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detection of early Alzheimer’s features, (2) quick training and evaluation

(shortening diagnosis by months), (3) on-site diagnosis without a specialist, and (4)
universal architecture furthering QViT research. Reflecting its state-of-the-art
(SOTA) capabilities, we have named our model QViSTA.

e Maps classical input data to quantum states.

e Applying rotations around X-Axis to each qubit based on value of input features.
e |[terated through trainable hyperparameters for further tuning. 2) Variational Quantum Circuit (VQC):

However, radiologist expertise, high costs, and
accessibility issues lead to a 25% misdiagnosis rate
(2022), causing memory loss & poor judgement.

e AdamW & gradient clipping to optimize reduce overfitting.
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Classical models, Convolutional Neural Networks (CNNs), are computationally
intensive, inefficient, and prone to overfitting.
(3) QViTs provide speed improvements, handle high-dimensional data effectively,

e Universal parameters identified present paradigm shift for nascent QViT field.

e Multi-classification architecture allows for finer classification such as low,
medium and high risks, advancing early detection.

RESULTS & VALIDATION

Fig 2. QViT ROC Curve (Binary) ROC Area Determination

Fig 1. QViT Confusion Matrix (Binary)
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compared to current classical methodologies, such as ViTs and CNNs
(ResNet-18), due to its quantum-enhanced feature extraction capabilities.
Design Criteria for Quantum Vision Transformer
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future investigations to conduct to extend our current stage of research:
e Multimodality! Create a multimodal QVT to improve accuracy by considering
other aspects such as patient history.
e |[mplement PET scans and MRI into our data - improves early detection due to
PET scans being able to determine chemical changes in the brain.
e Finally,implement in hospitals! Real-world testing is the final step to
determining the true success of our novel technologies.
Not possible yet due to data availability:
e Apply Quantum-Inspired Acromyrmex Evolutionary Algorithm (QIAEA) for
time-series analysis of Alzheimer’s (determining the development of
Alzheimer’s in the patient after detection).
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Fig 3. QViT Confusion Matrix (Multi) Fig 4. QViT ROC Curve (Multi)
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Primary Endpoints: Predict with high AUC & ROC accuracy and reduce

training time for computational efficiency.

Secondary Endpoints: Show effectiveness of Self-Attention and FeedForward

layers, as well as quantum circuits, for extracting complex features.

BRAINSTORMING A SOLUTION - how should we achieve the criteria?

e Curation: Utilize public datasets and data augmentation for building
generalized datasets and robust models.

e Efficiency: Utilize efficient frameworks (Jax, PyTorch, TensorCircuit,
PennyLane) and reduced parameters for faster computation.
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Fig 8. Backend & QML framework comparisons
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