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ABSTRACT

Multiple Instance Learning (MIL) in digital pathology Whole Slide Image (WSI)
analysis has shown significant progress. However, due to data bias and unobserv-
able confounders, this paradigm still faces challenges in terms of performance and
interpretability. Existing MIL methods might identify patches that do not have
true diagnostic significance, leading to false correlations, and experience difficul-
ties in integrating multi-scale features and handling unobservable confounders.
To address these issues, we propose a new Multi-Scale Frequency Domain Causal
framework (MFC). This framework employs an adaptive memory module to es-
timate the overall data distribution through multi-scale frequency-domain infor-
mation during training and simulates causal interventions based on this distribu-
tion to mitigate confounders in pathological diagnosis tasks. The framework in-
tegrates the Multi-scale Spatial Representation Module (MSRM), Frequency Do-
main Structure Representation Module (FSRM), and Causal Memory Interven-
tion Module (CMIM) to enhance the model’s performance and interpretability.
Furthermore, the plug-and-play nature of this framework allows it to be broadly
applied across various models. Experimental results on Camelyon16 and TCGA-
NSCLC dataset show that, compared to previous work, our method has signifi-
cantly improved accuracy and generalization ability, providing a new theoretical
perspective for medical image analysis and potentially advancing the field further.

1 INTRODUCTION

The classification of Whole Slide Images (WSIs) involves the use of automated techniques to ex-
tract critical features from pathological slides and perform classification, thereby aiding in disease
diagnosis Litjens et al. (2017). This technology has the potential to enhance diagnostic efficiency
and accuracy while reducing human error, which is particularly crucial for the early detection of
cancer Madabhushi & Lee (2016). However, this task is challenging due to the high resolution of
the images, which can contain billions of pixels, with diagnostically relevant regions often compris-
ing only a small portion. This complexity complicates the process of feature identification Komura
& Ishikawa (2018). Furthermore, variations in staining techniques and other sources of noise in the
images can introduce model bias and lead to misclassification Srinidhi et al. (2021).

To address these challenges, multiple instance learning (MIL) methods have been developed for
the classification of WSIs. MIL methods reduce the computational requirements of WSI by select-
ing multiple diagnostically relevant patches to represent the entire image, demonstrated in extensive
tasks Ilse et al. (2018); Shao et al. (2021); Yao et al. (2019; 2020); Xu et al. (2019). Moreover, strate-
gies for selecting these relevant patches help minimize the impact of noise, thereby improving the
model’s effectiveness Zheng et al. (2024). However, the inclusion of redundant, irrelevant informa-
tion can introduce data biases, potentially causing these methods to mistakenly associate non-causal
features with diagnostic outcomes as confounders, leading to erroneous conclusions Schwab et al.
(2019); Chen et al. (2023).

Spurious correlations are caused by confounders that, while co-occurring with disease states in the
data, do not have a direct causal relationship with disease outcomes Pearl & Mackenzie (2018); Liu
et al. (2022b). As illustrated in Figure 1 (a), if positive and negative samples in the training set
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are predominantly associated with specific colors, the model may incorrectly associate color with
pathological categories, leading to spurious correlations. Consequently, when positive samples in
the test set share the same color as negative samples, the model may misclassify them due to these
previously established spurious correlations. The Structural Causal Model (SCM) analysis Pearl
et al. (2016) suggests that this error occurs because the model fails to correctly follow the causal
link X → Y , instead relying on an incorrect causal path, X ← Z → Y , as shown in Figure 1 (b).

To eliminate these spurious correlations, IBMIL Lin et al. (2023) utilize causal back-door interven-
tions by estimating and removing confounders Z to reduce bias, as shown in Figure 1 (c). However,
the two-step training strategy used in IBMIL increases both the complexity and computational cost
of the methods. Similarly, CaMIL Chen et al. (2024) adopt the front-door intervention for decon-
founding with the estimation of mediator M as shown in Figure 1 (d). However, CaMIL relies on
preprocessed features to represent the overall distribution of the dataset and requires time-consuming
feature clustering processes. Moreover, through in-depth analysis of pathological diagnosis, we find
that tissue structure at low magnification and cellular structure at high magnification is critical for
accurate diagnosis Schmitz et al. (2021). Existing methods generally handle features from a sin-
gle magnification or rely on preprocessed multi-magnification features, which not only increase
computational complexity but also hinder the comprehensive capture of spatial relationships across
multiple levels Li et al. (2021). Additionally, current structural information extraction methods are
often vulnerable to interference from image staining techniques and color contrast, leading to mis-
classifications Vahadane et al. (2016); Tellez et al. (2019).

To address these challenges, we propose the Multi-Scale Frequency Domain Causal (MFC) frame-
work, which consists of three key components: the Causal Memory Intervention Module (CMIM),
the Multiscale Spatial Representation Module (MSRM), and the Frequency-domain Structural Rep-
resentation Module (FSRM), as illustrated in Figure 1 (e). The CMIM is designed to mitigate data
bias by preventing the model from relying on spurious correlations for decision-making. By pre-
serving critical diagnostic features as learnable memory features, CMIM facilitates plug-and-play
causal interventions, eliminating unobservable confounders’ misleading effects. The MSRM ad-
dresses the challenge of integrating multilevel information by combining positional encoding with
multiscale large-kernel convolutions, enabling the model to capture the spatial relationships between
low-magnification tissue structures and high-magnification cellular structures, thereby enhancing
its ability to represent multilevel features. Finally, the FSRM integrates phase information in the
frequency domain to reduce interference from staining techniques and color contrast, extracting
structural information that is directly related to diagnostic outcomes. Together, these three modules
enable the MFC framework to perform pathology image classification tasks with greater accuracy
and robustness.

2 RELATED WORK

2.1 MULTIPLE INSTANCE LEARNING

In the task of WSI classification, Multiple Instance Learning (MIL) methods have become the pre-
dominant approach for handling high-resolution pathology images by segmenting them into multiple
patches and aggregating these patches at the bag level to achieve efficient classification Ilse et al.
(2018); Li et al. (2021); Shao et al. (2021); Zhang et al. (2022). These methods utilize various
aggregation strategies and attention mechanisms to enhance the model’s ability to capture criti-
cal information, thereby improving classification performance. However, they still face limitations
in accurately selecting instances and recognizing complex pathological features, particularly when
dealing with heterogeneous data, which can lead to information loss or misclassification. To address
these issues, researchers have proposed several enhancements, such as optimizing instance selection
to improve the efficiency of utilizing critical patches Lu et al. (2021); Zheng et al. (2024), applying
stain normalization techniques to reduce color variation between samples Tellez et al. (2019), and
enhancing model adaptability across different datasets through domain generalization Stacke et al.
(2020). While these improvements often increase robustness and generalization, they also tend to
add computational complexity and still fall short of effectively integrating multilevel pathological
information Li et al. (2021). In contrast, our proposed approach introduces multilevel spatial repre-
sentation and causal intervention mechanisms, which not only simplify the model architecture but
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Figure 1: (a) WSI sample. (b-d) Causal diagrams for no intervention, back-door intervention,
and front-door intervention. (e)We propose Multi-Scale Frequency Domain Causal Multi-Instance
Learning (MFC-MIL), a MFC framework that is plug-and-play compatible with various MIL models

also effectively address challenges arising from spurious correlations and complex feature integra-
tion, significantly improving both accuracy and generalization capabilities.

2.2 CAUSAL INFERENCE

In medical image analysis, causal intervention methods aim to explicitly model and intervene in
causal relationships to reduce the model’s reliance on spurious correlations, thereby improving di-
agnostic accuracy Castro et al. (2020). These approaches typically involve identifying and adjusting
for potential confounders Nie et al. (2023); Lin et al. (2022) or mediators Chen et al. (2023) to
correct spurious correlations caused by bias during inference, leading to a more accurate capture of
causal relationships relevant to disease outcomes. In WSI classification, IBMIL Lin et al. (2023)
and CaMIL Chen et al. (2024) are two prominent causal intervention strategies. IBMIL employs
a back-door intervention to eliminate the influence of confounders on classification results, but its
two-stage training process is complex and requires the prior identification and maintenance of a
confounder set, increasing implementation difficulty. CaMIL, by contrast, uses a front-door in-
tervention strategy to remove unobservable confounders via mediators. However, its reliance on
clustering methods to select mediators during training increases computational time and may re-
duce the interpretability of the mediators. In contrast, our approach combines multilevel spatial
representation with frequency-domain structural representation as mediators, simplifying the train-
ing process by avoiding cumbersome feature clustering and complex confounder management. This
not only enhances computational efficiency but also improves the model’s causal interpretability and
classification accuracy.

3 METHOD

In this section, we first introduce the Causal Memory Intervention Module (CMIM), followed by
a discussion of two key representation modules: the Multiscale Spatial Representation Module
(MSRM) and the Frequency-domain Structural Representation Module (FSRM). We then explain
how MSRM and FSRM are integrated into the MIL framework and how CMIM is utilized for causal
intervention.

3.1 CAUSAL MEMORY INTERVENTION MODULE

MIL models for WSI classification are tasked with detecting the presence of positive instances
within a bag containing numerous instances. If at least one positive instance is present, the
bag is classified as positive; otherwise, it is classified as negative. We assume that S =
(p1, y1), (p2, y2), . . . , (pn, yn) represents a WSI sample S containing n patches p, with correspond-
ing instance labels y. The bag label Y can then be formulated as follows:

Y =

{
0, iff

∑
yi = 0

1, otherwise
(1)

Since the instance-level labels are usually unavailable, we must estimate the bag-level label based on
the predicted instance-level labels. Specifically, in the MIL framework, the process involves using a
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Figure 2: The illustration of our proposed modules in MFC-MIL, including the Causal Memory
Intervention Module and Multiscale Spatial Representation Module.

frozen visual encoder f(·) to map patch-level images into low-dimensional feature representations,
which constitutes the feature extraction step. An aggregation module θa(·) is then employed to
combine these instance-level features into a bag-level representation, followed by a classification
module θc(·) to estimate the bag-level label Y , as formulated as:

Y = θc(θa(x1, x2, ..., xn)), xi = f(pi). (2)

However, due to the presence of confounders, the non-causal model does not follow the correct
causal path X → Y for prediction. Instead, it relies on spurious correlations established by the
confounders, following the incorrect path X ← Z → Y , which can be formulated as:

P (Y |X) =
∑
z

P (Y |X,Z = z)P (Z = z|X), (3)

where, X = {x1, x2, ..., xn} represents the patch-level features and Z represents the confounders
that lead to spurious correlations, which are typically difficult to estimate, especially in the absence
of a well-trained semantic extractor. Therefore, the features generated by the aggregator θa are
treated as the mediators, and the do-operator do(·) is introduced to apply causal front-door inter-
vention for deconfounding, effectively cutting off the link X ← Z → Y . The total probability
P (Y |do(X)) can be expressed as the following summation:

P (Y |do(X)) =
∑
m

P (Y |do(X),M = m)P (M = m|do(X)), (4)

where, M is introduced by X without any back-door path, and there is no direct causal relationship
between X and Y . Additionally, the link M ← X ← Z → Y can be further severed to achieve
deconfounding. Finally, the Eq. 4 can be rewritten as follows:

P (Y |do(X)) =
∑
m

P (M = m|X = x)
∑
x̂

P (X = x̂)P (Y |X = x̂,M = m). (5)

where x̂ represents the potential estimated values selected from x. The detailed derivation can be
found in the Appendix A.1. However, previous methods typically use clustering to estimate x̂,
which significantly hinders computational efficiency. Therefore, we propose utilizing a memory
module to estimate the overall distribution of the dataset during training and to refine the estimation
of x̂ through attention-based sampling. Specifically, a set of trainable parameters with length k
is initialized as memory and combined with attention-weighted inputs to select relevant memory
elements. This selected memory is then further sampled and used as x̂ in the front-door intervention,
as illustrated in Figure 2 (a), (more detail can be found in Appendix ??). Finally, we employ the
Normalized Weighted Geometric Mean (NWGM) Liu et al. (2022a) to estimate the equation.

3.2 MULTISCALE SPATIAL REPRESENTATION MODULE

After implementing CMIM, we further refined the estimation of the mediator, particularly by in-
tegrating low-magnification tissue information with high-magnification cellular information, which
are both crucial in the diagnostic process. We propose the Multiscale Spatial Representation Mod-
ule (MSRM), which first applies Position-aware Patch Embedding Generation (PPEG) Shao et al.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(2021) for multiscale positional encoding, followed by sampling with multiple large-kernel convo-
lutions, as illustrated in Figure 2 (b).

Specifically, X ∈ R{N,D} is padded using the sampled patches in the PPEG and reshaped to
X ∈ R{D,

Np
2 ,

Np
2 }, where N represents the number of patches in the current slide, D is the model

dimension, and Np is the number of patches after padding. After passing through 2D convolutional
layers with kernel sizes of 7, 3 and 5, the padding is removed, and the original dimensions are re-
stored, resulting in high-resolution features Xhl ∈ R{N,D}. Then, three 1D convolutional layers,
each with a kernel size of 16, are applied with dilation rates of 1, 3 and 5 to extract features with
multiscale receptive fields. This process can be formalized as follows:

Xll = Linear(Conv1(Xhl) + Conv2(Xhl) + Conv3(Xhl) +MaxPooling(Xhl)) (6)

Here, Xll ∈ R{ N
16 ,D} represents the low-magnification information obtained through sampling,

while the MaxPooling layer is used as a residual connection to provide additional information about
tissue contours. Additionally, the joint dimension between the convolutional layer and linear is Dj

3.3 FREQUENCY-DOMAIN STRUCTURAL REPRESENTATION MODULE

The Hilbert transform is a fundamental tool in signal processing and analysis, used to derive the
analytic representation of a real-valued signal. By applying the Hilbert transform to a signal x(t),
we obtain a complex-valued function xa(t), where the original signal forms the real part, and the
Hilbert transform provides the imaginary part. The analytic signal xa(t) can be expressed as:

xa(t) = x(t) + jx̂(t) (7)

where x̂(t) is the Hilbert transform of x(t) given by:

x̂(t) =
1

π
P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ (8)

P.V. denotes the Cauchy principal value of the integral.

In this complex representation, the real part x(t) retains the original amplitude information of the
signal, representing its observable component. The imaginary part x̂(t), on the other hand, provides
the quadrature component, which is essential for understanding the signal’s phase characteristics.
Importantly, the imaginary part x̂(t) is the 90-degree phase-shifted version of the real part x(t).
This can be illustrated as:

x̂(t) = x(t) · ej π
2 (9)

By combining the real and imaginary parts, we can fully characterize the signal’s instantaneous
amplitude and phase.

The Frequency-domain Structural Representation Module (FSRM) addresses the need to extract nu-
anced and informative features from Whole Slide Images (WSIs) to enhance classification accuracy.
Traditional spatial-domain methods often fail to capture subtle pathological indicators, risking the
loss of critical diagnostic information. By employing frequency-domain analysis, the FSRM reveals
hidden patterns and relationships within image data that may not be evident in the spatial represen-
tation. This capability is particularly advantageous in WSI analysis, where complex tissue structures
and cellular arrangements exhibit distinctive frequency signatures.

The FSRM comprises several key components working in concert. First, an input projection layer
maps initial features to an appropriate dimensional space, preparing them for frequency-domain
transformation. The Hilbert transform, at the module’s core, extracts the analytic signal, providing a
detailed representation of both magnitude and phase information. An optional phase extraction step
can isolate phase components, which often encapsulate crucial structural details. The transformed
features are subsequently mapped back to the original dimensional space via an output projection
layer. To maintain original feature information and support gradient flow during training, a residual
connection is integrated.

The overall transformation function F : Rd → Rd is defined as:

F (x) = x+ g(H(f(x))) (10)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where: f : Rd → R512 is the input linear mapping f(x) = W1x+ b1 and
g : R512 → Rd is the output linear mapping g(x) = W2x+b2. H is the Hilbert transform operator.
The final output can be expressed as: y = x + g(H(f(x))) = x + W2(H(W1x + b1)) + b2.
This design allows the FSRM to enhance feature representation by capturing complex structural and
textural variations critical for robust WSI classification.

4 EXPERIMENT

4.1 DATASET AND METRIC

The Camelyon16 dataset Bejnordi et al. (2017) is widely used for detecting breast cancer metastases.
It comprises 270 training and 129 testing images, segmented into about 3.2 million patches of 256 ×
256 pixels at 20× magnification, averaging 8,000 patches per slide. Meanwhile, the TCGA-NSCLC
dataset focuses on two lung cancer subtypes, LUSC and LUAD, with 1,054 whole slide images. It
is divided into training, validation, and test sets in a 7:1:2 ratio, yielding 5.2 million patches at 20×
magnification, with about 5,000 patches per slide.

To evaluate the effectiveness of our approach, we apply four key metrics for classification perfor-
mance: accuracy, F1 score, specificity, and the area under the receiver operating characteristic curve
(AUC). These metrics provide a comprehensive assessment of the method’s overall performance.

4.2 IMPLEMENTATION SETTINGS

In the feature extraction process, we employed a CNN-based ResNet18, with parameters pre-trained
using SimCLR as part of the DSMIL framework. The model operates with a dimension of 512,
while the value of k in CMIM is set to 16 for high-resolution features and 32 for low-resolution
features. For most experiments, we used the Adam optimizer with an initial learning rate of 2e-4
and a weight decay of 5e-4. Additionally, our MFC estimates the mediator using patch-level features
and applies it to intervene in the aggregated bag-level prediction vector. The mini-batch size used
for training is 1, and the model is trained for 100 epochs. All experiments were conducted on an
NVIDIA GeForce RTX 2080Ti.

4.3 BASELINE

ABMIL Ilse et al. (2018) enhances multi-instance learning through attention mechanisms, focus-
ing on critical image regions to improve pathological classification performance. DSMIL Li et al.
(2021) employs a dual-stream network structure with self-supervised contrastive learning to en-
hance the accuracy of whole-slide image classification. TransMIL Shao et al. (2021) utilizes a
transformer-based approach for relevant multi-instance learning, aiming to better capture key infor-
mation within images. CLAM Chen et al. (2024) leverages clustering-constrained attention-based
multiple instance learning to enable efficient, interpretable, and adaptable slide-level pathology clas-
sification without manual annotations. DTFD-MIL Zhang et al. (2022) leverages a dual-layer fea-
ture distillation strategy for multi-instance learning, optimizing the performance of tissue pathology
classification for whole-slide images.

4.4 EXPERIMENT RESULT

Table 1 presents the results of our WSI classification experiments on two benchmark datasets, Came-
lyon16 and TCGA-NSCLC, using 5-fold cross-validation. Overall, all MIL methods showed sig-
nificant improvement after applying the MFC framework, demonstrating the effectiveness of our
approach. Specifically, the DSMIL method, which models multiscale features, achieved an aver-
age accuracy gain of 5.27% on Camelyon16 and 2.08% on TCGA-NSCLC. This indicates that the
proposed MFC framework can more effectively leverage multiscale information. Moreover, we ob-
served that the performance improvements on the Camelyon16 dataset were generally greater than
those on the TCGA-NSCLC dataset, consistent with the findings from IBMIL Lin et al. (2022).
This can be attributed to the more severe data bias in the Camelyon16 dataset, where positive bags
contain only a small fraction of positive instances (approximately less than 10%). This difference
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Camelyon16 TCGA-NSCLC
Method ACC AUC F1 Spe. Method ACC AUC F1 Spe.
ABMIL 88.84(2.49) 95.65(1.85) 84.40(4.16) 93.75(7.81) ABMIL 91.38(1.88) 99.10(0.06) 90.72(2.3) 98.00(1.17)
+ MFC 91.78(1.87) 97.68(0.29) 88.94(2.07) 95.00(4.76) + MFC 92.23(1.03) 99.24(0.26) 91.70(1.24) 98.46(0.54)
∆ +2.94 +2.03 +4.54 +1.25 ∆ +0.85 +0.14 +0.98 +0.46

DSMIL 86.98(4.73) 94.95(4.43) 79.41(9.11) 98.00(2.88) DSMIL 89.61(1.72) 96.75(0.13) 88.61(2.02) 98.46(0.34)
+ MFC 92.25(2.33) 95.41(1.12) 89.13(3.42) 97.25(1.63) + MFC 91.69(1.04) 98.95(0.13) 91.20(1.31) 98.08(1.84)
∆ +5.27 +0.46 +9.72 -0.75 ∆ +2.08 +2.2 +2.59 -0.38

TransMIL 84.50(2.74) 94.88(1.73) 80.90(1.58) 83.50(10.25) TransMIL 91.54(2.39) 98.44(0.52) 90.93(2.87) 97.38(2.01)
+ MFC 90.85(1.18) 97.68(1.07) 88.00(1.13) 92.75(5.77) + MFC 92.85(0.97) 98.98(0.12) 92.50(1.13) 97.53(0.69)
∆ +6.35 +2.80 +7.10 +9.25 ∆ +1.31 +0.54 +1.07 +0.15

CLAM-SB 86.67(7.09) 96.89(1.44) 84.30(5.51) 84.75(16.04) CLAM-SB 90.85(1.60) 99.05(0.12) 90.12(1.95) 97.85(0.84)
+ MFC 89.77(1.93) 96.11(1.24) 85.87(2.10) 88.50(3.99) + MFC 91.31(0.89) 99.22(0.16) 90.67(1.07) 98.00(0.69)
∆ +2.01 -0.69 +1.57 +3.75 ∆ +0.46 +0.17 +0.55 +0.15

CLAM-MB 88.99(2.65) 97.65(0.32) 85.18(3.82) 82.00(9.91) CLAM-MB 91.22(2.91) 99.01(0.08) 90.85(3.56) 97.99(0.54)
+ MFC 91.94(0.55) 97.29(0.52) 88.44(0.75) 98.50(1.63) + MFC 91.85(1.42) 99.10(0.11) 91.40(1.91) 98.46(4.35)
∆ +2.95 -0.36 +3.26 +16.5 ∆ +0.63 +0.09 +0.55 +0.47

DTFD (MaxS) 85.89(13.40) 97.59(0.07) 71.41(39.94) 95.00(4.05) DTFD (MaxS) 81.31(0.75) 88.52(0.04) 80.32(0.58) 86.31(2.95)
+ MFC 92.09(1.77) 97.65(0.22) 88.62(2.89) 98.50(2.71) + MFC 91.23(1.66) 98.88(0.07) 90.54(2.06) 98.15(0.88)
∆ +6.2 +0.06 +17.21 +3.5 ∆ +9.92 +10.36 +10.22 +11.84

Table 1: Main result (%) on Camelyon16 and TCGA-NSCLC, the value in parentheses is the stan-
dard deviation of the 5-fold cross-validation..

Method ACC AUC Pre. Rec. F1 Spe.
Baseline 86.98 94.95 96.14 68.98 79.41 98.00
IBMIL 91.78 96.31 94.85 83.67 88.50 96.75

MFC-MIL 92.25 95.41 94.96 84.08 89.13 97.25

Table 2: Comparison of the results (%) of our MFC-MIL and IBMIL on the Camelyon16 dataset,
and the baseline is DSMIL.

CMIM MSRM FSRM ACC AUC Pre. Rec. F1 Spe.
84.50 94.88 78.01 86.12 80.90 83.50√
88.37 97.53 89.92 81.63 83.78 92.50√ √
89.46 97.61 91.61 81.63 85.45 94.25√ √ √
90.85 97.68 89.25 87.76 88.00 92.75

Table 3: Ablation result (%) of MFC-MIL on Camelyon16 dataset, and the baseline model is Trans-
MIL.

further highlights the ability of MFC to effectively identify multiscale structural information (the
mediators), that is relevant to diagnosis and to intervene in bag-level predictions.

Additionally, it can be observed that our MFC framework significantly improves accuracy and the
F1 metric, while the enhancement in the AUC metric is relatively minor. Notably, in methods such
as CLAM-SB and CLAM-MB on the Camelyon16 dataset, the performance is worse compared to
the baseline in terms of AUC, despite substantial improvements in other metrics. This suggests that
MFC alters the sample distribution in the data, such that the model better handles certain boundary
samples, leading to increases in F1 and specificity. However, the handling of non-boundary samples
is less balanced than before, which could negatively impact the overall AUC performance. This
effect is particularly pronounced in high-dimensional, complex data such as pathological image
classification, where the treatment of boundary and misclassified samples may significantly affect
specific metrics. Since AUC provides a more comprehensive evaluation, it is likely more sensitive
to these subtle changes, especially when the baseline model already performs well on this metric.

Furthermore, we reproduced the IBMIL model and conducted a five-fold cross-validation using
DSMIL as the baseline on the Camelyon16 dataset. As shown in the table, our method consistently
outperforms IBMIL, even though IBMIL also surpasses the baseline’s performance. However, as
previously mentioned, while MFC effectively handles certain boundary samples and further im-
proves accuracy and the F1 metric, it also results in a suboptimal performance in the AUC metric.

4.5 ABLATION STUDIES

To further evaluate the effectiveness of our method, we conducted detailed and comprehensive ab-
lation experiments, including the removal of individual modules and tests on key parameter settings
for each module.
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(a) (b)

Figure 3: Ablation studies of the memory number k of xhl (shown as (a)) and xll (shown as (b)) for
CMIM on Camelyon16 dataset, and the baseline is TransMIL.

Joint Dimension of MSRM Frequency Information Extraction of FSRM
size of Dj ACC AUC F1 Spe. Method ACC AUC F1 Spe.
Baseline 84.50 94.88 80.90 83.50 Baseline 84.50 94.88 80.90 83.50

512 90.85 97.68 88.00 92.75 FFT 88.37 91.66 83.52 95.00
1024 89.92 97.88 87.62 87.5 DCT 89.15 92.19 84.44 96.25
2048 87.6 97.3 80.49 100 DWT 89.15 97.93 83.72 98.75
4096 84.5 97.73 82.46 77.5 Hilbert transform 90.85 97.68 88.00 92.75

Table 4: Ablation result of MSRM and FSRM on Camelyon16 dataset, and the baseline is TransMIL.

4.5.1 EFFECTIVENESS OF CMIM

As shown in Table 3, the CMIM model significantly outperforms the baseline, particularly exhibiting
an improvement of nearly 10% in the specificity metric. This suggests that CMIM is more effective
in capturing causal features, especially in distinguishing negative samples. However, the enhanced
performance on negative samples shifts the decision boundary, making the identification of positive
samples more conservative, which in turn leads to a decrease in recall.

To further investigate the impact of the memory mechanism in CMIM, we conducted an experi-
mental analysis of the number of memory slots, denoted as k, within the MFC-MIL framework.
Specifically, we input cellular structural features (xhl) and tissue structural features (xll) into the
memory module, utilizing the activated memory for front-door intervention. In these experiments,
we fixed the memory slot count for xll at 32 and varied the memory slots for xhl at 4, 8, 16, 32,
and 48. As shown in Figure 3 (a), the model’s performance improved steadily when k ranged from
4 to 16, suggesting that increasing the number of memory slots enhances the model’s ability to
capture cell-level pathological features. However, when k increased to 32 or 48, performance de-
clined, implying that an excessive number of memory slots may introduce redundant information. In
high-dimensional feature spaces, this could result in capturing noise or irrelevant features, leading
to overfitting and reduced generalization capacity.

Furthermore, in experiments where xhl was fixed at 16 memory slots while varying the memory
slot count for xll (Figure 3 (b)), a similar trend was observed. Both ACC and AUC improved as k
increased from 4 to 16 but declined when k reached 48. Interestingly, the F1 and specificity metrics
followed an opposite pattern. This may be due to xll representing global tissue-level structural
information, which emphasizes macroscopic pathological structures. At lower magnifications, the
model better distinguishes normal tissues, resulting in a significant increase in specificity. However,
as the reliance on global information grows, the model’s sensitivity to subtle cell-level pathological
features diminishes, leading to more false negatives. This explains why, at higher k values, F1 scores
decrease while specificity remains high, approaching 100%.

4.5.2 EFFECTIVENESS OF MSRM

As shown in Table 3, the MSRM module effectively captures information across different scales,
from local details to global structures, by processing features at multiple scales. This multi-scale
feature integration significantly improves the model’s performance, particularly in terms of speci-
ficity and precision. The high specificity indicates the model’s enhanced ability to identify negative
samples. However, the unchanged Rec. suggests that while the model improves in recognizing
negative samples, it does not yield further gains in detecting positive samples.

8
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Additionally, as indicated in Table 4, experiments conducted with various Dj settings demonstrate
that the model achieves optimal performance on ACC and F1 metrics when Dj is set to 512. This
suggests that the original feature dimensionality is sufficient to capture relevant information, and
further expansion is unnecessary. Although increasing the dimensionality to 1024, 2048, and 4096
theoretically enhances the model’s expressive capacity, in practice, it leads to performance degra-
dation. This decline may result from the model capturing excessive noise or irrelevant information,
which negatively impacts generalization. Particularly at Dj = 4096, the model’s performance be-
comes comparable to the baseline, indicating that excessive feature dimensionality expansion may
completely offset the potential benefits of multi-scale feature extraction.

4.5.3 EFFECTIVENESS OF FSRM

In the FSRM, applying the Hilbert transform to both high-magnification and low-magnification fea-
tures allows the model to capture richer structural information. In WSIs, frequency domain data
reveals intricate details that are often missed in the traditional spatial domain. As shown in Table 3,
the introduction of FSRM improved key metrics such as ACC, AUC, recall, and F1, demonstrating
that this module significantly enhances the model’s generalization ability and sensitivity to lesion
areas. However, despite FSRM’s strong performance in capturing structural features, there was a de-
cline in precision and specificity compared to using only CMIM and MSRM. Specifically, precision
dropped from 91.61% to 89.25%, and specificity decreased from 94.25% to 92.75%. This suggests
that while FSRM improves the model’s sensitivity to positive samples, it may reduce its ability to
distinguish negative ones.

Analysis highlights the superiority of the Hilbert transform over the Fast Fourier Transform (FFT),
Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT), particularly in AUC
and F1 scores. The Hilbert transform’s ability to capture instantaneous phase information is crucial
for processing complex pathological images. In contrast, FFT and DCT focus on magnitude varia-
tions, often missing phase characteristics essential for detecting subtle changes. For example, FFT
achieved an AUC of 91.66%, far below the 97.68% of the Hilbert transform, showing FFT’s global
averaging fails to represent local structural details effectively. DCT, while achieving high speci-
ficity (96.25%) by emphasizing low-frequency information, underperformed in recognizing positive
samples. Despite this, DCT lagged behind the Hilbert transform in F1 and AUC, demonstrating the
Hilbert transform better balances global and local features. Compared to DWT, which offers multi-
resolution analysis but is limited by fixed basis functions, the Hilbert transform more effectively
captures rapid intensity variations and local irregularities like cell membranes. Its robustness in ex-
tracting diagnostic features while resisting staining biases ensures higher precision in tasks requiring
detailed structural analysis.

5 CONCLUSION

This study introduces MFC-MIL, a novel and flexible framework that addresses critical challenges
in pathological image classification by leveraging multiscale spatial and frequency domain informa-
tion. Through its three key modules—MSRM, FSRM, and CMIM—MFC-MIL not only enhances
diagnostic accuracy but also demonstrates a deep understanding of the inherent complexities in
WSIs. The model’s ability to preserve spatial correlations across magnifications, mitigate color con-
trast variations, and reduce confounding factors reflects a sophisticated approach to medical image
analysis. Future work could explore incorporating regularization methods based on Rényi entropy,
as suggested in recent studies, to enhance feature representation and memory capacity Guan et al.
(2024); Wang et al. (2024). Experimental results on the Camelyon16 and TCGA-NSCLC datasets
highlight significant improvements in accuracy, F1 score, and specificity, underscoring the frame-
work’s ability to more precisely distinguish between positive and negative samples. This study offers
important insights into the trade-offs between recall and specificity, revealing how CMIM’s causal
interventions—while reducing false positives—may introduce a more conservative decision bound-
ary. Such enhancements might improve model stability under confounding factors, making causal
intervention more robust and effective. Nonetheless, the overall performance gains, particularly in
handling complex, high-dimensional data, suggest that MFC-MIL’s integration of causal reasoning
and multiscale representations sets a new standard for WSI analysis. These findings not only ad-
vance the current state of medical image classification but also open new avenues for research into
more interpretable and reliable diagnostic tools in clinical practice.
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A APPENDIX

A.1 THE DERIVATION OF EQ.5

The derivation from Eq. equation 4 to Eq. equation 5 involves several key steps grounded in the
principles of causal inference. These steps are detailed as follows:

Step 1: Introduction of the Mediator M . In Eq. equation 4, P (Y |do(X)) is expressed by
marginalizing over the mediator M , as M fully mediates the causal effect of X on Y , and there
exists no back-door path between X and M . Specifically, the equation is written as:

P (Y |do(X)) =
∑
m

P (Y |do(X),M = m)P (M = m|do(X)).

Since M is introduced directly by X without confounding, the intervention do(X) does not alter
the conditional distribution of M given X , i.e., P (M |do(X)) = P (M |X). This simplifies the
expression to:

P (Y |do(X)) =
∑
m

P (Y |do(X),M = m)P (M = m|X = x).

Step 2: Eliminating do(X) from P (Y |do(X),M = m). To further simplify, we note that
P (Y |do(X),M = m) can be replaced with P (Y |X = x̂,M = m), where x̂ represents poten-
tial values of X . This substitution is valid under the assumption that M fully mediates the effect
of X on Y , and hence, the causal effect of X on Y through M is independent of the intervention
do(X). Substituting this into the equation yields:

P (Y |do(X)) =
∑
m

P (M = m|X = x)
∑
x̂

P (X = x̂)P (Y |X = x̂,M = m).

Step 3: Incorporation of Potential Values of X . The introduction of P (X = x̂) accounts for the
possible values that X can take, ensuring that the causal effect is evaluated over the distribution of
X . This step is critical for severing potential confounding pathways, such as M ← X ← Z → Y ,
ensuring that the deconfounding is achieved as outlined in the front-door criterion.

Step 4: Final Expression Combining the above steps, the final expression for P (Y |do(X)) is
obtained as:

P (Y |do(X)) =
∑
m

P (M = m|X = x)
∑
x̂

P (X = x̂)P (Y |X = x̂,M = m).

This form explicitly integrates the mediator M and the potential values x̂, enabling a precise repre-
sentation of the causal effect P (Y |do(X)) in accordance with the front-door adjustment.

Normalized Weighted Geometric Mean (NWGM) To estimate P (Y |do(X)) using the Normal-
ized Weighted Geometric Mean (NWGM), we integrate its ability to balance contributions from
multiple conditional probabilities while maintaining robustness to noise and outliers. NWGM is
defined as

NWGM(x1, x2, . . . , xn;w1, w2, . . . , wn) =

∏n
i=1 x

wi
i∑n

i=1 wi
,

where xi are input values and wi their corresponding weights. In the front-door adjustment, NWGM
can be applied to combine P (Y |X = x̂,M = m) and P (X = x̂) with weights reflecting their
relative importance, ensuring both are proportionally integrated. This leads to the reformulated
estimation:

P (Y |do(X)) =
∑
m

P (M = m|X = x) ·NWGM(P (Y |X = x̂,M = m), P (X = x̂);w1, w2).

By leveraging the logarithmic transformation during computation, NWGM maintains numerical sta-
bility while preserving the geometric properties of the integrated probabilities, ensuring robust and
accurate causal effect estimation.
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A.2 MORE DETAIL OF MFC

A.2.1 MSRM.

In this task, MIL is typically divided into three steps: feature extraction, feature aggregation, and
classification, with most improvements focusing on the feature aggregation step. In our framework,
the input for each training or inference iteration consists of all patch features X from a given slide.
Specifically, after applying PPEG, the padded feature tensor X ∈ R{D,

Np
2 ,

Np
2 } is reshaped back to

X ∈ R{Np,D}, and the previously added padding is removed, resulting in Xhl ∈ R{N,D}. Next, a
1D convolution with a stride of 16 is applied along the dimension N to scale the features, producing
Xll ∈ R{ N

16 ,D}.

A.2.2 CMIM.

Regarding the CMIM, we initialized a set of k trainable memory vectors hm ∈ Rk×d within the
CMIM module, where d is the dimension of the model. The input X is processed through a linear
layer θw to obtain a set of memory write weights ww, which interact with X to activate memory h̃m

based on the current input formulated as:

h̃m = hm + ww ∗X,ww = softmax(θw(X)) (11)

where ∗ is the dot operation. Subsequently, X estimates a set of memory read weights wr and
selects from the activated memory to facilitate the estimation of X̂ in the causal intervention process
as formulated following:

X̂ = X + wr ∗ h̃m, wr = softmax(θr(X)) (12)

where θr is a linear layer whose weights are not shared with θw.

Taking xhl as an example, in this framework, xhl serves as the mediator variable M in the front-door
adjustment formula. The output X̂ generated by the memory module (i.e., X̂ = X + wr · h̃m) is
used to decompose the direct causal effect of X on Y . Specifically, the memory module activates
the memory h̃m during the writing phase (ww ·X ), modeling P (M | X). In the reading phase, X̂
is generated by combining wr · h̃m with X , modeling P (Y | X̂). Through the causal chain X →
M → X̂ → Y , the memory module effectively implements front-door adjustment. By leveraging
the attention mechanism, it transfers the influence of X to X̂ , breaking the direct pathway between
X and Y , thereby controlling confounding effects and enhancing causal modeling capability.

A.2.3 FSRM.

The Hilbert transformH[x(t)] itself maps a real-valued signal to another real-valued signal. The an-
alytic signal z(t) is then constructed by combining the original signal x(t) with its Hilbert transform
as:

z(t) = x(t) + iH[x(t)]
where i is the imaginary unit, this analytic signal z(t) is indeed complex-valued, but this is different
from the Hilbert transform itself.

The text should be revised to avoid this confusion and clearly distinguish between:

The Hilbert transform: H[x(t)] (real-valued to real-valued) The analytic signal: z(t) = x(t) +
iH[x(t)] (complex-valued)

In histopathological images, the presence of cell membranes and tissue boundaries represents struc-
tural discontinuities in biological tissues. These anatomical features are characterized by sharp tran-
sitions in pixel intensities, manifesting as local discontinuities from a signal processing perspective.
The instantaneous phase information obtained through the Hilbert transform demonstrates superior
capability in capturing these intricate morphological details, particularly in regions of rapid intensity
variations.

The overall transformation function F : Rd → Rd is defined as:

F (x) = x+ g(H(f(x))) (13)
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Method ACC AUC F1 Spe.
ABMIL 88.84(2.49) 95.65(1.58) 84.40(4.16) 93.75(7.81)
+ MFC 91.78(1.87) 97.68(0.29) 88.94(2.07) 95.00(4.76)

+ MFC-α 86.05(7.67) 97.69(0.09) 84.11(6.75) 91.25(5.91)
+ MFC-β 85.27(6.17) 97.19(0.54) 83.47(7.13) 87.5(9.26)

Table 5: An ablation study is conducted on the inputs to the CMIM, the value in parentheses is the
standard deviation of the 5-fold cross-validation.

Camlyon16
Method ACC AUC F1 Spe.
ABMIL 81.86 (3.49) 84.12 (5.54) 70.04 (9.24) 96.75 (2.44)
+ MFC 84.50 (0.55) 85.54 (3.58) 77.28 (1.35) 93.50 (5.41)
∆ +2.64 +1.42 +7.24 -3.25

TransMIL 81.71 (1.78) 78.57(4.46) 68.99(4.06) 98.75(1.53)
+ MFC 84.96 (0.69) 83.82(2.40) 76.88(2.03) 96.50(2.40)
∆ +3.25 +5.25 +7.89 -2.25

TCGA-NSCLC
Method ACC AUC F1 Spe.
ABMIL 86.69(1.60) 96.18(0.62) 86.50(1.72) 87.69(9.91)
+ MFC 87.23(1.00) 96.40(0.41) 86.40(1.31) 93.08(6.23)
∆ +0.54 +0.22 -0.10 +5.39

TransMIL 88.85(1.10) 96.98(0.69) 88.04(1.59) 95.38(2.18)
+ MFC 89.42(1.31) 96.94(0.47) 88.95(1.61) 93.46(3.17)
∆ +0.57 -0.04 +0.91 -1.92

Table 6: Main result (%) on Camelyon16 and TCGA-NSCLC dataset, which CTransPath extracts
the features.

where: f : Rd → R512 is the input linear mapping f(x) = W1x+ b1 and
g : R512 → Rd is the output linear mapping g(x) = W2x+b2. H is the Hilbert transform operator.

The final output can be expressed as: y = x+ g(H(f(x))) = x+W2(H(W1x+ b1)) + b2

Additionally, FSRM operates in the feature space, ensuring that the input and output dimensions
remain consistent. For instance, Xhl ∈ R{N,D} and Xll ∈ R{ N

16 ,D} retain their respective shapes
after processing.

A.3 THE RATIONALE FOR EXCLUDING ORIGINAL IMAGE FEATURES FROM THE CMIM
PIPELINE.

In pathological diagnosis tasks, differences in staining techniques can influence the model due to
color variations in pathological images. During model training, spurious correlations may be es-
tablished between diagnostic results and image colors, leading to incorrect predictions. However,
pathological diagnosis primarily focuses on cell morphology and tissue structure rather than color.
Therefore, we aim to use structural features rooted in frequency-domain information as inputs in-
stead of original image features affected by staining bias.

To further validate this perspective, we compared two additional model variants. As shown in Ta-
ble 5, MFC-α incorporates original image features into the inputs of the CMIM module. In contrast,
MFC-β introduces an additional CMIM module that takes original image features as input and ad-
justs the [CLS] token through a separate causal intervention module. The final output is obtained by
summing the probabilities from both modules.

We conducted experiments on the Camelyon16 dataset using ABMIL as baselines. The results show
that although MFC-α achieves exceptional performance in terms of AUC, it underperforms com-
pared to the baseline models and MFC on other metrics, with its standard deviation also increasing
further. Meanwhile, the performance of MFC-β is even worse than MFC-α, which further sup-
ports our viewpoint. However, MFC-β incurs a larger parameter count than MFC, as it includes an
additional CMIM module with inputs from original image features at high and low magnifications.
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Method ACC AUC F1 Spe.
ABMIL 88.84(2.49) 95.65(1.85) 84.40(4.16) 93.75(7.81)
+ IBMIL 91.08(2.01) 97.71(0.56) 88.01(2.08) 94.79(3.31)
+ MFC 91.78(1.87) 97.68(0.29) 88.94(2.07) 95.00(4.76)
DSMIL 86.98(4.73) 94.95(4.43) 79.41(9.11) 98.00(2.88)

+ IBMIL 91.78(2.30) 96.31(0.56) 88.50(3.50) 96.75(4.64)
+ MFC 92.25(2.33) 95.41(1.12) 89.13(3.42) 97.25(1.63)

TransMIL 84.50(2.74) 94.88(1.73) 80.90(1.58) 83.50(10.25)
+ IBMIL 90.80(1.12) 96.19(0.83) 86.46(1.10) 90.09(5.67)
+ MFC 90.85(1.18) 97.68(1.07) 88.00(1.13) 92.75(5.77)

Table 7: Comparison of the results (%) of our MFC-MIL and IBMIL on the Camelyon16 dataset.

A.4 THE FEATURE EXTRACTION AND THE USE OF BACKBONES.

We followed the preprocessing method of DSMIL, using the same features as employed in most
pathology-related MIL studies. Specifically, DSMIL utilizes ResNet18, which has been pre-trained
on pathological data using SimCLR.

To further validate the effectiveness of our method, we also conducted experiments using the features
adopted by IBMIL. Specifically, we used CTransPath as the feature extraction model and evaluated
our method against the ABMIL and TransMIL baselines on the Camelyon16 and TCGA-NSCLC
datasets, demonstrating its effectiveness, as shown in Table 6. Our MFC framework delivers superior
model performance compared to the baselines, along with more reliable results as evidenced by
consistently lower standard deviations.

A.5 MORE COMPARISONS WITH IBMIL

We compared the performance of MFC and IBMIL across three models (e.g., ABMIL, DSMIL,
and TransMIL), using 5-fold cross-validation on the Camelyon16 dataset, as shown in Table 7. The
results show that our end-to-end training framework, MFC, achieves better overall performance
compared to the two-stage training approach used by IBMIL. However, in DSMIL and ABMIL,
our method slightly underperforms IBMIL in terms of AUC. Additionally, IBMIL exhibits smaller
performance standard deviations than MFC.

This difference may stem from IBMIL’s two-stage training, which provides stronger directional
guidance for confounders during the first stage. In contrast, our end-to-end approach, while effective,
might introduce overfitting in the memory module, leading to increased variability.
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