 GPU. To ensure consistency and
fairness, we use the exact same set of hyperparameters for all datasets. The encoder network in our
implementation consists of an ImageNet-pretrained VGG16 Simonyan & Zisserman (2014) image
encoder, a graph neural network called SplineCNN Fey et al. (2018), and a two-layer projection
head Chen et al. (2020b). For more detailed network architecture information, please refer to the
supplementary material. To optimize the networks during training, we utilize the Adam optimizer
Kingma & Ba (2014) with default parameters. The initial learning rate is set to 3e-4, and for fine-
tuning the VGG network, the learning rate is set to 2e-5. The batch size for training is set to 8
image pairs. To obtain the permutation matrix Y , we apply the Hungarian algorithm to the similarity
matrix S obtained from the base encoder, following the approach outlined in Wang et al. (2021); Liu
et al. (2021a); Wang et al. (2019; 2020b); Ren et al. (2022); Yu et al. (2021). These implementation
details ensure consistency and reproducibility in our experiments, allowing for a fair comparison with
existing methods.

Evaluation with Different Viewpoint Difficulty. The SPair-71k dataset provides a valuable oppor-
tunity to evaluate the performance of our method under varying levels of viewpoint difficulty. The
dataset categorizes image pairs into easy, medium, and hard groups, with each group representing
different degrees of viewpoint variation. In practice, we have observed that image pairs with higher
viewpoint difficulty tend to exhibit more instances of noisy correspondence, such as occlusions. This
implies that as the viewpoint difficulty increases, the occurrence of noisy correspondence becomes
more prevalent. Table 4 presents the results of our method’s performance on different levels of
viewpoint difficulty. Our proposed method consistently improves the matching results across all
difficulty levels, with a notable improvement in the high viewpoint difficulty group (+1.6%). This
experiment highlights the robustness of our method in handling and effectively addressing the chal-
lenges posed by noisy correspondences, particularly in image pairs with high viewpoint difficulty. By
demonstrating significant improvements in these challenging scenarios, our method showcases its
ability to tackle noisy correspondence and enhance overall matching performance.

Distribution of similarity scores. We investigate the similarity scores of correspondences under a
noise rate η = 0.3, as demonstrated in Figs. 5. These figures depict histograms for both true pairs
(free of synthetic noise) and noisy correspondences (containing synthetic noise). Our methodology
effectively mitigates the influence of noisy data on network optimization, thereby reducing its adverse
effects.

Running Time. The running time of the proposed algorithm depends on the size of the input
graphs and the complexity of the matching scenario. In our experiments, the OTGM framework,
implemented using PyTorch and evaluated on an NVIDIA RTX 3090 GPU, performs competitively
with existing methods while providing improved robustness and accuracy. Specifically, we take four
hours on pascal VOC dataset and 14 hours on spair-71 dataset and two hours on Willow Object.

Discussion about other graph denoizer. We notice that there is also some research about the
graph denoizers such as SuperGlue Sarlin et al. (2020a), COMMON Lin et al. (2023), and LightGlue
Lindenberger et al. (2023). Here we discuss the difference between our method and them. SuperGlue
is inefficient in compilation and LightGlue may be heavily reliant on the quality of the local features
extracted. If the initial feature detection and description are suboptimal, it could lead to a less effective
matching process. For the COMMON, the momentum distillation is also predicated on the quality
of initial annotations, which, if poor, could compromise the model’s ability to discern correct from
noisy correspondences. Additionally, the inclusion of a momentum encoder increases the model’s

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Parameter analysis of OTGM with the increase of the distillation parameter β on Pascal
VOC.

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ACC 82.7 82.9 83.5 83.8 83.7 83.6 83.4 83.1 82.9 82.8 82.6

complexity and computational demands, potentially limiting its applicability in resource-constrained
environments or real-time scenarios. Different from them, our model can perform graph denoising in
a self-supervised manner with fast computation, and can also be used as a plug-in for other models
without incurring excessive computational overhead.

D BROADER IMPACTS

The OTGM model significantly advances graph matching techniques by addressing distributional
alignment issues and enhancing applications in network security, social network analysis, and
computer vision. Its capability to refine and denoise graph data also holds the potential for improving
data integrity in scientific and commercial analyses. However, the sophistication of OTGM could lead
to potential risks, such as over-reliance on automated decision-making in sensitive areas, necessitating
further research into safeguards and efficiency optimizations for larger datasets to ensure responsible
use and broader applicability.

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Initial distribution of similarity
True Pair
Noisy Correspondence

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Similarity distribution after training
True Pair
Noisy Correspondence

Figure 5: The similarity distribution. The left is the initial distribution of similarity while the right is
the similarity distribution after denoising by our method.

19

	Introduction
	Related Work
	Deep Graph Matching
	Self-Supervised Graph Learning
	Optimal Transport

	Preliminary for Optimal Transport
	Methodology
	Optimal Transport (OT) for Graph Matching
	Graph Denoising (GD) for Robust Matching
	Theoretical Analysis

	Experiments
	Experimental Settings
	Results on Graph Matching

	Conclusion
	Details for OTGM
	Proof for Theorem 1
	Details for Experiments
	Broader Impacts

