
                           Quantum Vision Transformers for Enhanced
Alzheimer’s Detection Using Variational Quantum Circuits

Aryan Singhal and Hursh Shah
VISUAL ABSTRACT

 

U
se

r 
W

o
rk

fl
o

w

25%+ misdiagnosis 
rate, high 

computational 
costs, and 

accessibility issues

ENGINEERING METHODOLOGY

INTRODUCTION

RESEARCH OBJECTIVES

STATISTICAL ANALYSIS

ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is the leading progressive form of dementia, 

affecting 6.2 million Americans aged 65 and older.

Progresses in 3 stages: Mild, Moderate, and Severe.

Early signs include Brain Atrophy 
and deterioration in Hippocampus

QUANTUM VISION TRANSFORMERS
Quantum Vision Transformers (QViTs) effectively leverage Quantum Multi-Head 

Self-Attention (QMHA) modules and variational quantum circuits (VQCs), 

significantly enhancing Vision Transformers (ViTs).

RESULTS & VALIDATION
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● Image Patching & Embedding:
○ Input split to fixed-size patches; flatten to patch embeddings.

○ Pos. embeddings maintain sequence information.

● Quantum Transformer Encoder: (detailed below).

● Multi-Layer Perceptron (MLP) Head:

○ Sequence of encoded patches —> 1-D

vector rep. for classification.

○ Learn patterns through non-linearity.

Retrieve Sliced Brain 
Segments and Prep 

Data (augment)

Jax + TensorCircuit
for Performance 

Efficiency

Build Transformer 
with Quantum 

Circuits and Layers

Model Training & 
Hyperparameter 

Optimization

Benchmark & 
Serialize Model 

w/ Pickle

Equation: El A. Cherrat defines
quantum circuit to compute a
single attention coefficient

Benchmarked Models

(1) Full analysis for early diagnosis is expensive and time-consuming.

(2) Classical models, Convolutional Neural Networks (CNNs), are computationally 

intensive, inefficient, and prone to overfitting.

(3) QViTs provide speed improvements, handle high-dimensional data effectively, 

offer better optimization, and generalize better on large amounts of data.

RESEARCH QUESTION – Can QViTs improve the accuracy and efficiency 

of Alzheimer's detection in MRI scans compared to existing deep-learning

methods such as ViTs and CNNs (ResNet-18)?

HYPOTHESIS  – Implementing a QViT architecture for Alzheimer’s disease 

diagnosis will enhance diagnostic accuracy and computational efficiency 

compared to current classical methodologies, such as ViTs and CNNs 

(ResNet-18), due to its quantum-enhanced feature extraction capabilities.

Design Criteria for Quantum Vision Transformer
Robustness:

Train model on 3 stages
of Alzheimer's + Control

and augmented data

Functionality:
Quantum extracts distinct 

features from stages of 
Alzheimer’s efficiently

Specification:
Accepts MRI imaging 

(.JPG); more accurate & 
efficient than classical

Primary Endpoints: Predict with high AUC & ROC accuracy and reduce 

training time for computational efficiency.

Secondary Endpoints: Show effectiveness of Self-Attention and FeedForward 

layers, as well as quantum circuits, for extracting complex features.

BRAINSTORMING A SOLUTION – how should we achieve the criteria?

● Curation: Utilize public datasets and data augmentation for building 

generalized datasets and robust models.

● Efficiency: Utilize efficient frameworks (Jax,  PyTorch, TensorCircuit, 

PennyLane) and reduced parameters for faster computation.

● Quantum Implementation: Angle embedding for encoding images into 

quantum states with parameterized Rotation-X (RX) gates. Series of 

VQCs entangled through Controlled-NOT (CNOT) across qubits.

Radiologists primarily use Magnetic Resonance 
Imaging (MRI) for non-intrusive detection.

However, radiologist expertise, high costs, and 

accessibility issues lead to a 25% misdiagnosis rate 

(2022), causing memory loss & poor judgement.

1. Initial conditions in 
Hippocampus and Cortex

2. Accurate diagnosis 
and forecasting

3. Personalized treatments 
for AD patients

Fig 1. QViT Confusion Matrix (Binary) Fig 2. QViT ROC Curve (Binary)
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Data Curation & Preparation
Retrieve brain MRI scans and segment:
● Binary Classification: 130K+ images from OASIS.

○ Sliced along z-axis into pieces ranging from 100 - 160.

○ Upsampled from 86K+ —> 130K+ to balance classes.

● Multi Classification: 40K+ images compiled (ADNI & NACC).

○ 4 classes of severity: very mild demented, mild demented, 

moderately demented, and non demented.

● 80% for training, 20% for val/test.

QML Framework Performance Comparison

Binary Synthetic Dataset Upscaling & Preparation
67K+ Healthy

19K+ Demented

Augmentation 
(rotations, flips) 

applied for

model 
robustness

Our research demonstrates that QViTs come with significant benefits: (1) nuanced 
detection of early Alzheimer’s features, (2) quick training and evaluation 
(shortening diagnosis by months), (3) on-site diagnosis without a specialist, and (4) 
universal architecture furthering QViT research. Reflecting its state-of-the-art 
(SOTA) capabilities, we have named our model QViSTA .

Engineering Criteria:
● Surpassed benchmarks in robustness, enhanced feature identification via 

quantum parallelism, and broadened specifications for MRI and PET scans, 
setting new standards for future research.

● QViTs are easy to use in hospitals with 97.6% accuracy, superior to human 
specialists (75%), and offering time that is 460% faster than benchmarks.

Research Impacts:
● SOTA model for Alzheimer’s detection in both early detection and accurate 

diagnosis by outperforming current SOTA published in Harvard from 2023 
(97.6% vs. 90.1%) and our benchmarks.

● Universal parameters identified present paradigm shift for nascent QViT field.

● Multi-classification architecture allows for finer classification such as low, 
medium and high risks, advancing early detection.

Hospital Impacts:
● Healthcare specialists agreed QViTs help mitigate shortage of medical workers.

● Accelerates turnaround time for diagnosis, needing only one MRI scan and 3.5 
hours vs. multiple months.

● SOTA in early detection means identifying Alzheimer's variations confidently is 
easier for QViT than a specialist, potentially preventing 40% of Alzheimer’s.

Augmentation applied 

& used to create 
new images

Takes magnitude of input into 

account and is smoother than 

other functions (ELU & RELU), 

helping distinguish nuanced 

patterns of MRI images.

Quantum Vision Transformer Architecture

Fig 3. QViT Confusion Matrix (Multi) Fig 4. QViT ROC Curve (Multi)
Our results have been very promising thus far. However, we have many ideas of 
future investigations to conduct to extend our current stage of research:
● Multimodality! Create a multimodal QVT to improve accuracy by considering 

other aspects such as patient history.
● Implement PET scans and MRI into our data - improves early detection due to 

PET scans being able to determine chemical changes in the brain.
● Finally, implement in hospitals! Real-world testing is the final step to 

determining the true success of our novel technologies.
Not possible yet due to data availability:
● Apply Quantum-Inspired Acromyrmex Evolutionary Algorithm (QIAEA) for 

time-series analysis of Alzheimer’s (determining the development of 
Alzheimer’s in the patient after detection).

ViT Conf. Matrix
Binary Multi

ResNet-18 Conf. Matrix

ViT ROC Curve ResNet-18 ROC Curve

Multiclass:  For macro F1-Score, QViT scored 63.33%, exceeding benchmarks by 
6.7% and 7.62%. For ROC curve, the earliest stage of Alzheimer's (Very Mild) 
scored .66 highlighting the need for more data to improve accuracy. Moderate 
Alzheimer’s scored .96, matching our understanding that moderate is the norm, 
and early detection is new territory. 

● Linear warmup and cosine decay to find optimal learning rate.

● AdamW & gradient clipping to optimize reduce overfitting.

● Iterated through trainable hyperparameters for further tuning.

● Jax gradient function tuned for optimal angle of quantum layer.

Quantum Layer
1) Angle Embedding:

● Maps classical input data to quantum states.

● Applying rotations around X-Axis to each qubit based on value of input features.

Comparing quantum libraries and frameworks (Jax, PyTorch, 

PennyLane, TensorCircuit) to identify the most efficient, 

evaluating MLP-5/20 and ViT for time and AUC accuracy.

Model Fine Tuning

Fig 8. Backend & QML framework comparisons

Fig 7. Training time per epoch for models on Binary dataset

2) Variational Quantum Circuit (VQC):
● Constructs parameterized quantum layers. Configuration consists of 4 circuits.

● Rotations Rotation-X gates to each qubit, with angles as learnable weights.

● Ring of CNOT gates for entanglement across qubits. 2 qubits: single CNOT

between them. >2 qubits: chain of CNOTs, ring like entanglement structure.

● Weights are tunable params.

allowing the circuit minimize

cost effectively while training.

QViT Encoder

We conducted an in-depth statistical analysis to quantify and verify the 

performance of our QViT. Testing conducted on 17K+ sample MRI images.

● Quantum Multi-Head Attention (QMHA): Replaces linear 
projections with quantum circuits (QC)  to calculate attention scores.

● Normalization (Norm): Applied post-attention to stabilize layer 
outputs. Facilitates faster and more stable training of deep networks.

● Quantum MLP (QMLP): Utilizes quantum circuits as analogs to 
dense layers in feed-forward networks.

● Skip Connections (Plus Sign): Pathways for gradients during 
backpropagation, mitigating vanishing gradient.

Unbalance
d Dataset 

(86K+)

Balanced  
Dataset 
(130K+)

GELU Activation Function

Approach Training Time 

QViT 3.5 hours

ViT 4.5 hours

CNN 16 hours

Specialist Weeks/Months

F1-Score Figures 1-4 demonstrate that QViT has strong performance 
on the F1-Score and ROC curve metrics.

Binary:  For F1-Score, QViT scored 90.61%, exceeding 
benchmarks by nearly 10%. For ROC curve, QViT had an

Figure 8: Statistical looping analysis 

determining Jax backend + TensorCircuit 
QML framework as the optimal tools for 

training QViTs.

area of 97.53%, surpassing benchmarks by 3% and 7%. This implies a minimal 
tradeoff between false positives and negatives.

Figure 7: QViT initially slower than ViT but 

outpaced within 8 epochs, surpassing

ViT’s by 25% and CNN’s by 460%.

TPR (True Positive Rate) FPR (False Positive Rate)

ROC Area Determination
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