
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for AdvML-Frontiers 2023

Appendix

A. Related work
Randomized smoothing (Cohen et al., 2019) proposes to first convert any base neural network into a smoothed classifier by
injecting spherical Gaussian noises to inputs followed by majority voting, then provides a robust certificate that can guarantee
the prediction of the resulting smoothed classifier is constant within some `2-norm ball for any given input. Compared with
other robustness certification methods, the biggest advantage of the randomized smoothing framework is its scalability to
large neural networks and large-scale datasets such as classification task for ImageNet. In particular, (Cohen et al., 2019)
provided a tight robustness guarantee for randomized smoothing with `2 perturbations. Later, SmoothADV (Shafahi et al.,
2019) improved the proposed training method in (Cohen et al., 2019) by designing an adaptive attack on the smoothed
classifier using adversarial training and first-order approximations. In addition, MACER (Zhai et al., 2020) developed
a more direct way which directly optimizes the smoothed classifiers’ certified radius with respect to correctly-classified
samples using margin based loss and achieves better robustness and accuracy trade-off than previous methods.

Cost-sensitive learning deals with the situation where different misclassifications will induce different costs (Domingos,
1999; Elkan, 2001). For example, misclassifying a malicious tumor to benign (Khan et al., 2017) will bring more harmful
consequences to the patient than the reverse. In adversarial training, it’s also valuable to make the classifier adapt to
the cost-sensitive setting so that adversarial transformations with high costs will be less likely to happen. Most of the
cost-sensitive robust training methods are either could only be employed on linear classifiers or are empirical training
methods without any robust certification (Chen et al., 2021; Khan et al., 2017). (Zhang & Evans, 2018) firstly trained a
cost-sensitive certifiable classifier using convex optimization certifiable methods, however, it can not scale to large neural
network or large datasets such as ImageNet. Our work combines randomized smoothing and cost-sensitive learning to
provide more scalable classifiers with good certifiable robustness under cost-sensitive scenarios.

B. Hyperparameter Tuning
This section further studies the effect of the hyperparameters of the proposed method in Section 3.2 on the two objectives,
certified overall accuracy and cost-sensitive robustness, with respect to �1 and �2. Note that our goal is to improve cost-
sensitive robustness without sacrificing overall accuracy, where �1 controls the margin of normal classes and �2 controls
the margin of sensitive classes. In particular, we report the parameter tuning results on CIFAR-10. Here, the cost matrix
is selected as a seed-wise cost matrix with a sensitive seed class “Cat”. We choose the specific “Cat” class only for the
purpose of illustration, as we observe similar trends in our experiments for other cost matrices, similar to the results shown
in Table 1.

In addition, we consider two comparison baselines:

1. MACER (Zhai et al., 2020) with � = 8, restricting only on correctly classified examples.

2. Our method with �1 = 8 and �2 = 8, the only difference with MACER is that our method contains misclassified
examples for sensitive classes.

Below, we show the effect of �1 and �2 on the performance of our method, respectively.

Effect of �1. Note that �1 is used to restrict the certified radius with respect to normal data points. Figure 4 illustrates
the influence of varying �1 2 {4, 6, 8} and fixed �2 = 10 for our method, with comparisons to the two baselines, on both
overall accuracy and cost-sensitive robustness.

For the original implementation of MACER, � is selected as 8 for the best overall performance. Although it achieves
good overall robustness, it does not work for cost-sensitive settings, which suggests the possibility of a trade-off space,
where different classes can be balanced to achieve our desired goal of cost-sensitive robustness. The second baseline is
our method with �1 = 8 and �2 = 8. By incorporating misclassified samples for sensitive seed class, the cost-sensitive
performance substantially improvemes. This results shows the significance of including misclassified sensitive samples
during the optimization process of the certified radius.

Moreover, we can observe from Figure 4(b) that as we reduce the value of �1, the robustness performance of the cost-sensitive

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for AdvML-Frontiers 2023

(a) Overall (b) Cost-Sensitive

Figure 4. Visualizations of our method with �1 2 {4, 6, 8} and fixed �2 = 10 with comparisons to baseline methods in terms of: (a)
overall performance and (b) cost-sensitive performance. Here, the cost matrix is set as the matrix representing a single cost-sensitive seed
class “Cat”.

seed class increases. This again confirms that by limiting the certified radius of normal classes to a small threshold in our
method, the model can prioritize sensitive classes and enhance cost-sensitive robustness.

Effect of �2. Figure 5 illustrates the influence of varying �2 2 {8, 12, 16} with fixed �1 = 4 or fixed �1 = 8 for our method,
with comparisons to the two baselines, on both overall accuracy and cost-sensitive robustness. Moreover, we can observe
from Figure 5(b) and Figure 5(d) that as we increase the value of �2, the robustness performance of the cost-sensitive seed
class increases. This confirms that by optimizing the certified radius of sensitive classes to a large threshold in our method,
the model can focus more on sensitive classes and enhance cost-sensitive robustness. Additionally, there is a slight increase
in the overall certified accuracy. This can be attributed to the fact that the overall accuracy takes into account both the
accuracy of sensitive samples and normal samples. As the certified accuracy of sensitive samples increases, it dominates the
overall accuracy and leads to its overall improvement.

Table 3 demonstrates the impact of different combinations of hyperparameters of (�1, �2) on both the overall accuracy and
cost-sensitive performance. The choice of �1 and �2 is crucial and requires careful consideration. For �2, setting a value
that is too small can greatly undermine the overall accuracy, even though it may improve cost-sensitive robustness. This is
because the performance of normal classes deteriorates, resulting in a degradation of overall performance. On the other
hand, if the value is too large such as �2 = 8, it may have a negative impact on cost-sensitive performance.

Regarding �1, it is evident that increasing its value while keeping �2 fixed leads to a significant improvement in cost-sensitive
robustness. It is worth noting that even though the cost-sensitive seed class represents only a single seed, accounting for only
10% of the total classes, enhancing its robustness has a positive effect on overall accuracy as well. For instance, let’s compare
the combination (�1 = 8, �2 = 4) to (�1 = 8, �2 = 8). We observe that the former, which exhibits better cost-sensitive
robustness, outperforms the latter in terms of both overall accuracy and cost-sensitive robustness. It achieves an approximate
improvement of 1.52% in overall accuracy and a significant improvement of approximately 50% in cost-sensitive robustness.

This finding highlights the effectiveness of our sub-population-based methods. It demonstrates that by fine-tuning the
optimization thresholds for the certified radius of sensitive classes and normal classes separately, we can achieve a better
trade-off between overall accuracy and cost-sensitive robustness.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for AdvML-Frontiers 2023

(a) Overall (�1 = 4) (b) Cost-Sensitive (�1 = 4)

(c) Overall (�1 = 8) (d) Cost-Sensitive (�1 = 8)

Figure 5. Visualizations of our method for two groups comparisons to baseline methods in terms of (a)(c) overall performance and (b)(d)
cost-sensitive performance. The first with �2 2 {8, 12, 16} and fixed �1 = 4, the second with �2 2 {8, 12, 16} and fixed �1 = 8. The
cost matrix is set as the matrix representing a single cost-sensitive seed class “Cat”.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for AdvML-Frontiers 2023

Table 3. This table shows results for different parameter combinations. The evaluation metric contains the overall accuracy and sensitive
robustness. Here, the cost matrix is set as the matrix representing a single cost-sensitive seed class “Cat”.

Method sensitive normal Overall accuracy Cost-Sensitive robustness

MACER - - 0.647 0.189
Ours 8 8 0.660 0.338

Ours

8 2 0.654 0.633
10 2 0.634 0.687
12 2 0.637 0.691
16 2 0.630 0.705

Ours

8 4 0.670 0.507
10 4 0.653 0.597
12 4 0.659 0.576
16 4 0.661 0.583

Ours

8 6 0.673 0.396
10 6 0.660 0.493
12 6 0.655 0.544
16 6 0.649 0.552

Ours

8 8 0.660 0.338
10 8 0.650 0.432
12 8 0.641 0.474
16 8 0.645 0.463

C. Comparisons with Convex Relaxation-based Method
Zhang et al. (Zhang & Evans, 2018) proposed a method to certify cost-sensitive robustness of any classifier based on convex
relaxation method (Wong & Kolter, 2018), which provides a robustness guarantee for a given input via minimizing the
worst-case loss within the relaxed convex outer polytype. Also, Zhang & Evans (2018) developed a training method for
training provably cost-senstive robust classifiers. In particular, their method incorporates different types of cost matrices into
the convex optimization process to train cost-sensitive robust classifiers.

However, the initial work of (Wong & Kolter, 2018) only focuses on `1-norm bounded perturbations and does not consider
perturbations in `2-norm. As a result, the proposed method in Zhang & Evans (2018) also did not address the cost-sensitive
robustness for `2 perturbations. We note that in a follow-up work of (?), they extend the developed certification techinques
to `2 perturbations. For fair comparisons with our method, we further extend the cost-senstive robust learning method
of (Zhang & Evans, 2018) to handle `2-norm perturbations using the method of (?). We report their comparisons in Table 4,
the certified cost-sensitive robustness for the convex-relaxation method is computed as the cost-sensitive robust error defined
in (Zhang & Evans, 2018), which represents the fraction of test samples that are guaranteed to be robust to certain `2
perturbations.

Table 4. Comparison results of our method with convex relaxation based method (Zhang & Evans, 2018) for `2 perturbations, where a
single pairwise cost-sensitive transformation (3 ! 5) is considered.

Method `2 -perturbation Cost-sensitive robustness Overall accuracy

Convex relaxation (Zhang & Evans, 2018) 0.25 0.944 0.480
Ours 0.5 0.924 0.673

From Table 4, we observe our method is able to achieve much higher overall certified accuracy even against large `2
perturbations, suggesting better cost-sensitive robustness and overall accuracy trade-off. However, we find that the convex-
relaxation method is not applicable to larger `2 perturbations (e.g., with ✏ = 0.5), because of out-of-memory issues.

We remark that randomized smoothing techniques, as proposed in previous works, such as Cohen et al.(Cohen et al., 2019),

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for AdvML-Frontiers 2023

Li et al.(Li et al., 2019) and Jia et al. (Jia et al., 2019), primarily focus on defending against `2-norm perturbations. As a
result, our methods excel in achieving good cost-sensitive performance under `2-norm attacks. However, they may have
limitations when it comes to `1-norm and `1-norm attacks. To overcome these limitations and extend our method to
effectively handle these two types of attacks, further research and investigation are required.

D. Discussions of Algorithm 1
In this section, we provide further details and discussions of Algorithm 1 for certifying cost-sensitive robustness presented in
Section 2.2. We follow the same sampling procedure of Cohen et al. (Cohen et al., 2019). To be more specific, the sampling
function SAMPLEUNDERNOISE(f, x, n,�) is defined as:

1. Draw n i.i.d. samples of Gaussian noises �1 . . . �n ⇠ N (0,�2I).

2. Obtain the predictions f(x+ �1), . . . , f(x+ �n) with base classifier f on noisy images.

3. Return the counts for each class, where the count for class c is
P

i2[n] 1[f(x+ �i) = c].

Algorithm 1 introduces two approaches to compute certified radius for any cost-matrix: R1 is computed using a lower 1� ↵
confidence bound on pA, while R2 is computed using both a lower 1� ↵/2 confidence bound of pA and an upper 1� ↵/2
confidence bound of pB (see Theorem 1 in (Cohen et al., 2019)). According to Proposition 2 and Theorem 1 in (Cohen
et al., 2019), we can easily show by union bounds that with probability at least 1� ↵ over the randomness of sampling, the
final output R = max(R1, R2) returned by Algorithm 1 defines a cost-sensitive certified radius for any given input.

We remark the certification algorithm proposed in (Cohen et al., 2019) only considers the first approach for computing
the certified radius for certifying overall robustness. This is because choosing 1� ↵ provides a better confidence bound
of pA, under condition that pB is close to 1� pA, which typically holds for overall robustness. For certain cost-sensitive
matrices, however, it is possible that R2 > R1 for some input, which means R2 = max{R1, R2} will be the final output of
Algorithm 1. This is because the class probabilities for computing pB with respect to ⌦y could be very small, which may
not contain the second-highest probability class, especially when the number of cost-sensitive target classes |⌦y| is small.
To make sure we are producing certified radius as large as possible, Algorithm 1 selects the larger value between R1 and R2

as the certified radius for any cost-sensitive seed example.

