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ABSTRACT

Mixed Integer Linear Programming (MILP) is essential for modeling complex
decision-making problems but faces challenges in computational tractability and
interpretability. Current deep learning approaches for MILP focus on specific
problem classes and do not generalize to unseen classes. To address this shortcom-
ing, we take a foundation model training approach, where we train a single deep
learning model on a diverse set of MILP problems to generalize across problem
classes. As existing datasets for MILP lack diversity and volume, we introduce
MILP-Evolve, a novel LLM-based evolutionary framework that can generate a
large set of diverse MILP classes with an unlimited number of instances. We study
our methodology on three key learning tasks that capture diverse aspects of MILP:
(1) integrality gap prediction, (2) learning to branch, and (3) a new task of aligning
MILP instances with natural language descriptions. Our empirical results show
that models trained on the data generated by MILP-Evolve achieve significant im-
provements on unseen problems, including MIPLIB benchmarks. Our work high-
lights the potential of moving towards a foundation model approach for MILP that
can generalize to a broad range of MILP problem classes. Our code and data are
publicly available at https://github.com/microsoft/OptiGuide.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a versatile mathematical framework widely used
to model complex decision-making problems across various domains, including healthcare (Eriskin
et al., 2024), supply chain management (Kaya & Urek, 2016), energy systems (Wouters et al., 2015),
and finance (Mansini et al., 2015). Its ability to represent intricate combinatorial structures and
constraints makes it an indispensable tool in both academic research and industry applications.

Despite its widespread applicability, MILP faces two fundamental limitations. First, tractability is a
major concern; solving MILP problems is computationally intensive and time-consuming, particu-
larly for large-scale instances, due to the inherent NP-hardness. This complexity often results in long
solve times, posing challenges for time-sensitive applications. Second, understanding the MILP for-
mulation of an optimization problem requires significant expertise in mathematical modeling and
optimization, which limits accessibility for non-experts.

To address these challenges, researchers have attempted to leverage machine learning (ML) to en-
hance MILP solvers, such as learning heuristics to accelerate the solving process (Gasse et al., 2019;
Khalil et al., 2016). The underlying hypothesis for why ML may help in MILP is that in most real-
world applications, the instances are coming from an unknown distributions, which, although hard to
represent analytically, can be learned by deep neural networks. Despite this plausibility, the state-of-
the-art ML approaches have achieved limited generalizability due to difficulties in adapting learned
models to unseen problems and handling distributional shifts. Most existing methods (Prouvost
et al., 2020; Gasse et al., 2022) focus on specific problem classes such as Set Cover, Capacitated Fa-
cility Location, or Maximum Independent Set, and train class specific models. Unfortunately, these
problem specific models fail to perform well on different or more complex MILP instances (Huang
et al., 2024). For example, a model trained to help solve Set Cover instances may not generalize
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(a) Comparison of performance across
tasks for the SOTA baseline models and
ours.
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(b) Visualization of classes (T-SNE of code embedding): or-
ange points with annotated labels represent seed data, while
blue points represent data generated by MILP-Evolve, with
brightness corresponding to different depths.

Figure 1: Comparison of baseline and our model’s performance across tasks, and visualization of
MILP-Evolve generated MILP classes and seed MILP classes from prior work.

to instances of slightly modified problem formulations (e.g., more constrained versions) as well as
other problem classes, such as Facility Location. This lack of generalization hinders practical adop-
tion in real-world applications where problem characteristics vary widely. A concurrent work goes
beyond the problem specific training approach (Huang et al., 2024), but the authors consider training
a joint model on a small number of selected classes (five), which limits its general applicability.

The state of ML adoption for MILP is in sharp contrast to areas like computer vision and NLP, where
the fields have moved away from training problem or task specific models to general purpose foun-
dation models trained on diverse and large-scale datasets that are capable of generalizing to a wide
range of tasks. There are several challenges towards building such general purpose foundation mod-
els for MILP, the chief among them being the lack of diverse and large-scale training data. Reliance
on limited datasets like MIPLIB (Gleixner et al., 2021) is insufficient to capture the vast diversity
of MILP problems encountered in practice. More significantly, the distribution of the combinatorial
structures of optimal solutions for MILP instances is more complex than the distribution of images
or language, challenging the efficacy and development of general purpose foundation models.

Our work is motivated by the following questions:

Do principles of foundation model training extend to the MILP modality? Can a single model
trained on diverse MILP problem classes generalize to unseen MILP classes?

The main contributions of this work are highlighted as follows.

A Foundation Model Approach for Efficient Multi-Class MILP Learning. This work is the
first to propose a foundation model training approach for MILP learning and demonstrate that, a
single model, trained on sufficiently diverse MILP problems, can effectively generalize to a variety
of unseen MILP classes. We develop a comprehensive framework that integrates Large Language
Models (LLMs) (Achiam et al., 2023; Dubey et al., 2024; Brown et al., 2020) for generating larger
and richer training data with Graph Neural Networks (GNNs), which have proven effective in rep-
resenting MILP instances (Gasse et al., 2019; Scavuzzo et al., 2022; Zhang et al., 2024a). Unlike
prior work that trains GNNs on a limited set of MILP classes, we significantly extend the scope by
learning a joint model on a broader range of MILP problem classes.

MILP-Evolve: A Scalable Framework for Generating Diverse MILP Data. As alluded ear-
lier, unlike text and image modality, existing public MILP datasets lack diversity and volume. To
address this limitation, we introduce MILP-Evolve, a novel LLM-based data generation pipeline,
which leverages frontier models to generate diverse MILP classes and instances from few example
seed classes. MILP-Evolve combines diverse prompting tailored to the MILP domain, along with
parameter search and filtering, to generate a wide range of MILP classes resembling various real-
world optimization scenarios. Figure 1b shows that MILP problems generated by our framework
have rich diversity. Quantitatively, our approach has enabled us to generate more than a thousand
different MILP problem classes, much more than any publicly available dataset.

Comprehensive Framework Evaluation. We rigorously evaluate our framework across three chal-
lenging learning tasks that test different facets of understanding and solving MILP instances in a
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Figure 2: Overview: Left—MILP-Evolve pipeline. We design an evolutionary pipeline to leverage
a Large Language Model to generate a diverse set of MILP classes. Right—the learning tasks. We
design three learning tasks capturing different aspects of MILPs for multi-class learning.

multi-class learning setting. First, we consider the problem of estimating the integrality gap (IG)
of MILPs, defined as the difference between the optimal value of the MILP and its linear program-
ming relaxation. Our second task, learning to branch, is a sequential decision-making task aimed
at accelerating MILP solvers by learning efficient branching strategies, a core technique for solving
MILPs. While previous works have explored similar tasks (Chen et al., 2023; Geng et al., 2023;
Gasse et al., 2019; Zhang et al., 2024a), they primarily focused on training problem-specific models
that could only generalize to small set of problem classes. In contrast, we train a single model that
can solve each task across a broad range of MILP classes and problems.

We further introduce a new learning task designed to improve the interpretability of MILP instances
by mapping each MILP instance in mathematical form to one of several available natural language
descriptions. This task tackles a key challenge in MILP accessibility: many open-source MILP
datasets and business scenarios provide only raw constraint and variable values, making them dif-
ficult to interpret without domain expertise. To address this, we develop a contrastive learning
approach that aligns MILP instance embeddings with natural language descriptions, which signifi-
cantly outperforms direct interpretation attempts by LLMs like GPT-4o. This task complements the
tractability tasks by lowering the entry barrier for non-experts and potentially also aiding experts by
deepening their understanding of the optimization problems.

Substantial Multi-Class Learning Gains with Broader Impacts. Our extensive experiments
demonstrate that MILP-Evolve combined with our GNN-based learning framework are highly ef-
fective in improving multi-class MILP learning. Key results from the held-out test set include a 5.8x
correlation improvement for Integrality Gap Prediction, a 1.92x accuracy improvement for MILP
alignment, and a 1.42x improvement in the fraction of problems solved to optimum within the time
limit for Learning to Branch (see Figure 1a). We further observe improved transfer learning to a
separate MILP-Evolve test set based on unseen problem classes, as well as on the MIPLIB test set
when pre-training on the enriched MILP-Evolve dataset. These results highlight the substantial per-
formance gains of our models trained on diverse problem classes generated by MILP-Evolve. Our
findings reveal key insights for advancing MILP learning: the diversity of training data has substan-
tially greater impact on model performance than data quantity alone. These insights, along with our
study’s broader contributions, represent significant progress towards foundation models for MILPs.

2 FORMAL DESCRIPTIONS OF MILP AND LEARNING TASKS

2.1 MIXED INTERGER LINEAR PROGRAMMING (MILPS)

MILP involves optimization problems where some decision variables are constrained to be integers,
and relationships among variables are linear in the form of constraints and an objective function. A
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MILP problem is formulated as:
x∗
ILP = argmin{c⊺x : Ax ≤ b, xj ∈ Z∀j ∈ I}, (1)

where x ∈ Rn is the vector of decision variables, c ∈ Rn is the cost vector, A ∈ Rm×n and b ∈ Rm

define the linear constraints, and I ⊆ {1, . . . , n} indicates the indices of variables required to be
integer-valued. MILP is extensively used to model complex decision-making problems involving
both discrete choices and continuous variables, capturing applications in supply chain optimization,
scheduling, network design, and resource allocation (Duong & Bui, 2018; Floudas & Lin, 2005;
Rieck et al., 2012). However, solving MILP problems is challenging due to their NP-hardness,
leading to computational intractability for large-scale instances.

2.2 LEARNING TASKS

We give formal definitions of the three tasks considered in this work, each captures a different but
interconnected aspect of understanding and solving MILPs.

2.2.1 INTEGRALITY GAP PREDICTION

Integrality gap (IG) quantifies how close the linear programming (LP) relaxation of a MILP instance
is to its integer optimum. A smaller gap indicates that the LP relaxation is a good approximation,
while a larger gap suggests a more challenging problem requiring more computational resources.
When the integrality gap is small, one can use the optimal solution to the LP relaxation and round
it to obtain integral solutions, which is a foundational technique in the design of approximation
algorithms (Raghavan & Tompson, 1987; Williamson & Shmoys, 2011).

For each MILP instance x, we compute the integrality gap as: g∗(x) =
|z∗

ILP (x)−z0
LP (x)|

|z∗
ILP (x)| , where

z0LP (x) is the LP relaxation value at the root node, and z∗ILP (x) is the optimal solution value of the
MILP (see Appendix A.2.1 for details). Accurately predicting g∗(x) allows us to estimate the diffi-
culty of solving the MILP before actually solving it. When the integrality gap is small, a good ap-
proximation of g∗(x) can quickly provide a good estimate for the MILP’s optimal value, as LPs can
be efficiently solved in practice; it further suggests that MILP solvers may converge more quickly to
optimal solutions, making it a potential indicator of faster solve times for the corresponding MILPs.

2.2.2 LEARNING TO BRANCH

Branching decisions in the Branch-and-Bound (B&B) algorithm (Land & Doig, 2010) significantly
impact the efficiency of solving MILPs. Selecting the right variable to branch on can reduce the
size of the search tree and, consequently, the computation time. Traditional strategies like strong
branching (Applegate et al., 1995; Achterberg, 2007) are effective but computationally expensive.

By learning a branching policy through deep networks, the goal is to approximate the performance
of strong branching at a small fraction of the computational cost. Specifically, at each B&B node
(s,A(s)), where s is the MILP representation at the node and A(s) is the set of candidate variables
to branch on, the learning task is to imitate the strong branching expert, which selects the action
a∗ ∈ A(s). We minimize the cross-entropy loss − 1

N

∑
(s,a∗) log f̂θ(a

∗|s) of predicting the expert

action, given the network f̂θ(·) (see Appendix A.2.2 for details). Building on the work of (Gasse
et al., 2019), this sequential decision-making task aims to enhance solver efficiency, making it more
practical for large-scale or time-sensitive applications.

2.2.3 LANGUAGE-MILP CONTRASTIVE LEARNING

Understanding and interpreting MILP instances, given by the numerical A, b, c values, is inherently
challenging due to their abstract and mathematical nature. To make MILP problems more accessible
and to facilitate interaction with optimization problems as a new modality, we propose a contrastive
learning task that aligns MILP instances with their corresponding natural language descriptions.

We design and employ a contrastive learning framework inspired by the Contrastive Language-
Image Pretraining (CLIP) framework (Radford et al., 2021). Specifically, we minimize a symmetric
cross-entropy loss over our dataset D, which encourages the model to associate each MILP instance
with its corresponding text description and vice versa.
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Combinatorial Auction Exclusive Auction Auctions within Facilities

Facility Allocation

Add Cross Over

Figure 3: An evolution chain for an auction problem consisting of two iterations. In the first iteration
of the evolution, we add a constraint. The second iteration involves a crossover with the facility
allocation problem. The details of code generated by LLM is in Appendix Figure 6.

Formally, let D = {(Mi, Ti)}Ni=1 denote a dataset comprising N pairs of MILP instances Mi

and their corresponding textual descriptions Ti. Our objective is to learn embedding functions
fM : M → Rd and fT : T → Rd that map MILP instances and text descriptions into a shared
d-dimensional latent space. The goal is to ensure that the embeddings of matching pairs (Mi, Ti)
are closer to each other than those of non-matching pairs, effectively capturing the semantic rela-
tionships between MILPs and their descriptions. Details are provided in Appendix A.2.3.

By optimizing the contrastive loss, the model learns to project MILP instances and their textual de-
scriptions into a common embedding space where semantically related pairs are close together. This
learning task can serve an important stepping-stone towards the more challenging task of directly
generating natural language descriptions from MILP instances. This is in similar spirit to how the
CLIP framework (Radford et al., 2021) paved the way for text to image generative models such as
DALL·E (Ramesh et al., 2021) by training a decoder model on CLIP embeddings.

Enhancing MILP applicability. The three learning tasks are complementary and collectively es-
sential for enhancing the applicability of MILP through understanding, predicting, and accelerat-
ing. In particular, the Language-MILP task helps understand the structure and properties of MILP
instances, aiding non-experts in problem comprehension and may further assist experts by deepen-
ing their understanding of the problems; the Integrality Gap Prediction task focuses on analyzing
solution properties of the MILP instance, potentially allowing instances with tight gaps to be solved
via LP relaxation, coupled with rounding algorithms, without fully solving the MILP; the learning
to Branch task enhances MILP solving efficiency through more effective branching, which can have
huge time and cost savings in industrial applications.

3 MILP-EVOLVE FOR GENERATING DIVERSE MILP CLASSES

The diversity of MILP problems is a crucial aspect for using a foundation model approach for MILP.
Existing studies, however, often focus on a small number of problem classes, limiting the model’s
ability to generalize. We propose MILP-Evolve, an LLM-based pipeline designed to generate a di-
verse set of MILP classes. By starting from a small set of seed classes and systematically generating
new ones, we aim to capture a broader spectrum of optimization problems.

Class representation. We represent each class of MILP problem with a modularized optimization
code script, comprising three primary functions: (1) Data, responsible for generating the necessary
data to construct the objective and constraint coefficients, often from uniform distributions or com-
mon graph structures; (2) Optimization Modeling, which utilizes this data to define the decision
variables, constraints, and the objective function of the optimization problem; and (3) Parameters,
which outlines the problem-specific parameters for the data distribution, such as the number of nodes
or graph density in graph-related problems.

Seed classes. We curate a set of eight MILP classes commonly used in prior literature (see Ap-
pendix A.1.1) and use them as the starting point to generate a more diverse set of MILP classes.

MILP-Evolve – LLM-generated classes. Generating diverse MILP classes is non-trivial due to
potential pitfalls such as generating incorrect code, infeasible instances, or lack of diversity. To
overcome these challenges, our pipeline, as illustrated in Fig. 2 (left), consists of two key steps.

1. Class Generation. Given the seed class representations, we use LLMs to generate new MILP
classes by applying several transformations. These transformations are represented by 10 chain-of-
thought (Wei et al., 2022) prompt operators, which are described in detail in Appendix A.1.2. At
each evolve iteration, MILP-Evolve selects a random subset of these operators and invokes them se-
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quentially, where each prompt operator is applied to the previously evolved MILP class. We add each
MILP class generated by this process to our MILP-Evolve dataset. An example of a two-iteration
evolution is shown in Figure 3. Intuitively, MILP classes that are generated in early iterations of the
framework are closer to the seed class, whereas those towards the end are further away.

At a high level, the prompt operators include adding or deleting constraints, variables, or the asso-
ciated data; crossing over classes; mutating constraints and/or objectives; and creating entirely new
classes. Each prompt consists of three main modules that the LLM should follow step-by-step: (1)
summarize the given MILP class, (2) describe how to modify the MILP class based on the specific
operator type, (3) generate the new MILP class that follows the class representation.

To encourage diversity and realism of the generated classes, we guide the LLM to integrate MILP
problems into real-world contexts and generate classes tailored to specific industry needs. This
requirement is achieved by either prompting the LLM to base the MILP on real-world applications or
directly providing realistic topics, such as "pharmaceutical company planning cross-country vaccine
distribution with storage, transport, and demand constraints," when generating the MILP class.

We further prompt the LLM to apply commonly used and advanced MILP formulation techniques,
such as Big M (Wolsey, 2020), Special Order Sets (Beale & Forrest, 1976), and Symmetry Break-
ing (Margot, 2009), to make the generated instances technically challenging. By doing so, we guide
the LLMs to produce a wide range of MILP formulations reflecting real-world scenarios.

2. Filtering. After generating new MILP classes, we perform filtering and parameter adjustment
to ensure the usefulness and mathematical feasibility of the generated instances. Our modular class
representation allows us to easily identify and adjust key parameters to achieve desired properties
such as feasibility, appropriate solve times, and reasonable problem sizes (see Appendix A.1.4).

Outcome. Using our pipeline, with GPT-4o as the LLM, we create a dataset of MILP classes
significantly more diverse than those used in prior work; see Figure 1b. Examples of the generated
classes and implementation details of the MILP-Evolve pipeline can be found in Appendix A.1.

4 TRAINING PIPELINE

Our training pipeline (Fig. 2), consists of two main components: a) The MILP-Evolve system de-
scribed above to obtain diverse dataset; b) The learning architecture, which combines GCNs with an
attention module, to effectively learn in a multi-class setting. We provide more details below.

Input. We represent each MILP instance as a bipartite graph connecting variable nodes V and
constraint nodes C (Gasse et al., 2019), capturing the structural relationships within the MILP. This
graph serves as input to our neural network architecture. For Language-MILP Contrastive Learning,
the text description inputs are embedded via NV-Embed-v1 (Lee et al., 2024), an open-source text
embedding model based on Mistral 7B (Jiang et al., 2023).

Architecture. For Integrality Gap Prediction and the MILP encoder for Language-MILP Contrastive
Learning, our architecture consists of the following main components: 1) We use a Graph Convo-
lutional Network (GCN) (Kipf & Welling, 2017; Gasse et al., 2019; Paulus et al., 2022; Scavuzzo
et al., 2024) to embed the variable and constraint nodes, allowing information to flow between them
and capturing local structural patterns. 2) To capture global dependencies while reducing computa-
tional overhead, we use the attention mechanism (Vaswani, 2017) over a sub-sampled set of variable
and constraint nodes. 3) We include three additional nodes for the attention: two representing the
aggregated variable and constraint node embeddings (obtained via mean pooling) and a summary
node used to extract a global representation of the MILP instance. 4) The attention module outputs
an updated embedding of the summary node, which is then passed through a final linear layer to
produce the final output. Empirically we find that incorporating the attention layers improves per-
formance, especially for transfer learning to the MIPLIB dataset (Sec. 5.3). This result is expected
as attention mechanisms allow for better global understanding of MILP instances.

For the learning to branch task, we directly use the variable embeddings produced by the GCN to
predict the variables selected for branching, building upon a similar architecture employed in Gasse
et al. (2019). As the model needs to be invoked for each Branch-and-Bound node, we omit the
attention layer to reduce the computational overhead.
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Table 1: Out-Domain Performance on the MILP-Evolve held-out test set. Ours outperforms the
baseline methods in all three learning tasks.

(a) Integrality Gap Prediction.

Deviation (↓) Corr. (↑)
Mean 33.07% 0.00
Seed 32.96% 0.10

Seed + Param. 32.77% 0.07
Seed + VAE 30.27% 0.26
Ours - Attn. 20.82% 0.57

Ours 20.14% 0.58

(b) Language-MILP Contrastive Learning.

4-Way Acc. (↑) 10-Way Acc. (↑)
Seed 37.21% 18.73%

Seed + Param. 39.68% 20.35%
Seed + VAE 33.67% 15.58%
Ours - Attn. 70.41% 52.76%

Ours 70.54% 54.17%

(c) Learning to Branch. For each method, we report the proportion of instances solved to optimal within a 200s
time limit (including network overhead); among those instances, we report the 1-shifted geometric mean of time
improvement over SCIP Default including and excluding (Ex.) the network overhead (See Appendix A.2.2).

Time Improv. (↑) Time Improv. (Ex) (↑) % Instances Solved to Optimal (↑)
Seed (GCN) -30.65% -16.60% 49.59%

Seed + Param. (GCN) -3.70% 5.89% 64.52%
Seed + VAE (GCN) -26.18% -13.50% 49.06%

Ours (GCN) 15.49% 21.02% 70.90%

5 EXPERIMENTS

To evaluate the effectiveness and generalization capabilities of our approach, we conduct compre-
hensive experiments focusing on out-of-domain settings where models are tested on MILP classes
unseen during training. For each learning task, we train a single model on the diverse MILP classes
generated by MILP-Evolve. The evaluation is performed on two fronts: first, on a held-out set of
MILP classes from MILP-Evolve, and second, through transfer learning on instances from MIPLIB,
a widely recognized MILP benchmark dataset.

5.1 EXPERIMENTAL SETUP

More than a thousand MILP problem classes are used, with the exact number varying by task. For
IG prediction, we excluded instances where the optimal solution was not found within a time limit
of 200s. For the learning to branch task, our training data consists of collecting strong branching
expert examples that are obtained by solving MILP instances up to the same time limit of 200s (see
details in Appendix A.1.5).

State-of-the-art Baselines. To assess the effectiveness of training on the diverse MILP classes
generated by MILP-Evolve, we compare our model against several methods. We collected a Seed
dataset containing all problem classes used in recent state-of-the-art (SOTA) studies (Gasse et al.,
2019; Scavuzzo et al., 2022; Labassi et al., 2022), totaling 16 sets with two parameters for each of
the eight existing classes. We also create a competitive baseline, Seed + Param., which expands the
Seed dataset by including 89 additional parameters identified through a parameter search procedure
similar to that used in MILP-Evolve. The third approach, Seed + VAE (Guo et al., 2024), employs
a Variational Autoencoder (VAE)-based instance generation method to augment the seed class in-
stances, which further incorporates constraint grouping to improve upon the seminal work of (Geng
et al., 2023). Details of these baselines can also be found in Appendix A.1.5. This comparison
emphasizes the distinction between our MILP class augmentation approach and existing instance
augmentation methods. For integrality gap prediction, we also include a Mean baseline, which, for
all MILP instances, predicts the same constant value given by the mean of all the training set labels.
For Language-MILP Alignment, we include a further comparison with GPT-4o in Appendix A.3.7.

For simplicity, we refer to the model trained with data generated from MILP-Evolve as Ours. Addi-
tionally, to evaluate the impact of our architectural choices, we include a comparison with our model
trained without the attention layer, referred to as Ours - Attn. Details on architecture, training, met-
rics, and additional ablation results are provided in Appendices A.2 and A.3.
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Table 2: Transfer Learning Results on a MILP-Evolve Test Set on Six Unseen Seed Classes. Initial-
izing with the Ours pre-trained model yields the best performance (see Appendix A.3.3 for details).

Integrality Gap Learning to Branch Language-MILP
Deviation (↓) Correlation (↑) Acc. (↑) Top 5 Acc. (↑) 4 Way Acc. (↑) 10 Way Acc. (↑)

Train From Scratch 21.41% 0.65 28.93% 69.70% 72.37% 46.50%
Seed 21.25% 0.65 23.11% 56.82% 72.20% 42.45%
Seed + Param. 25.61% 0.52 27.87% 68.32% 75.17% 42.66%
Seed + VAE 23.40% 0.58 25.25% 60.81% 72.90% 44.61%
Ours 17.98% 0.68 30.71% 70.33% 77.62% 53.99%

Metrics. For the integrality gap task, we compute the mean absolute error (deviation) and Pearson
correlation coefficient. To evaluate the learning-to-branch approach, we measure the proportion of
instances optimally solved within the time limit, as well as the percentage improvement in solve time
compared to the default SCIP solver. The time improvement is presented both with and without
accounting for the GPU time required by the deep learning model. In assessing the contrastive
learning task, we report both 4-way and 10-way accuracy, where the model must identify the correct
text description corresponding to a given MILP instance from a set of 4 or 10 options, respectively.

5.2 MILP-Evolve TEST SETS

We partition the set of MILP problem classes generated by MILP-Evolve into roughly a 7:1:2 split
for training, validation, and test subsets which we denote by X Evolve

train , X Evolve
val , and X Evolve

test . For each
learning task, we train our model on instances from X Evolve

train , referred to as Ours, and evaluate its
performance on the test instances X Evolve

test . This setup helps us to assess the impact of class diversity
and instance variety on the model performance.

Table 1 showcases the performance on the MILP-Evolve held-out test set across the three learning
tasks. The Ours approach consistently outperforms all baselines trained on fewer classes, highlight-
ing the critical role of class diversity in enhancing model generalization. Furthermore, the inclusion
of the attention mechanism significantly boosts performance, underscoring its importance in cap-
turing global information within MILP instances. The (Seed + Param) baseline outperformed the
learning-based data augmentation method (Seed + VAE) in contrastive learning and branching, sug-
gesting that the VAE approach might not be readily extensible. Moreover, the learning to branch task
remains particularly challenging in a multi-class setting, suggesting an area for future improvement
and research (see Appendix A.3.2 for details).
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Table 3: Transfer Learning Results on MIPLIB. Initializing with the Ours pre-trained model yields
the best performance on the MIPLIB test set.

Integrality Gap Prediction Language-MILP Contrastive Learning
Deviation (↓) Correlation (↑) 4 Way Acc. (↑) 10 Way Acc. (↑)

Train From Scratch 28.21% 0.43 73.28% 65.29%
Seed 26.97% 0.44 79.69% 72.71%
Seed + Param. 23.30% 0.54 76.41% 71.74%
Seed + VAE 24.76% 0.50 79.92% 70.99%
Ours 21.56% 0.59 82.08% 75.57%
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Figure 5: Convergence Rate on the MIPLIB Dataset. We plot the test performance for models at
different stages of the training process for transfer learning to MIPLIB. Initializing with Ours pre-
trained model leads to significantly faster convergence than other baselines.

We also find that scaling up the number of training classes is much more important than increasing
the number of training instances, emphasizing the importance of diverse MILP classes for training.
As illustrated in Figure 4a, reducing the number of classes while maintaining the same total number
of instances significantly affects performance, whereas reducing the number of instances per class
has a minimal effect. Similarly, we observe in Figures 4b and 4c an upward trend in performance
as the number of classes increases, while keeping the total number of training instances constant.
These results reinforce the value of MILP-Evolve in generating a diverse set of MILP classes.

To further ensure that our held-out test set is representative and can generalize to unseen datasets,
We collect another test set of 50 MILP classes, by running MILP-Evolve on six unseen Seed classes
different from those used in Table 1. We split the dataset into Xnew

train and Xnew
Test, fine-tune the

pretrained models from Table 1 on Xnew
train and evaluate the performance on Xnew

test . In Table 2, we
see that initializing with Ours enables the best transfer learning performance on this new test set.

5.3 MIPLIB TRANSFER LEARNING

Finally, we evaluate the transfer learning performance of our model on MIPLIB (Gleixner et al.,
2021), a commonly used heterogeneous benchmark dataset which is never used in our pretraining
process. We filter MIPLIB to include instances with known optimal solution (for gap prediction)
or with meaningful description (for contrastive learning), and split them into training and test sets,
XMIPLIB

train and XMIPLIB
test . We fine-tune our pretrained model from X Evolve

train on XMIPLIB
train and subsequently

evaluate its performance on XMIPLIB
test (see Appendix A.1.6 for details).

Table 3 presents the results of transfer learning on the MIPLIB dataset for the IG and CL tasks.
First, we observe that pretraining models on a diverse dataset is beneficial compared to training
from scratch (first row in the table). Further, our model trained on data from MILP-Evolve achieves
superior performance compared to all baselines. Instance augmentation methods like VAE and
parameter search provide some incremental gains, but are outperformed by our approach. Figure 5
further illustrates the convergence behavior during fine-tuning on MIPLIB. Models pretrained with
MILP-Evolve not only converge faster, but also achieve better final performance after fine-tuning.

We hypothesize that the enhanced performance during fine-tuning stems from the broad diversity
of MILP classes generated by MILP-Evolve, which captures a wide range of problem distributions,
constraint types, and variable interactions (see Fig. 11 in Appendix A.3.1 for details). This extensive
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coverage enables the model to adapt more effectively to the varied structures present in MIPLIB,
compared to models trained on more homogeneous or limited datasets.

We omit learning to branch task on MIPLIB dataset because we find that a vast majority of MIPLIB
instances take either too little or too much time to solve; in fact, only 13 instances can be solved
to optimality with a solve time between 20s and 300s, making the evaluation set too small. We
believe that more comprehensive pre-training with more compute are critical for learning to branch
in datasets similar to MIPLIB; this is an interesting direction for future work.

6 RELATED WORK

Machine Learning for MILP. There has been a surge of research using machine learning techniques
to improve MILP solvers. Studies cover various aspects of MILP solving, including presolving (Liu
et al., 2024a), variable selection for branching (Zhang et al., 2024a; Huang et al., 2024; Scavuzzo
et al., 2022; Gupta et al., 2020), node selection for exploration (Labassi et al., 2022; Song et al.,
2018; He et al., 2014), generating cutting planes (Wang et al., 2023; Paulus et al., 2022; Tang et al.,
2020), configuring solver parameters (Li et al., 2023b; Balcan et al., 2021; Xu et al., 2011), and
scheduling primal heuristics (Chmiela et al., 2021; Hendel et al., 2019; Khalil et al., 2017).

Despite these advancements, a significant challenge remains in the generalizability of learned mod-
els across different tasks and problem classes. Most existing ML methods for MILP focus on specific
problem classes (Prouvost et al., 2020; Gasse et al., 2022) and struggle to generalize to unseen types
of problems. This limitation hinders practical adoption, as real-world applications often involve a
wide variety of MILP formulations.

Large Language Models for MILP. Recent research has explored prompting LLMs for MILP
and combinatorial optimization tasks, such as optimization modeling (AhmadiTeshnizi et al., 2024),
what-if analysis (Li et al., 2023a), infeasibility diagnosis (Chen et al., 2024), and automatic heuristic
design (Liu et al., 2024b; Romera-Paredes et al., 2024; Yang et al., 2024). The majority of these
works are data-agnostic, usually taking code or human language as input and performing analytical
tasks without accessing the critical A, b, c matrices. While many studies have aligned images, voices,
code, and genomics modalities for LLMs (Liu et al., 2024c; Barrault et al., 2023; Roziere et al., 2023;
Abdine et al., 2024), few have integrated the MILP modality with text.

MILP Datasets. For common benchmark MILP classes (Prouvost et al., 2020), the objective and
constraint coefficients are typically generated randomly within specified ranges, often represent-
ing weights or budgets of variables. For graph-based MILPs (e.g., Set Cover), the constraints and
variables A, b, c depend on the underlying graph structure and are generated from distributions like
Erdős–Rényi (Erdös & Rényi, 1959) or Barabási–Albert (Albert & Barabási, 2002).

Recent studies use heuristics (Drugan, 2013; Bowly, 2019), Variational Autoencoders (Guo et al.,
2024; Geng et al., 2023), or Diffusion Models (Zhang et al., 2024b) to generate MILP instances
from a given set. These works focus on instance-based MILP generation: given a limited number of
instances within a specific MILP class (e.g., Set Cover), they generate similar instances to augment
the dataset, rather than more diverse ones. In contrast, we aim to generate diverse problem classes,
including more complex or entirely different problems not found in existing public datasets.

7 CONCLUSION

This paper takes a first step towards a foundation model training approach for MILP. We address
three key learning tasks and train a single model for each task to generalize across MILP problem
classes. We introduce MILP-Evolve, a general MILP class generation method that leverages LLMs
to enable larger, richer, and more diverse datasets for training. Our experiments demonstrate that our
framework, trained with MILP-Evolve-generated data, significantly outperforms previous works.

While we advanced the state-of-the-art by using a single model across MILP classes instead of
multiple class-specific models, we acknowledge that this work still trains separate models for each
learning task. An important future direction is to unify these tasks into a single “foundation" model
which would potentially extend to more tasks, such as generating cutting planes, learning solver
parameters, and formulating reliable optimization problems from text descriptions.
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Combinatorial Auction Exclusive Auction Auction in Facilities

{python}
parameters = {"n_items": 150,
"n_bids": 750, ...}

{python}
values = np.random.uniform(...)
compats = np.random.rand(...)
bids = [ ... ] # random
bids_per_item = [ ... ] # random

instance = {"bids": bids,
"bids_per_item": bids_per_item}

{python}
model = Model("CombAuction")

# boolean decision variable
bid_vars = {
i: model.addVar(vtype="B")
for i in range(len(bids))}

# Objective: maximize total price
model.setObjective(

quicksum(price * bid_vars[i]
for i, (bundle, price) in
enumerate(instance["bids"])))

# Constr: <= 1 bundle per item
for indices in bids_per_item:
model.addCons(sum(bid_vars[i]
for i in indices) <= 1)

{python}
parameters = { ...

... # same as left
"n_exclusive_pairs": 10}

{python}
...
...
... # ‘bids‘, etc.
# same as left

# use ‘exclusive‘ var to store
# conflicting bids
for _ in range(n_exclusive_pairs):

bid1, bid2 = random.choices(.)
exclusive.append((bid1, bid2))

instance = {"bids": bids,
"exclusive": exclusive}

{python}
...
...
...
... # similar to left

# additional constraint
for (bid1, bid2) in exclusive:

model.addCons(bid_vars[bid1] +
bid_vars[bid2] <= 1)

{python}
parameters = {... # same as left

"n_exclusive_pairs": 37
"facility_min_count": 300,
"facility_max_count": 1875}

{python}
... # ‘bids‘, etc.
# same as left

n_facility = ...
operation_costs = [...]
capacity = [...]
... # more data
instance = {"bids": bids,

"exclusive": exclusive}

{python}
... # similar to left
# More decision variables
x_vars, facility_load, ... = ...
# More constraints for facility:
# capacity, workload, shipping,
# and other ...
# ... skip in illustration

# Objective considers facility
facility_costs = ...
model.setObjective(...

- facility_costs - penalties)

Facility Allocation Problem

Add
Cross
Over

Figure 6: An evolution chain for a combinatorial auction problem. In the first evolution, an addi-
tional "mutually exclusive" constraint is introduced for different bids. The second evolution involves
a crossover with a facility planning problem, where bids are placed at different facilities, each with
its own auction capacity. For each problem class, the components are highlighted in different colors:
parameters (gray), data (orange), and solver (blue). For brevity, most of the code is omitted.

A.1 GPT-BASED EVOLUTION

MILP-Evolve, as depicted in Fig. 2, generates MILP code (classes) level by level, combining LLM-
based code generation with a post-generation parameter search and filtering at each level. The
process begins with 8 seed classes taken from previous literature. The code of each seed class
is reformatted into a standard, modular code structure including data, optimization modeling, and
parameters, as detailed in Appendix A.1.1.

At each level, up to K = 108 pairs of (MILP code, prompt type) are sampled to create a new batch
of prompts for the LLM. For each pair, the MILP code is sampled uniformly at random from the suc-
cessfully generated MILP code from the previous level (or seed classes at the first level). A prompt
type is then randomly sampled to prompt the LLM, which generates a new MILP code. The prompt
type is selected with weights within a set of 10 prompt subcategories across five broad categories
(Add, Cross-Over, Mutate, New, Delete), with further details provided in Appendix A.1.2. We
use OpenAI GPT-4o Achiam et al. (2023) as the LLM for the MILP class generation.

Since LLM-generated code can often be buggy, infeasible, or trivially solved within a short time,
we implement an (automated) post-generation parameter search and filtering procedure. This in-
cludes: removing all buggy generated MILP code, (2) identifying parameters for each remaining
MILP code, and (3) conducting a parameter grid search by solving the MILP with various parame-
ter values. A MILP code is considered "successful" if at least one parameter combination meets a
set of intuitive criteria for problem size, solve time, and branch-and-bound tree size; otherwise, the
code is discarded. Details on the parameter grid-search ranges and filtering criteria are provided in
Appendix A.1.4.

Computation Requirements. We conduct 92 levels of MILP class evolution, with a total of 9, 044
prompts submitted to GPT-4o. This results in 2, 006 successfully generated MILP classes that meet
the filtering criteria. Each evolution level takes approximately 3 hours on average, with a total of
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model = Model("MazeExplorationOptimization") 
n_robots = len(exploration_costs) 
n_cells = len(critical_items) 
robot_vars = {r: model.addVar(vtype="B", name=f"Robot_{r}") for r in range(n_robots)} 
cell_exploration_vars = {(r, c): model.addVar(vtype="C", name=f"Cell_{r}_Cell_{c}") 
      for r in range(n_robots) for c in range(n_cells)} 
unmet_detection_vars = {c: model.addVar(vtype="C", name=f"Unmet_Cell_{c}") for c in range(n_cells)} 
coordinate_vars = {r: model.addVar(vtype="B", name=f"Coordinate_{r}") for r in range(n_robots)} 
model.setObjective(
    quicksum(exploration_costs[r] * robot_vars[r] for r in range(n_robots)) + 
    quicksum(detection_costs[r][c] * cell_exploration_vars[r, c] 
      for r in range(n_robots) for c in range(n_cells)) + 
    quicksum(1000 * unmet_detection_vars[c] for c in range(n_cells) 
       if priority_cells[c] == 1), 
    "minimize”) 

for c in range(n_cells): 
    # Critical item detection satisfaction 
    model.addCons(quicksum(cell_exploration_vars[r, c] for r in range(n_robots)) 
     + unmet_detection_vars[c] == critical_items[c], f"Neighborhood_Detection_{c}") 
    # Priority cell detection 
    if priority_cells[c] == 1: 
        model.addCons(quicksum(cell_exploration_vars[r, c] for r in range(n_robots)) 
         + unmet_detection_vars[c] >= critical_items[c], f"Priority_Detection_{c}") 

for r in range(n_robots): 
    # Battery limits for each robot 
    model.addCons(quicksum(cell_exploration_vars[r, c] for c in range(n_cells)) 
     <= battery_capacities[r] * robot_vars[r], f"Maze_Battery_Limit_{r}") 
    # Cell exploration only if robot is active 
    for c in range(n_cells): 
        model.addCons(cell_exploration_vars[r, c] <= critical_items[c] * robot_vars[r], 
   f"Active_Robot_Constraint_{r}_{c}") 
    # Sensor range for each robot 
    model.addCons(quicksum(cell_exploration_vars[r, c] * 0.5 for c in range(n_cells)) 
           <= sensor_ranges[r], f"Sensor_Range_{r}") 
    # Ensure coordinate assignment for active robots 
    model.addCons(robot_vars[r] == coordinate_vars[r], f"Coordinate_Assignment_{r}")

Seed

LLM Generated

model = Model("IndependentSet") 
var_names = {} 
for node in graph.nodes: 
 var_names[node] = model.addVar(vtype="B", name=f"x_{node}") 
for count, group in enumerate(inequalities): 
 model.addCons(quicksum(var_names[node] for node in group) <= 1, 
name=f"clique_{count}") 

objective_expr = quicksum(var_names[node] for node in graph.nodes) 
model.setObjective(objective_expr, "maximize") 

Figure 7: Top Left: The same T-SNE visualization as in Fig. 1a. Bottom Left: an example of a seed
class’ optimization modeling component. Right: an example of a MILP-Evolve generated class’
optimization modeling component.

10 days with 60 parallel running threads to generate all levels; the majority of the time is spent
on parameter search and filtering, as it involves solving a large number of MILP instances. For
the learning experiments, we use the first 1, 000 generated MILP classes, which were produced in
the first 42 levels over approximately 5 days. We plan to release all LLM-generated classes upon
paper acceptance, and we believe this dataset will be a valuable resource for future multi-class MILP
learning tasks.

A.1.1 MILP CLASSES DETAILS

Seed Classes. The evolution pipeline starts with 8 benchmark MILP classes commonly used in
previous literature. Table 4 provides a list of abbreviations and references of the seed classes. We
reformat the code from (Scavuzzo et al., 2022) to generate IS, SC, CA, CF, and KS instances, and
from (Labassi et al., 2022) to generate GIS, NF and SAT instances.

Table 4: Abbreviations, Full Names, and References for the 8 Seed Classes.

Abbreviation Full Name Reference
IS Maximum Independent Set Bergman et al. (2016)
SC Set Cover Balas & Ho (1980)
CA Combinatorial Auction Leyton-Brown et al. (2000)
CF Capacitated Facility Location Cornuéjols et al. (1991)
KS Multiple Knapsack Pisinger (1999)
GIS Generalized Independent Set Colombi et al. (2017)
NF Multicommodity Network Flow Hewitt et al. (2010)
SAT Max Satisfiability Béjar et al. (2009)

Code Syntax. We formulate each seed class into a modular code structure, and we also prompt
each LLM-generated class to follow a similar structure. A detailed example of an LLM-generated
class (ConferenceRoomScheduling) provided in Appendix A.4.1. Each MILP class is imple-
mented as a Python class with a descriptive name, with three main components:

1. Data: Inside the generate_instance function, necessary data for the constraint and objec-
tive coefficients are generated. In the conference room scheduling example, the data corresponds
to the meeting schedules, room availability and capacities. For many graph based problems (e.g.
Set Cover, Independent Set), the data includes a graph generated by common distributions such
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as Erdos-Renyi or Barabasi-Albert. The data generation typically uses random functions with
parameters to control data properties (e.g. the range of room capacity or the graph density).

2. Optimization Modeling: Inside the solve function, variables, constraints and the objective
function of the MILP is defined. For example, the conference room scheduling example maxi-
mizes the number of meetings scheduled, subject to the constraints that each room can host only
one meeting at a given time and each meeting should be scheduled in at most one room. The data
generated by the generate_instance function is used to generate these constraints.

3. Parameters: The parameters = {...} dictionary specifies parameters for data generation
to complete the code for the MILP class.

The code for each MILP class is self-contained and complete; When executed, it can generate data,
model the optimization, and solve the corresponding MILP problem.

When prompting the LLM to generate new MILP code, we pre-process each file by marking the
data, optimization, and parameters blocks with comments including ### given instance data code
ends here, ### new instance data code ends here (data) ### given constraints and variables and ob-
jective code ends here, ### new constraints and variables and objective code ends here (optimization
modeling), and ### given parameter code ends here, ### new parameter code ends here (parameters)
at the end of each function.

A.1.2 PROMPT TYPES AND HIGH LEVEL DESCRIPTIONS

Level-by-Level Prompt Generation At each level, we randomly sample at most K = 108 pairs
of (MILP code, prompt type) to form the new batch of prompts for the LLM. The MILP code are
sampled uniformly at random from the successful MILP code generated from the previous level.
For an existing code, we select a prompt type by randomly sampling based on the default weights
{"Formulation_Add": 1, "Topic_Add": 0.5, "conv_add": 0.5, "Cross_Over": 1, "Mutate": 1, "For-
mulation_Mutate": 0.8, "Mutate_redundancy": 0.8, "Topic_new": 1, "New": 0.8, "Delete": 0.5},
where we lower the weight of certain prompts to balance the amount of prompts from different
categories (Add, Mutate, Cross-Over, New, Delete). If the MILP instance associated with the ex-
isting code has a long solve time (> 150s), we increase the weight of the Delete prompt to 0.8 and
decrease the weight of all Add prompts to half of the default weights.

We provide a detailed description of each prompt type as follows.

Prompt Structure We use chain-of-thought prompting technique to prompt the LLM to generate
a new MILP code from a given MILP code. The prompts generally contain the following main
components:

1. Summarize the given MILP code.

2. Describe how to modify the MILP code based on the specific prompt type.

3. Generate the new MILP code, step-by-step following a prompt-type specific requirements and a
general requirement.

In addition, we give a specific requirement of the generation output format to follow the Data,
Optimization Modeling, and Parameters modular structure, and provide the LLM the given MILP
code. In the second component, we ask the LLM to describe necessary changes in the new MILP
based on different prompt subcategories. Specifically, we have

1. Formulation Add: We randomly select three formulation methods within the following list of
commonly used MILP formulation methods: Knapsack Constraints (Set Packing, Set Covering,
Set Partitioning), Clique Inequalities, Big M Formulation, Convex Hull Formulation, Logical
Conditions, Piecewise Linear Functions, Symmetry Breaking, Special Ordered Sets, Indicator
Constraints, Semi-Continuous Variables, Stochastic and Robust Optimization, Network Flow
Models. We ask the LLM to select a formulation method and describe how this method can
be applied to the given MILP enhancing the complexity and realism of the MILP formulation.

2. Topic Add: We randomly select a topic from a large pool of LLM-generated optimization topics
covering various real-world applications and optimization methodologies (see Appendix A.1.3
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below). We then prompt the LLM to describe how it can retain the original MILP’s structure
while adding complexity by incorporating the specific topic into the MILP.

3. Conversation Add: We randomly select a topic similar to topic add, but we ask the LLM to
generate a dialogue between an expert (assistant) and a novice (user) in the MILP domain around
the given topic. We then ask the LLM to summarize the dialogue into a new MILP.

4. Cross-Over: Given two existing MILPs, we ask the LLM to generate a new MILP by incorpo-
rating information from the second MILP to the second MILP. Specifically, we ask the LLM to
embed the two MILPs within the same specific real-world application, explain similarities and
differences between the two MILPs, and incorporate the second MILP code to the first code.

5. General Mutate: We ask the LLM to describe the MILP under a different real-world scenario
and discuss how to the given MILP code can be slightly modified to suite the different real-world
application while maintaining a similar level of complexity as the given MILP.

6. Formulation Mutate: Similar to Formulation Add, we provide the LLM with three randomly
selected formulation methods and ask the LLM to choose a MILP formulation and explain how
it can replace some of the existing constraints in the given MILP code by new constraints using
the chosen MILP formulation method in the real-world context.

7. Mutate Remove Redundancy: We ask the LLM to identify and remove redundancies from the
given MILP code and further introduce novel, more diverse component to create the new MILP.

8. New: We ask the LLM to describe how the new MILP can follow a similar python syntax and
structure as the given MILP but models a completely different optimization problem with a dif-
ferent real-world application.

9. Topic New: Similar to Topic Add, we randomly select a topic from the topic pool and ask
the LLM to provide a detailed description of new MILP code to suite a different optimization
problem under the selected topic with a specific real world application.

10. Delete: We ask the LLM to identify less important components from the given MILP and explain
how the new MILP can remove the less important components.

The complete prompts of Formulation Add, Cross-Over, Mutate, Topic New, Delete can be found
in Appendix A.4.2.

For the third component, the prompt-type-specific requirements guide the generation (or removal, in
the case of deletion) of the data, optimization models, and parameter blocks in the MILP code, with
slight wording variations depending on the type. The general requirement outlines instructions on
the completeness, modularity, executability, novelty, and difficulty of the generated code. The type-
specific requirements are detailed in Appendix A.4.3, while the general requirement is provided in
Appendix A.4.4.

A.1.3 GENERATING MILP PROBLEM TOPICS

To generate MILP topics, we begin with the generation of two distinct sets of topics with GPT-4. The
first set, referred to as the application topics, focuses on different sectors of the real world. These
sectors include logistics, supply chain, healthcare, environmental planning, among others. Each
application topic is accompanied by a detailed description, a list of notable companies, associated
sub-domains, and various challenges faced within that sector. The second set, methodology topics,
consists a variety of mathematical models and optimization techniques used in operations research.
These include topics like linear programming, Just-In-Time (JIT) models, lean systems, Markov
processes, and stochastic programming. Each methodology represents a distinct approach or toolset
that can be applied to the application domains to address optimization problems.

Then, we create a MILP topics set – a cross product of the above two sets, where one element from
the application set is paired with one element from the methodology set. This process results in the
generation of potential MILP topics, each representing a combination of an application sector and a
methodology, forming the basis for more specific research or study. In general, we applied GPT-4o
to generate 90 companies (from 23 industries) as application topics and 108 methodology topics,
which results in 9720 (seed) MILP topics, and then we randomly selected 5000 of them for future
tasks.
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MILP Topics

Application Topics Methodology Topics

Figure 8: MILP Topic Generation Process.

A.1.4 PARAMETER ADJUSTMENT AND FILTERING DETAILS

Parameter Grid Search Ranges : For each parameter in the set, we independently sample its
value uniformly at random from the following ranges:

• For an integer parameter v, we define the search space as int(v×[0.5, 0.75, 1, 2, 3, 5, 7, 9, 10, 15]).

• For a floating point parameter v with the current parameter value v ≥ 1, we define the search
space as v × [0.5, 0.75, 1, 2, 3, 5, 7, 9, 10, 15].

• For a floating point parameter with the current parameter value v < 1, we define the
search space as the linear space between 0.1 and 0.8 with 11 equally distance values:
[0.1, 0.17, 0.24, 0.31, 0.38, 0.45, 0.52, 0.59, 0.66, 0.73, 0.8].

• For a boolean parameter, we define the search space as [True, False].

Filtering Criteria: given a set of parameter values from grid search, we declare success for the
parameter if the following hold

• Solve time t ∈ [tlow, thigh] = [20s, 180s]

• Presolve Time: tpre ∈ [tprelow, t
pre
high] = [0s, 15s], and tpre

t ∈ [fracprelow, frac
pre
high] = [0, 0.2]

• Total Var nvar ∈ [nvar
low, n

var
high] = [50, 5× 104]

• Total Binary and Integer Var: nbin_int_var ∈ [nbin_int_var
low , nbin_int_var

high ] = [50, 2× 104]

• Total Cons: ncons ∈ [ncons
low , ncons

high] = [50, 5× 104]

• Number of branch and bound nodes nbnb ∈ [nbnb
low, n

bnb
high] = [10, 5000]

• Integrality Gap: gap ∈ [gaplow, gaphigh] = [0, 300%]

The above information can be parsed and computed from the MILP solving log file for the MILP
instance associated with the MILP class, given the default seed parameter.

A.1.5 MILP INSTANCE AND LEARNING DATASET COLLECTION DETAILS

MILP-Evolve. We take the first 800 MILP classes generated by MILP-Evolve and generate mul-
tiple MILP instances per class using different random seeds, following standard practice from pre-
vious studies (Prouvost et al., 2020; Scavuzzo et al., 2022). Details of the instance generation and
dataset collection are as follows:

• Integrality Gap Prediction: we split the first 800 MILP classes into 643 classes for training/val-
idation and 157 classes for testing ( ∼ 8:2 ratio). We generate 100 instances per class, and further
split all training/validation instances with a 8:2 ratio into a separate training and validation set.
To collect the Integrality Gap data, we solve each instance with a time limit of 200s and exclude
any instance not solved to optimal within the time limit. Among all the optimally solved instances,
we clip the integrality gap to the range [0%, 100%], where we set 100% to be the upper bound and
represents instances with particularly loose LP relaxations. This results in a set of 38, 256 training
instances, 9, 564 validation instances and 11, 584 test instances. Data collection with 50 CPUs
takes around 66 hours (2.75 days).
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• Learning to Branch: We split the first 800 MILP classes with roughtly a 7:1:2 ratio into 579 for
training, 59 for validation and 162 for testing. We then collect 50, 10 and 30 instances per class
for training, validation, and testing. Following the same data collection procedure in Gasse et al.
(2019), each B&B node has a probability of 0.95 to apply a Pseudocost-branching strategy for
exploration and 0.05 to use the Strong Branching expert to collect the training data. Up to 50 data
per instance are collected.
We set a solve time limit of 200s to collect the strong branching data for each instance, excluding
instances solved optimally at the root node by default SCIP. This results in a set of 26, 502 MILP
instances for training, 512 instances for validation and 4, 756 instances for testing. Data collection
using 50 CPUs takes around 34 hours (1.4 days). Additional instances are collected for baseline
models to match the total training instances in Fig. 4.

• Language-MILP Contrastive Learning: We generated 10 instances for each of the 1,260
classes, except in the ablation experiment shown in Figure 4c, where we generated more instances
for the selected classes. Extracting numerical information from the MPS file only takes a negligi-
ble amount of time, and most of the data generation time occurs in querying LLMs. We used 80%
of the classes for training and the rest for testing. During training, 10% of the training instances
were held out for validation.

Seed, Seed+Param. and Seed+VAE.

• Seed. For each of the 8 seed classes, we manually select two parameters, resulting in a total of 16
seed parameters. We then collect the learning datasets to train the Seed model in Table 1:

(a) Integrality Gap Prediction: We solve 100 MILP instances for each parameter, with a time
limit of 200s per instance. We then split the optimally solved instances into a set of 1208
training instances and a set of 303 validation instances (∼ 8:2 ratio).

(b) Learning to branch: We solve 500 MILP instances per parameter, using the same 200-
second time limit, resulting in 7252 training instances. For validation, we use the same
MILP-Evolve set without further splitting the seed instances.

(c) Language-MILP Contrastive Learning: We generated 1, 446 instances and used 20% in-
stances as a validation set to select the parameters (learning rate, dropout, etc.); then, we used
the entire dataset for training.

• Seed + Param. For each of the 8 seed classes, we use our parameter search and filtering procedure
in MILP-Evolve (Fig. 2, Appendix A.1.4) to generate additional valid parameters. We sample 240
parameters per seed class, from which we obtain 89 new parameters that satisfy the filtering
criteria. Then we collect the learning dataset for the new parameters to augment the dataset of the
Seed Classes, which we use to train the Seed + Param. model in Table 1. Specifically,

(a) Integrality Gap Prediction: We generate 100 MILP instances for each new parameter, re-
sulting in 7462 augmented MILP instances with Integrality Gap values. These are combined
with the seed dataset, resulting in a final set of 7177 training instances and 1796 validation
instances.

(b) Learning to Branch: We further collect the strong branching data for 100 instances per
parameter, excluding instances solved optimally at the root node by SCIP Default. This
yields a total of 13831 training instances. We similarly use the same MILP-Evolve set for
validation.

(c) Language-MILP Contrastive Learning: We generated 7, 389 instances and used 20% in-
stances as a validation set to select the parameters (learning rate, dropout, etc.); then, we used
the entire dataset for training.

• Seed + VAE. We adopt the state-of-the-art instance generation method from Guo et al. (2024) to
augment the seed MILP instances. Specifically, we first train a Variational Autoencoder (VAE)-
based model on the combined set of Seed training and validation instances. The trained VAE
generates 21, 000 new instances, with 12000, 6000, 3000 instances generated for mask ratios of
η = {0.01, 0.05, 0.1} (the fraction of constraints modified). We then collect datasets for the Seed
+ VAE model in Table 1. We note that we find many of the generated instances are infeasible and
cannot be used for training.

(a) Integrality Gap Prediction: We obtain 8316 valid instances. Combined with the seed
dataset, this results in a final set of 7860 training and 1967 validation instances.
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(b) Learning to Branch: We collect strong branching data for 7552 instances. Combined with
the seed dataset, this provides a total of 14, 804 training instances. We again use the same
MILP-Evolve set for validation.

(c) Language-MILP Contrastive Learning: We generated 8, 305 instances and used 20% in-
stances as a validation set to select the parameters (learning rate, dropout, etc.); then, we used
the entire dataset for training.

Language-MILP Contrastive Learning: Description Collection. To generate a meaningful de-
scription of an MILP problem from its MILP instance file (where we use the MPS format (Tomlin &
Welch, 1992) to save the instances), we combine both the characteristics extracted from the source
code and the values from the MPS file to query a LLM to produce an accurate textual description
that can capture both the high-level problem information and data information from the A/B matri-
ces. Generating Problem Characteristics: The process begins by using a Large Language Model
(LLM) to extract specific characteristics of the problem from the solver’s Python source code (which
can be written using SCIP, Pyomo, or Gurobi). The LLM analyzes the solver code, identifying key
attributes such as the MPS format details, formulation techniques (e.g., "big M" or inequality for-
mulations), problem domain (e.g., "bin packing" or "set cover"), as well as important details about
the objective function, constraints (linear or non-linear), and variable types (integer, binary, con-
tinuous). Extracting MPS Information: After identifying problem characteristics, a rule-based
algorithm parses the MPS file into its key sections: ROWS, COLUMNS, RHS, and BOUNDS. Each
of these sections corresponds to different aspects of the MILP problem. For example, ROWS de-
fines the objective function and constraints, COLUMNS identifies the coefficients of the decision
variables, RHS contains the right-hand side values for the constraints, and BOUNDS specifies the
variable bounds.

solver.py Characteristics

MPS File
MPS File

MPS File

Parsed Info
Parsed Info

Parsed Info

Description
Description

Description

LLM

Parser

LLM

dump

Figure 9: Process for generating descriptive text from MILP problems using source code and MILP
instance files (MPS format). The generated text is then used for the language-MILP contrastive
learning task.

A.1.6 MIPLIB DATASET COLLECTION DETAILS

MIPLIB (Gleixner et al., 2021) is a widely used benchmark dataset for MILP, featuring a diverse
range of instances from various application domains. We study transfer learning on this heteroge-
neous dataset for Integrality Gap Prediction and Language-MILP Contrastive Learning.

Integrality Gap Prediction A majority of MIPLIB instances (specifically, 914 of them) have
their optimal solution values posted on the website. We curate this set of instances and compute the
integrality gap based on the posted optimal solution. We split the set into 614 instances for training
(fine-tuning) and 300 instances for testing for the MIPLIB experiments in Table 3

Language-MILP Contrastive Learning. Each MIPLIB instance is given as the A, b matrices
rather than the optimization problem formulation (e.g. constraints and variables that can be used
to generate descriptions). However, most instances include a brief description. A subset of these
descriptions are informative and suitable for the language task. For example, the description of the
‘map10‘ instance is: ’Land parcel selection problems motivated by Red-Cockaded Woodpecker con-
servation problem Imported from MIPLIB20101. In contrast, other descriptions are less informative

1https://miplib.zib.de/instance_details_map10.html
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and not useful for the language task. For instance, the ‘neos-1582420‘ instance is described simply
as ‘Collection of anonymous submissions to the NEOS Server for Optimization2.

To ensure that only relevant and informative instances were retained, we applied a large language
model (LLM) to filter out instances with descriptions deemed uninformative. As a result, the dataset
was reduced from an initial set of 914 instances for Integrality Gap Prediction to a final count of
303 instances. We then divided the dataset with a 8:2 ratio into a training (fine-tuning) set of 242
instances and and a test set of 61 instances. This division provided a sufficient balance between
training the model and retaining a subset for unbiased evaluation.

Given the relatively small size of the filtered dataset, we conducted the testing process 10 times
and averaged the results to ensure robustness. For Figure 4c, where only 1,000 instances were
used for training, we repeated the training process four times with different randomly selected data,
performing 10 rounds of testing each time, and reported the average. This repetition mitigated any
potential variability that could arise from the limited number of instances.

Data filtering details. Examples of the descriptions that were filtered out include those related
to undisclosed industrial applications from companies like Google, instances imported from earlier
MIPLIB submissions, or those collected from forums such as the Gurobi forum with unknown ap-
plications. Some instances were also removed because they were marked as infeasible by optimiza-
tion solvers such as ParaSCIP, taking an extended time to solve, or because they were anonymous
submissions to optimization servers like NEOS. Other filtered instances originated from MiniZinc
Challenges between 2012 and 2016 or were randomly generated integer and binary programming
instances. Descriptions related to railway line planning and other irrelevant application contexts
were also excluded.

We report the MPS-to-Text accuracies in our results because we only fine-tuned the GNN model
and froze the text embedding model. Interestingly, we observed that the Text-to-MPS accuracy was
consistently about 1–2% higher than the MPS-to-Text accuracy, suggesting that the text encoder
in our CLIP model was better trained than the graph neural network (GNN) encoder used for the
Mixed-Integer Programming (MIP) instances.

A.2 MILP LEARNING DETAILS

A.2.1 INTEGRALITY GAP PREDICTION

Training and Evaluation Setup. We train, validate and test all methods on a distributed cluster
using nodes equipped with 80 Intel(R) Xeon(R) Silver 4316 CPU and A single Nvidia Volta A100
GPU. Training takes less than 24 hours for each model.

Training Loss. At training time, we use Huber Loss (Huber, 1992) to minimize the deviation of
predicted integrality gap from the label. Specifically, given a ground truth label g∗(x) and a predicted
integrality gap f̂theta(x) for a MILP instance x, the Huber Loss is defined as

L(θ;x) =

{
1
2 (f̂θ(x)− g∗(x))2, if |f̂θ(x)− g∗(x)| ≤ 1

|f̂θ(x)− g∗(x)| − 1
2 , otherwise.

(2)

Evaluation Metric. At test time, we report the absolute deviation 1
|Xtest|

∑
x∈Xtest

|f̂θ(x) − g∗(x)|
across a set of multi-class test instances x ∈ Xtest. We further evaluate the Pearson Correlation of
the prediction and the ground truth as the second test metric.

Input Features We use the variable and constraint features provided in Paulus et al. (2022). A list
of the features are provided in Table 5. As we only need to extract the state information after the
first root-node LP relaxation, we remove a subset of irrelevant constraint features related to cutting
planes from the original set.

Note: We use the Paulus et al. (2022) implementation instead of Ecole (Gasse et al., 2019) because
the customized PySCIPOpt interface by Paulus et al. (2022) allows us to extract input features after

2https://miplib.zib.de/instance_details_neos-1582420.html
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Figure 10: Input Graph Representation and Learning Architecture for Integrality Gap Prediction.
For Ours - Attn., the attention layer is replaced with global pooling on the hidden embeddings of all
constraints and variables to obtain the global summary vector sp.

each LP relaxation, whereas that by Gasse et al. (2019) only allows extracting input features at each
branching decisions, and the first branching decision happens later than the first LP relaxation.

Table 5: Integrality Gap Prediction and Language-MILP Contrastive Learning: MILP instance input
features for variable and constraint nodes (Paulus et al. (2022)).

Node Type Feature Description

Vars

norm coef Objective coefficient, normalized by objective norm
type Type (binary, integer, impl. integer, continuous) one-hot
has lb Lower bound indicator
has ub Upper bound indicator
norm redcost Reduced cost, normalized by objective norm
solval Solution value
solfrac Solution value fractionality
sol_is_at_lb Solution value equals lower bound
sol_is_at_ub Solution value equals upper bound
norm_age LP age, normalized by total number of solved LPs
basestat Simplex basis status (lower, basic, upper, zero) one-hot

Cons

rank Rank of a row
norm_nnzrs Fraction of nonzero entries
bias Unshifted side normalized by row norm
row_is_at_lhs Row value equals left hand side
row_is_at_rhs Row value equals right hand side
dualsol Dual LP solution of a row, normalized by row and objective norm
basestat Basis status of a row in the LP solution, one-hot
norm_age Age of row, normalized by total number of solved LPs
norm_nlp_creation LPs since the row has been created, normalized
norm_intcols Fraction of integral columns in the row
is_integral Activity of the row is always integral in a feasible solution
is_removable Row is removable from the LP
is_in_lp Row is member of current LP
obj_par Objective parallelism score of a row

Architecture and Training Hyperparameters. Our network, as illustrated in Fig. 10, first em-
beds V ∈ Rn×17, C ∈ Rm×29 (where n,m are the number of variables and constraints) into hidden
representations of dimension dhidden = 64 with a BatchNorm followed by two (Linear, ReLU)
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Table 6: Architecture hyperparameters for Integrality
Gap Prediction.

Input dimension
n× dn
m× dn

V ∈ Rn×17

C ∈ Rm×29

GCN Message
Passing Order

V→C,
C→V

Output dimension 1 Num. GCN
Layers 1

Embedding
dimension dhidden

64 Attention
Num. Heads 8

Num. sampled Cons.&
Vars. ssubsample

512
Attention
Dropout 0.6

Table 7: Training hyperparameters.

Optimizer Adam
Learning rate 0.001

Batch size 32
Num. of

Gradient Steps 30000

blocks. The hidden embeddings are fed into a Graph Convolution module Kipf & Welling (2017),
with message passing, following the direction of V→C and C→V, with a final (LayerNorm, Lin-
ear, ReLU, Linear) block that maintains the dimension dhidden. Then, for each MILP instance,
we randomly sample a subset of ssubsample = 512 constraint and variable nodes and construct
a (ssubsample + 3) × dhidden = 515 × 64 matrix, where the first ssubsample dimensions are the
subsampled constraint and variable hidden embedding, and the last three dimensions are the mean
constraint embedding, mean variable embedding, and a special summary node where we extract the
global information to. Lastly, we feed this matrix into a Transformer Encoder Layer Vaswani (2017)
with nheads = 8 heads and a dropout rate of 0.6, and we take the attention output embedding of the
all-zero input vector and finally use a (Linear, ReLU, Linear) block to map the vector into a scalar
output.

We train with Adam optimizer with a learning rate of 0.001 and a batch size of 32 with a total
of 30000 gradient steps. All hyperparameters are selected on the validation set and frozen before
evaluating on the test set. Table 6 and 7 provides a list of hyperparameters.
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A.2.2 LEARNING TO BRANCH

B&B background and common branching strategies. Exact MILP solvers (Bestuzheva et al.,
2021; Gurobi Optimization, LLC, 2023) typically employ the Branch-and-Bound (B&B) algorithm,
which systematically explores a search tree to find the optimal solution. At each node in the tree, a
Linear Programming (LP) relaxation is solved, where the integrality constraints on the variables are
relaxed. If the LP solution satisfies the integrality constraints, it is feasible for the MILP, and the
process can backtrack. Otherwise, the algorithm selects a variable to branch on, creating two child
nodes with additional constraints (e.g., xj ≤ ⌊x∗

j⌋ and xj ≥ ⌈x∗
j⌉).

The efficiency of the B&B algorithm heavily depends on the branching strategy used to select vari-
ables for branching (Achterberg, 2007). Common strategies include:

• Most Infeasible Branching: Selecting the variable with the value closest to fractional (i.e., x∗
j

closest to 0.5).

• Strong Branching: Evaluating the potential impact of branching on each candidate variable by
temporarily branching and estimating the resulting lower bounds.

• Pseudo-Cost Branching: Estimating the effect of branching based on historical information gath-
ered during the search.

However, these heuristics may not be optimal for all problem instances, and designing effective
branching strategies remains an area of active research. In this work, we extend the setup of (Gasse
et al., 2019) to imitate the Strong Branching expert to the multi-class learning context.

Training and Evaluation Setup. We train, validate and test all methods on a distributed cluster
using nodes equipped with 80 Intel(R) Xeon(R) Silver 4316 CPU and A single Nvidia Volta A100
GPU. Training for each model takes less than 24 hours. During data collection and testing, we use
a single CPU to solve each MILP instance. Following Gasse et al. (2019), we disable presolving
and cutting plane separation to focus on the impact of learning for B&B. A 200s time limit is set for
solving each instance.

Training Loss. Each training data corresponds to a state-action pair (s, a∗) at a B&B node, where s
represents the MILP subproblem at the node and a∗ is the strong branching expert action. Given a
learned policy f̂θ(·) that outputs the probability of selecting each variable from a candidate set, we
minimize the cross-entropy loss − 1

N

∑
(s,a∗) log f̂θ(a

∗|s) of predicting the expert action.

Evaluation Metric. At test time, we compare the solve time of each learned method with SCIP
Default for each test instance, with a 200s solve time limit per instance. For each method, we
report the proportion instances solved to optimal, we report the proportion of instances solved to
optimal, the 1-shifted geometric mean of time improvement over SCIP Default, and the 1-shifted
geometric mean time improvement excluding neural network overhead (Ex.). Time improvements
are calculated for instances where the learned method solves to optimal within the time limit.

Input Features We follow the Ecole (Gasse et al., 2019) implementation for the learning to branch
experiments. As listed in Table 8, the input features are similar to those in Paulus et al. (2022) with
a slightly larger set of variable features and a smaller set of constraint features.

Architecture and Training Hyperparameters. We adopt a similar GCN architecture as in Gasse
et al. (2019). Specifically, given the Ecole input feature with V ∈ Rn×19 and C ∈ Rm×5, the
model includes the same embedding layer as in Fig. 10, followed by three layers of the V→C &
C→V Graph Convolution. We increase the number of layers as it improves the prediction accuracy
without adding significant overhead. After the GCN block, each variable node’s hidden embedding
is projected through an MLP; this results in a predicted score for each variable, which we use to
select the variable. We set the same hidden dimension of nhidden = 64 and train each model for 100
epochs. The remaining hyperparameters are identical to those in Table 6 and 7.

Notably, we exclude the attention layer from the architecture due to its computational overhead:
since we predict a score for each variable rather than for the whole graph, subsampled attention
from Fig. 10 cannot be applied, and using full attention for all variables would increase the solve
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Table 8: Learning to Branch: MILP instance input features for variable and constraint nodes (Gasse
et al., 2019).

Node Type Feature Description

Vars

norm coef Objective coefficient, normalized by objective norm
type Type (binary, integer, impl. integer, continuous) one-hot
has lb Lower bound indicator
has ub Upper bound indicator
norm redcost Reduced cost, normalized by objective norm
solval Solution value
solfrac Solution value fractionality
sol_is_at_lb Solution value equals lower bound
sol_is_at_ub Solution value equals upper bound
norm_age LP age, normalized by total number of solved LPs
incumbent_value The objective value of the current best solution
avg_incumbent_value he mean of all incumbent values found so far
basestat Simplex basis status (lower, basic, upper, zero) one-hot

Cons

bias Unshifted side normalized by row norm
obj_cosine_sim Cosine Similarity of the row with the objective
is_tight Row value equals right hand side
dualsol Dual LP solution of a row, normalized by row and objective norm
norm_age Age of row, normalized by total number of solved LPs

time (our main evaluation criterion). We recognize developing an efficient attention mechanism to
enhance multi-class branching as an important direction for future work.
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A.2.3 MILP-LANGUAGE CONTRASTIVE LEARNING

Loss Details. Let D = {(Mi, Ti)}Ni=1 denote a dataset comprising N pairs of MILP instances
Mi and their corresponding textual descriptions Ti. Our objective is to learn embedding functions
fM : M → Rd and fT : T → Rd that map MILP instances and text descriptions into a shared
d-dimensional latent space.

For a batch of K MILP-text pairs, we compute the embeddings:

hM = fM (M) ∈ RK×d,

hT = fT (T ) ∈ RK×d,
(3)

where hM and hT are the embeddings of the MILP instances and text descriptions in the batch,
respectively.

We then normalize these embeddings to have unit length:

h̃M = normalize(hM ),

h̃T = normalize(hT ),
(4)

where the normalization is performed along the embedding dimension, applied row-wise for each
example in the batch:

normalize(hi) =
hi

∥hi∥2
, (5)

Next, we compute the similarity scores (logits) between all pairs in the batch using the dot product
of the normalized embeddings:

ZM→T = h̃M h̃⊤
T ∈ RK×K ,

ZT→M = h̃T h̃
⊤
M ∈ RK×K .

(6)

Here, ZM→T [i, j] represents the cosine similarity between the i-th MILP instance and the j-th text
description.

We define the labels for contrastive learning as:

y = [0, 1, 2, . . . ,K − 1], (7)

indicating the correct matching pairs in the batch.

We then compute the cross-entropy losses for both MILP-to-text and text-to-MILP directions:

LM→T =
1

K

K∑
i=1

CrossEntropy (ZM→T [i, :],y[i]) ,

LT→M =
1

K

K∑
i=1

CrossEntropy (ZT→M [i, :],y[i]) .

(8)

The total loss is the average of the two losses:

L =
1

2
(LM→T + LT→M ) . (9)

Training and Evaluation Setup. We train, validate and test all methods on a distributed cluster
using nodes equipped with 80 Intel(R) Xeon(R) Silver 4316 CPU and A single Nvidia Volta A100
GPU. Training takes less than 24hr for each model.
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Engineering Tricks. We used a caching mechanism for the text embedding model because it was not
fine-tuned during our experiments. Hence, we only needed to utilize the 7B embedding model once
per text description, which largely improved the efficiency of the training process.

Evaluation Metric. At test time, given a MILP instance x and a set of natural language descriptions
{y1, . . . , yk} for different MILP classes, we then perform a k-way classification to distinguish the
correct natural language description for each MILP instance from the set of options. We report the
4-way and 10-way accuracy on the test set (k = 4 and 10).

Input Features For the MILP, we use the same input feature as in Table 5 to embed each MILP
instance x; that is, the input graph is constructed after the first root-node LP is solved, which is easy
to obtain as the root-node LP is typically fast to solve. The text description is fed directly into a
language encoder.

Architecture and Training Hyperparameters. For the MILP encoder, we adopt the same archi-
tecture as Integrality Gap Prediction (Fig. 10, Table 6) with change in the final layer (head), instead
of projecting into a single score, we project into a embedding vector with dimension noutput = 4096
so that we can project the modality between MILP and text (NV-Embed-v13 with temperature 0).
We set the model with dropout ratio 0.5 and train the model with learning rate 5× 10−5 with Adam
Optimizer for 100 epochs.

3https://huggingface.co/nvidia/NV-Embed-v1
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Figure 11: MILP Instance Statistics from Different Data Sources. We plot the problem size distri-
bution (top) and Integrality Gap training label distribution (bottom). Instances generated by MILP-
Evolve(Ours) exhibits a closer problem size label distribution to MIPLIB than baseline methods.
See Appendix A.3.1 for details.

A.3 ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

A.3.1 MILP INSTANCES STRUCTURAL ANALYSIS

In Table 9, we present structural statistics to compare the different data sources (MILP-Evolve,
Seed, VAE(Guo et al., 2024), Param. Search). We also include statistics from the MIPLIB training
set (Sec. 5.3) to understand why Ours outperforms methods trained on Seed instances or their aug-
mented versions in the transfer learning setting. The statistics are categorized into four groups, each
representing a different aspect of MILP structure. We visualize a subset of these statistics in Fig. 11.

1. Class: We compare the optimization problem formulations of classes generated by MILP-Evolve
with the 8 seed classes. We extract the number of model.addVar and model.addCons
statements in each code, which correspond to different types of variables and constraints. As
seen in Fig.7, MILP classes generated by MILP-Evolve include a wider variety of variable and
constraint types. We note that this aligns with real-world optimization problems, which typically
involve many types of variables and constraints to capture the complexity of the problem.

2. Instances: We analyze the structural properties of MILP instances generated from different data
sources, including instance size (number of variables and constraints), the ratio of continuous
variables, and constraint coefficient density (proportion of non-zero entries in the A matrix).
While the continuous variable ratio and constraint densities are similar across sources, instances
from MILP-Evolve have more variables and constraints than Seed, VAE, and Param. This is
expected, as MILP-Evolve generates more diverse MILP formulations. As shown in Fig. 11, the
MILP-Evolve produces instances with a diverse range of sizes, similar as the MIPLIB dataset; in
contrast, VAE and Param. can only perturb instances slightly from the Seed instances.

3. Solving: We measure the distribution of solve time and the number of B&B nodes across different
data sources. Fig. 12 further shows the solve time distribution for Seed, VAE, Param., and
MILP-Evolve. We observe that instances generated by MILP-Evolve have similar solve times
to Seed. In contrast, VAE instances have shorter solve times, which highlights the challenge
of preserving solve times in learning-based instance generation. We note that the parameter
search and filtering in MILP-Evolve is key to maintaining similar solve times to Seed; without
it, generated instances typically solve in under 5 seconds. This demonstrates the importance of
post-filtering to maintain desired problem properties for LLM-based MILP class generation.

4. Integrality Gap similarity with MIPLIB Test: We compute how similar each gap distribution
from different data sources are to MIPLIB Test. We find that the gap distribution from MILP-
Evolve is closer to MIPLIB Test than the baseline methods (Seed, VAE, and Param.). As MIPLIB
contains a set of heterogeneous instances with a diverse set of gap distribution, this highlights the
benefit of MILP-Evolve in increasing training instance label diversities, which we see in Table 3
leads to an improved transfer learning performance.
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Table 9: Instance Statistics from Different Data Sources.

MIPLIB Train MILP-Evolve VAE Param. Seed

Class # model.addVar N/A 4.28 ±2.66 1.58 ± 0.67 1.58 ± 0.67 1.58 ± 0.67
# model.addCons N/A 6.19 ± 3.46 1.84 ± 0.87 1.84 ± 0.87 1.84 ± 0.87

Instance

# Variables 15666 ± 37561 16039 ± 21235 3443 ± 3579 5350 ± 9336 3592 ± 5064
Ratio of
Continuous Vars 0.65 ± 0.37 0.70 ± 0.40 0.71 ± 0.44 0.83 ± 0.37 0.75 ± 0.43

# Constraints 14514 ± 41100 12367 ± 22461 2534 ± 3402 6522 ± 11886 3087 ± 5064
Constraint
Coefficient Density 0.040 ± 0.145 0.013 ± 0.082 0.014 ± 0.020 0.041 ± 0.07 0.017 ± 0.022

Solving
Number of nodes N/A 926 ± 4668 443 ± 869 1454 ± 4965 1847 ± 5765
Pre-solve Time (s) N/A 1.82 ± 6.80 0.14 ± 0.27 0.68 ± 0.89 0.22 ± 0.43
Solve Time (s) N/A 56.78 ± 49.19 27.88 ± 35.66 59.92 ± 45.58 59.02 ± 48.74

Integrality Gap
Similarity
w/ MIPLIB Test

Correlation (↑) 0.98 0.92 0.86 0.56 0.65
Intersection (↑) 0.88 0.81 0.67 0.56 0.51
Chi-Square Dist. (↓) 0.07 0.13 0.39 0.52 0.64
Bhattacharyya dist. (↓) 0.02 0.04 0.15 0.21 0.28

(a) Ours (MILP-Evolve) (b) VAE (c) Param. (d) Seed

Figure 12: Solve Time Distribution from Different Data Sources. The solve times for Ours (MILP-
Evolve), Seed, and Param. Search are similar, while VAE-augmented instances have slightly shorter
solve times.

Similarity Metric Details. For each data source (including MIPLIB Test), we first construct a
histogram with values between [0, 1] using nbins = 30. The histogram for different data sources
are visualized in Fig. 11; the MIPLIB Test distribution (not plotted) is similar to MIPLIB Train. We
then calculate the similarity of the histogram of each data source and the MIPLIB Test histogram
using similarity measures (i) Correlation (higher the better), which computes the Pearson correlation
of two histograms; (ii) Intersection (higher the better), calculated as

∑nbins
i=1 min(hist1[i],hist2[2])∑nbins
i=1 max(hist1[i],hist2[i])

(iii)

Chi-Square Distance (lower the better), computed as
∑nbins

i=1
(hist1[i]−hist2[i])2

hist1[i]+hist2[i]+eps (iv) Bhattacharyya

Distance (lower the better), calculated as − log(
nbins∑
i=1

√
hist1[i] ∗ hist2[i]).

A.3.2 LEARNING TO BRANCH: PERFORMANCE PER CLASS.

In Fig. 13, we show the branching performance on each test class for Seed and Ours. We calcu-
late the 1-shifted geometric mean of time improvement over SCIP Default for all instances within
each MILP class, accounting for neural network overhead. Using the same T-SNE embedding from
Fig.7, each test class is represented as a circle. A blue circle indicates the method improves solve
time over SCIP Default, while a red circle indicates a slower solve time (with darker shades repre-
senting greater improvement or degradation). Seed is trained only on the seed classes, plotted as
orange stars, while Ours is trained on both the seed classes and the MILP-Evolve generated classes,
shown as light gray stars. We observe that Ours improves solve time for significantly more classes
than Seed, though there is still a subset where Ours underperforms compared to SCIP Default. This
suggests future work on enhancing multi-class learning performance for these classes, or developing
a meta-model to select between SCIP Default and a learned method based on problem characteris-
tics.
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Figure 13: Learning to Branch Solve Time Improvement in Each MILP Class. Using the same
T-SNE embedding as in Fig. 7, we visualize branching performance on individual test classes. Each
class is represented by a circle: blue indicates improved solve time over SCIP Default, red indicates
slower solve time, with darker shades showing greater improvement or degradation. Seed is trained
on seed classes (orange stars), and Ours is trained on both seed and MILP-Evolve-generated classes
(light gray stars).

A.3.3 A NEW MILP-Evolve SET BASED ON SIX UNSEEN SEED CLASSES.

Six Unseen Seed Classes. We take a different set of 6 unseen seed classes, consisting of Graph
Coloring, Job-Shop Scheduling, Protein Folding, Multi-Item Lot Sizing, Bin Packing, and Max Cut.
We run MILP-Evolve to slightly expand the new test set to a total of 50 classes. We perform transfer
learning of different models to this unseen test set, where we use 40% classes for fine-tuning and set
aside 60% classes for testing.

Table 10: Abbreviations, Full Names, and References for another set of 6 Unseen Seed Classes.

Abbreviation Full Name Reference
GC Graph Coloring Jensen & Toft (2011)
JS Job-Shop Scheduling Xiong et al. (2022)
PF ProteinFolding Williams (2013)
LS Multi-Item Lot Sizing Chen & Thizy (1990)
BP Bin Packing Tang et al. (2020)
MC Max Cut Tang et al. (2020)

Language-MILP Contrastive Learning: Expert Curate / Verified Language Labels. To ensure
the quality of language descriptions, we manually verified and modified the linguistic description
and made sure the descriptions matches the optimization problem in the testing set.

We observed that GPT-generated descriptions are generally accurate, correctly reflecting the opti-
mization problem and highlighting potential real-world applications of the optimization class (e.g.,
"This type of scheduling is essential in manufacturing and project management, where minimiz-
ing total completion time across multiple tasks is critical."). Some descriptions included irrelevant
details (e.g., “PySCIPOpt is used to solve the optimization problem"), which we manually removed.

A.3.4 EFFECTS OF DIFFERENT SEED CLASSES.

We include an ablation study to analyze the effect of different seed classes on the performance.

Statistics. Table 11 shows the proportion of generated classes from each seed class4. We see that
some seed classes can lead to more generated classes (e.g. Combinatorial Auction (CA)) than others

4Note that for cross-over prompts, we only tracked the trace of the first MILP class, so the number here can
be slightly noisy.
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(e.g. Knapsack (KS)). One potential reason could be that our filtering and parameter adjustment
procedures can find good solutions for certain classes more easily than others.

Table 11: Proportion of MILP-Evolve generated classes from each of the seed class.

IS CA KS GIS NF SC SAT CF

Proportion 10.8% 27.3% 4.3% 22.4% 7.5% 6.5% 11.9% 9.3%

Impact of different classes on the learning performance. For each of the eight seed classes, we
train separate models on instances (1) from all evolved classes based only on this seed class (One
Seed), (2) with weighted sampling, 70% from all evolved classes based on this seed class, and 30%
based on other seed classes (Weighted). We fix the number of train and validation instances, and
compare the test performance on MILP-Evolve held out test set (Table 1) and the transfer learning
performance to MIPLIB (Table 3).

Results: We report our findings in Table 12. We see that

1. Table 1, One Seed: Learning on classes based on one single seed class has limited performance.
2. Table 1, Weighted: Classes with a higher proportion in the MILP-Evolve dataset (CA, GIS),

when given a higher weight when sampling training set, typically lead to a better test performance
on the MILP-Evolve held out set; an exception is Capacitated Facility Location (CF), which has
a lower ratio than CA and GIS, but its learned model achieves the best test performance among
all models.

3. MIPLIB, Weighted: The transfer learning performance when initializing with the different mod-
els seem to be similar on the MIPLIB test set, and is worse than Ours performance when trained
on instances from all MILP classes.

Finally, these results give more evidence to the primary hypothesis of this paper: the importance of
having a diverse set of MILP classes from different seed classes to improve the generalization
performance.

Table 12: Generalization performance on the MILP-Evolve hold out set (Table 1) and MIPLIB
(Table 3) when learning on (1) One Seed: classes originating from a single seed, and (2) Weighted:
70% classes originating from a single seed, 30% classes from other seeds. We fix the total number
of training and validation instances across all settings.

Table 1, One Seed Table 1, Weighted MIPLIB, Weighted
Dev. (↓) Corr. (↑) Dev. (↓) Corr. (↑) Dev. (↓) Corr. (↑)

Seed 0: Indep Set (IS) 32.66% 0.26 25.29% 0.47 25.41% 0.47
Seed 1: Comb. Auction (CA) 30.01% 0.34 21.40% 0.53 23.44% 0.55
Seed 2: Multiple Knapsack (KS) 33.84 % 0.09 24.22% 0.49 23.60% 0.53
Seed 3: Generalized Indep. Set (GIS) 31.74% 0.19 22.64 % 0.51 25.61% 0.49
Seed 4: Multi-Comm. Network Flow (NF) 36.49 % 0.22 26.10% 0.41 24.08% 0.52
Seed 5: Set Cover (SC) 34.45 % 0.11 24.80% 0.45 26.13% 0.47
Seed 6: Max Satisfiability (SAT) 43.07 % 0.20 23.52% 0.49 23.79% 0.52
Seed 7: Cap. Fac. Location (CF) 33.00% 0.09 20.39% 0.58 25.24% 0.51

Ours (Full Dataset) 20.14% 0.58 20.14% 0.58 21.56% 0.59

A.3.5 MIXING DIFFERENT FRACTIONS OF SEED V.S. MILP-Evolve GENERATED DATA.

We study the effect of mixing different fractions of Seed v.s. MILP-Evolve generated MILP instances
on the performance for the Integrality Gap Prediction task. Specifically, we construct different
training sets by varying the ratio of seed and instances generated from MILP-Evolve classes. We
fix the total number of training and validation instances as 1200 and 300 instances, respectively.
We then train a model on each of these training sets and test on the MILP-Evolve hold out test set
(Table 1). From the result table below, we see that including more MILP instances from MILP-
Evolve (i.e. more diverse MILP classes) improve the performance.
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Table 13: Integrality Gap Prediction: Performance when mixing different fractions of Seed v.s.
MILP-Evolve generated MILP instances as training and validation set, fixing the total number of
training and validation instance constant. We test on the MILP-Evolve held out test set in Table 1.

Seed
100%

Seed 80%
+ Evolve 20%

Seed 60%
+ Evolve 40%

Seed 40%
+ Evolve 60%

Seed 20%
+ Evolve 80%

Deviation (↓) 32.96 25.66 23.57 21.67 21.32
Correlation (↑) 0.10 0.41 0.49 0.55 0.57

A.3.6 PRACTICAL APPLICATION OF LANGUAGE-MILP CONTRASTIVE LEARNING TASK

We answer this question on two fronts: the utility of this task from the perspective of understanding
MILPs and the potential of contrastive learning technique itself.

Many open source MILP datasets such as MIPLIB and in many business scenarios, the MILP in-
stance files contain only constraints and variables (the raw A, b, c values in the optimization), which
are typically hard to understand and massive in size. Most of these MILP files lack descriptions
of the underlying optimization problem and/or not sufficiently meaningful. Moreover, we cannot
directly feed them into LLMs to interpret and generate language descriptions of the MILP formula-
tions due to the context length limit, as seen from Table 14 and discussed in the next section.

Hence, this work takes first step with a contrastive learning approach to align GNN embedding of
MILP instances with the text embeddings, aiming to provide meaningful interpretations when giving
the MILP instances as input. Our results indicate that our approach holds lot of promise.

Given the abstract nature of the MILP instances, we believe any assistance in helping users’ under-
standing of them is crucial. This can help nonexperts to understand the problem and also identify the
incorrect formulations. This task also complements our other two tasks which are concerned with
solving MILPs rather than understanding. We believe that a foundation model for MILPs that aims
to democratize solving MILPs should also have the ability to help users to understand them.

A.3.7 GPT ONLY BASELINE FOR LANGUAGE-MILP CONTRASTIVE LEARNING.

Table 14: Language-MILP Contrastive Learning: Performance Comparison of GPT-4o on the (sub-
sampled) MILP instance files and the GNN-LLM contrastive model results.

GPT-4o Train From Scratch Seed Seed + Param Search Seed + VAE Ours

4-Way Acc. (↑) 47.79% 72.37% 72.20% 75.17% 72.90% 77.62%
10-Way Acc (↑) 16.81% 46.50% 42.45% 42.66% 44.61% 53.99%

For the Language-MILP Contrastive Learning task, an interesting question is, whether we can use
large language models (LLMs) to directly interpret the MILP instance to select the language align-
ment, hence bypassing the need to embed the MILP instance with the Graph Neural Network (GNN).

One of the bottlenecks with LLM directly interpreting MILP instances is that, the MILP instance
files are typically huge as they contain the raw numerical values of the variables and constraints,
substantially surpassing the context length of LLMs – that’s why in this work, we focus on using
GNNs to embed MILP instances, which can handle large MILP instances, to contrastive with the
text embeddings from a language model.

We perform the experiment by subsampling the rows of the instance files up to context length.
Specifically, we preprocess the MPS content for GPT-4o by anonymizing identifiers (e.g., problem
names, variable names) and selecting 150 representative lines: 50 from the header, 50 randomly
chosen from the middle, and 50 from the tail. This approach ensures sufficient context about the
MPS file while staying within content length limits. We then construct a multiple-choice question
and prompt GPT-4o to provide a step-by-step chain-of-thought analysis before making an educated
guess.
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Table 14 presents the results on the same MILP-Evolve test set as in Table 2. We observe the
significant performance gap between GPT-4o and the GNN-LLM alignment methods as in the paper.
This shows it is insufficient to use LLMs directly on the MILP-Language Contrastive Learning task.

An example GPT-4o’s prompt and answer can be found next.

An example prompt for GPT-4o to Perform the MILP-Language Contrastive Learning Task

You are provided with an MPS file representing a mixed integer programming (MIP) prob-
lem. Based on the content of this file, determine which of the following problems it is most
likely associated with.

MPS FILE CONTENT

* SCIP STATISTICS
* V a r i a b l e s : 3440 (3328 b i n a r y , 0 i n t e g e r , 0 i m p l i c i t i n t e g e r , 112 c o n t i n u o u s )
* C o n s t r a i n t s : 6320
OBJSENSE

MIN
ROWS

N Obj
L Z_0
L Z_1
L Z_2
. . . 150 l i n e s i n t o t a l h e r e . Sk ipped i n LaTeX f o r c o n c i s e n e s s . . .

L C_96
L C_94
L C_102
L C_105

x_5 C_94 1
C_73 −1

x_13 C_83 1
C_89 1
. . .

ENDATA

CHOICES
A: This optimization model addresses a job-shop scheduling problem that incorporates machine and resource constraints, as well as prece-

dence and priority requirements among jobs. Each job has a randomly assigned processing time, machine assignment, and resource
requirement. The model also enforces group-based precedence constraints, dictating the order in which certain groups of jobs must be
completed. Additionally, jobs assigned to the same machine are constrained by sequencing requirements to avoid overlap. A key com-
ponent of the model is the inclusion of machine-specific capacity limits, ensuring that the cumulative resource requirements for jobs on a
machine do not exceed its capacity. The objective function seeks to minimize the makespan, or the total time to complete all jobs, while
also factoring in job affinities (reflecting job priority) and resource utilization. This combined objective is designed to promote efficient
machine usage, balance workload, and respect priority allocations in high-demand scheduling environments.

B: The max cut optimization problem involves dividing the nodes of a graph into two groups to maximize the sum of weights on edges that
have one endpoint in each group. Imagine you have a network where nodes are connected by weighted edges, and you want to split the
nodes into two sets so that the "cut" between them (the edges connecting nodes in different sets) has the highest possible total weight.
In this code, a graph is generated with random weights on edges, and a binary variable is assigned to each node to indicate its group.
Constraints are added to ensure each edge either connects nodes in the same set or across sets. The objective function then maximizes
the weight of edges across the cut, solving the problem using optimization techniques. This approach is useful in network design, where
maximizing the separation or load between two groups is desired.

C: This multi-item lot-sizing problem models a scenario where a company needs to plan production and inventory for multiple products over
a set number of time periods to minimize costs. For each period, the company faces specific demands for each product and must decide
whether to produce it, how much to produce, and how much inventory to hold over time. Each production decision has an associated setup
cost (for preparing machines or equipment), a holding cost (for storing any leftover inventory), and limits on how much can be produced in
a period due to resource constraints. The model ensures that all customer demand is met while keeping costs low by balancing production
quantities, setup times, and inventory levels across periods. This approach is widely used in manufacturing and supply chain management
to optimize production schedules, reduce costs, and efficiently manage resources over time.

D: This optimization model is designed to identify optimal locations for electric vehicle (EV) charging stations within a given network
of potential nodes. The model operates on a graph structure representing the network, where each node signifies a potential station
location and each edge denotes connectivity between locations. It considers various factors, such as land costs, energy availability,
zoning compatibility, grid substations, and tariff impacts. Each node has binary decision variables indicating station placement, resource
allocation, and compliance with zoning regulations. The objective function seeks to maximize connectivity and substation resources while
minimizing land costs and tariff impacts. Additional constraints ensure that energy demands do not exceed availability, and a priority
variable with a large constant (Big M) term enforces priority constraints for specific nodes. The model’s outcome identifies a balanced
solution for station deployment that maximizes network accessibility and minimizes operational costs, while meeting regulatory and
resource limitations.

INSTRUCTIONS

Think through the structure, variables, and constraints provided in the MPS file. Evaluate
their alignment with the listed problem types. Justify your reasoning step by step before
selecting the final answer.
Finally, provide only the single letter (A–D) that corresponds to your chosen answer in the
format below. The last letter in your response will be used for evaluation.
FINAL_ANSWER: [A/B/C/D]
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An example GPT-4o Response to the MILP-Language Contrastive Learning Task

ANALYSIS OF THE MPS FILE

To identify which problem the provided MPS file is most likely associated with, let’s analyze
the structure and characteristics listed in the file and match them with the given choices.

1. VARIABLES

• The MPS file contains a total of 3440 variables, with 3328 binary variables and 112
continuous variables.

• Binary variables typically indicate decisions of whether or not to engage in specific
actions (e.g., opening facilities, assigning specific nodes to a group, etc.).

2. CONSTRAINTS

• There are 6320 constraints present in the problem, a significant number which sug-
gests complex interactions, common with problems involving combinatorial as-
signment and network design.

3. OBJECTIVE

• The objective is one of minimization (OBJSENSE MIN), which often implies cost
minimization or minimizing some resource usage.

MATCHING WITH CHOICES

Given these observations, let’s match the structure to the choices:

OPTION A (JOB-SHOP SCHEDULING)
This problem typically involves assignment and sequencing constraints, requiring integer
and binary variables for ordering and timing decisions. While binary variables are used, it
may not fit the minimization objective or the large number of binary variables if detailed
resource constraints, as described, are absent.

OPTION B (MAX CUT PROBLEM)
This involves dividing nodes into two groups, which aligns well with binary variable defi-
nitions. However, the problem typically emphasizes maximization of cut weights, not mini-
mization.

OPTION C (LOT-SIZING PROBLEM)
This problem focuses on production planning, inventory levels, and setup costs. While it
involves minimization, the variable structure typically includes more continuous and integer
variables, and it is less binary-heavy compared to the structure of the given MPS file.

OPTION D (OPTIMAL LOCATION FOR EV CHARGING STATIONS)
This problem involves deciding locations, which aligns well with a binary variable for place-
ment decisions. The large number of constraints fits with logistical, regulatory, and resource
allocation concerns. Additionally, the focus on minimizing land costs matches the mini-
mization objective.

CONCLUSION

Taking into consideration the large number of binary variables, minimization objective, and
extensive constraints, Option D seems to be the best fit. This type of problem typically has
numerous binary variables for potential location decisions and many constraints related to
logistical, regulatory, and resource allocation concerns, aligning well with the characteristics
of the given MPS file.

FINAL ANSWER

FINAL_ANSWER: D
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Example Description from the Test Set

This optimization model addresses a complex job-shop scheduling problem with various
constraints and objectives aimed at minimizing overall operational costs and delays. Each
job has a processing time, tariff impact (costs affected by international tariffs), setup time
between jobs on the same machine, and energy consumption rate. The model incorporates
precedence constraints to ensure certain jobs are completed before others and assigns jobs
to specific machines while managing limited machine capacity. Additional complexity is in-
troduced through a machine breakdown risk managed by auxiliary variables, with penalties
applied if breakdowns occur. The objective function minimizes the makespan (completion
time of the last job), risk and energy costs, setup times between jobs, and potential break-
down penalties. This model enables efficient scheduling by balancing energy consumption,
setup times, and breakdown management, ultimately supporting cost-effective job sequenc-
ing and machine utilization.

Another Example Description from the Test Set

This model focuses on optimizing the placement and phased deployment of electric vehi-
cle (EV) charging stations across a graph-represented network. Each potential station site
(node) is evaluated based on land costs, energy availability, zoning compatibility, and tariff
impacts, with connections between nodes representing possible network benefits. Placement
decisions involve constraints on energy resources and land use compatibility. The model in-
cludes deployment timing variables to enforce a phased installation sequence, ensuring sta-
tions are deployed in a specified order. The objective function seeks to maximize network
accessibility—enhancing connections while considering node-specific weights—while min-
imizing associated land costs and tariff impacts. By accounting for setup costs, regional
resource limits, and sequential deployment, the model provides a strategy for an efficient,
cost-effective expansion of EV charging infrastructure.

Example Description of the Seed Problem

The provided MPS file outlines a mathematical model for a combinatorial auction problem,
structured for a mixed integer programming formulation. The model aims to maximize the
total price of accepted bids, employing binary decision variables to denote whether a bid
is accepted. Each item is constrained to be included in at most one accepted bid, with
inequality constraints set on the items ensuring this limit. The objective function involves a
maximization with coefficients provided for the bids, while RHS values impose constraints
such that certain items may appear at most once. This structured information allows one to
understand how the model strategically enforces constraints and aims to achieve the highest
possible total price for the accepted bids while ensuring no item overlaps. Additionally,
performance details and model-specific techniques are noted to highlight optimization and
study aspects within the combinatorial auction domain.

Example Description for MILPLIB Dataset

A problem in wireless networks. The objective is to select a minimum number of relay nodes
so that any two nonadjacent nodes can communicate by way of the chosen relay nodes in at
most s hops, where s is a problem input. The 2-hop case of this problem can be formulated
as a set cover/hitting set problem with n binary variables and n2 constraints:∑

k∈N(i)∩N(j)

xk ≥ 1 for nonadjacent node pairs {i, j}.

Despite the formulation’s simplicity, instances with as few as 120 variables are left unsolved
after one hour using Gurobi 7.0.2.
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A.4 PROMPT DETAILS

A.4.1 MILP CODE SYNTAX

1 import random
2 import time
3 import numpy as np
4 from pyscipopt import Model, quicksum
5
6
7 class ConferenceRoomScheduling:
8 def __init__(self, parameters, seed=None):
9 for key, value in parameters.items():

10 setattr(self, key, value)
11
12
13 self.seed = seed
14 if self.seed:
15 random.seed(seed)
16 np.random.seed(seed)
17
18 ################# Data Generation #################
19 def generate_instance(self):
20 assert self.min_capacity >= 0 and self.max_capacity >= self.min_capacity
21
22 # Generate room capacities
23 room_capacities = self.min_capacity + (self.max_capacity - self.min_capacity)
24 * np.random.rand(self.number_of_rooms)
25
26 meetings = []
27
28 # Create meeting schedules
29 for _ in range(self.number_of_meetings):
30 required_capacity = self.min_capacity + (self.max_capacity -
31 self.min_capacity) * np.random.rand()
32 start_time = random.randint(0, self.max_time - self.meeting_duration)
33 end_time = start_time + self.meeting_duration
34
35 meetings.append((required_capacity, start_time, end_time))
36
37 room_availability = [[] for room in range(self.number_of_rooms)]
38 for i, (required_capacity, start_time, end_time) in enumerate(meetings):
39 for room in range(self.number_of_rooms):
40 if room_capacities[room] >= required_capacity:
41 room_availability[room].append(i)
42
43 ### given instance data code ends here
44 ### new instance data code ends here
45
46 return {
47 "meetings": meetings,
48 "room_availability": room_availability,
49 "room_capacities": room_capacities
50 }
51
52 ################# Optimization Modeling (PySCIPOpt) #################
53 def solve(self, instance):
54 meetings = instance[’meetings’]
55 room_availability = instance[’room_availability’]
56
57 model = Model("ConferenceRoomScheduling")
58
59 # Decision variables
60 schedule_vars = {(r, i): model.addVar(vtype="B", name=f"Room_{r}_Meeting_{i}")
61 for r in range(self.number_of_rooms) for i in range(len(meetings))}
62
63 # Objective: maximize the number of meetings scheduled
64 objective_expr = quicksum(schedule_vars[r, i] for r in range(self.number_of_rooms)
65 for i in range(len(meetings)) if i in room_availability[r])
66
67 # Constraints: Each room can host only one meeting at a given time
68 for r in range(self.number_of_rooms):
69 for i1 in range(len(meetings)):
70 if i1 not in room_availability[r]:
71 continue
72 for i2 in range(i1 + 1, len(meetings)):
73 if i2 not in room_availability[r]:
74 continue
75 if meetings[i1][1] < meetings[i2][2] and meetings[i2][1] < meetings[i1][2]:
76 model.addCons(schedule_vars[r, i1] + schedule_vars[r, i2] <= 1,
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77 f"Room_{r}_Conflict_{i1}_{i2}")
78
79 # Constraints: Each meeting should be scheduled in at most one room
80 for i in range(len(meetings)):
81 model.addCons(quicksum(schedule_vars[r, i] for r in range(self.number_of_rooms)
82 if i in room_availability[r]) <= 1, f"Meeting_{i}")
83
84 model.setObjective(objective_expr, "maximize")
85
86 ### given constraints and variables and objective code ends here
87 ### new constraints and variables and objective code ends here
88
89 start_time = time.time()
90 model.optimize()
91 end_time = time.time()
92
93 return model.getStatus(), end_time - start_time
94
95 if __name__ == ’__main__’:
96 seed = 42
97
98 ################# Parameters #################
99 parameters = {

100 ’number_of_rooms’: 30,
101 ’number_of_meetings’: 125,
102 ’min_capacity’: 30,
103 ’max_capacity’: 300,
104 ’meeting_duration’: 20,
105 ’max_time’: 72,
106 }
107 ### given parameter code ends here
108 ### new parameter code ends here
109
110 scheduler = ConferenceRoomScheduling(parameters, seed)
111 instance = scheduler.generate_instance()
112 solve_status, solve_time = scheduler.solve(instance)
113
114
115 print(f"Solve Status: {solve_status}")
116 print(f"Solve Time: {solve_time:.2f} seconds")
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A.4.2 EXAMPLE PROMPTS

Formulation Add Prompt

Follow these step-by-step instructions to generate a diverse and realistic MILP by adding
complexity to a given MILP using a specific MILP formulation method:

1. Describe the Given MILP in Detail:
• Place the MILP within a specific real-world context.
• Clearly outline the context, constraints, objectives, and variables, emphasizing its prac-

tical significance.
2. Choose a MILP Formulation Method from the following options:

{three_random_formulation_methods}
• Explain how this method applies to the given MILP in a real-world context.
• Discuss the relevance of the chosen method to enhancing the complexity and realism

of the MILP formulation.
3. Summarize and Formulate a New MILP:

• Retain the original MILP’s structure but add complexity by incorporating the specific
MILP formulation method.

• Discuss how to introduce new constraints, variables, data, or change the objective func-
tion in the context of the real-world application.

• Ensure new constraints or objectives are linear. Use tricks to linearize if necessary.
4. Generate New MILP Code Step-by-Step as follows:

• [Add Requirements, see Appendix A.4.3] (We set prompt_optim="reflect
the given MILP formulation method" for formulation add prompt.)

• [General Requirements, see Appendix A.4.4]
5. Output Format:

• Description of the given MILP:
〈text to explain of the given MILP and its real-world application 〉

• Description of the chosen MILP formulation method and its application to the given
MILP:
〈text to explain the chosen MILP formulation method, its relevance to the given
MILP in the context of the real-world application 〉

• Description of New Constraints, Variables, Objectives, Data, or Parameters:
〈text to describe how to incorporate the specific formulation method to the given
MILP by proposing new constraints, variables, objectives, data, or parameters〉
〈New [constraint/variable/objective/data/parameter] 1: description,
New [constraint/variable/objective/data/parameter] 2: description,
...〉

• New complete MILP code:
“‘python
〈complete code that incorporates modified constraints, data generation, and param-
eters〉
”’

6. Here is the given MILP Code: {code}
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Cross-Over Prompt

Follow these step-by-step instructions to generate a diverse and realistic MILP by incorpo-
rating information from another MILP to add complexity to a given MILP:

1. Provide a Detailed Description of the given MILP code:
• Embed the MILP within a specific real-world application.
• Clearly describe the context, constraints, objective, and variables in a way that high-

lights its practical importance.
2. Provide a Detailed Description of the second MILP code that you should incorporate into

the given MILP code:
• Embed the MILP within the same specific real-world application as the given MILP

code.
• Clearly describe the context, constraints, objective, and variables in a way that high-

lights its practical importance.
• Explain the similarities and differences between the given MILP and the second MILP.

3. Explain the Modifications to the given MILP code and Their Impact:
• Discuss how incorporating constraints, variables, or changing the objective function

from the second MILP code to the given MILP code in the given real-world scenario.
• The new MILP should retain the majority of the given MILP’s structure, but make

significant addition based on the second MILP codebase to make it more complex and
challenging.

• Ensure new constraints or objectives are linear. Use tricks to linearize if necessary.
4. Generate New MILP Code Step-by-Step as follows

• [Add Requirements, see Appendix A.4.3] (We set prompt_optim="reflect a
combination of both MILP code" for cross-over prompt.)

• [General Requirements, see Appendix A.4.4]
5. Output Format:

• Description of the given MILP:
〈text to explain of the given MILP and its real-world application 〉

• Description of the second MILP:
〈text to explain of the second MILP in terms of the similarities and differences between
the given MILP and the second MILP in a real-world application context 〉

• Description of New Constraints, Variables, Objectives, Data, or Parameters:
〈text to describe how to incorporate the second MILP to the given MILP by proposing
new constraints, variables, objectives, data, or parameters 〉
〈New [constraint/variable/objective/data/parameter] 1: description,
New [constraint/variable/objective/data/parameter] 2: description,
...〉

• New complete MILP code:
“‘python
〈complete code that incorporates modified constraints, data generation, and parame-
ters〉
”’

6. Here is the given MILP Code: {code}
Here is the second MILP code: {code2}
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Mutate Prompt

Follow these step-by-step instructions to generate a diverse and realistic MILP by slightly
modifying the given MILP code:

1. Provide a Detailed Description of the given MILP code:
• Embed the MILP within a specific real-world application.
• Clearly describe the context, constraints, objective, and variables in a way that high-

lights its practical importance.
2. Provide a Detailed Description of new MILP code to suite a different real world applica-

tion.
• Discuss the novelty of the modifying constraints, variables, or changing the objective

function from the given MILP by embedding it in a different real-world scenario.
• Explain the relevance of these changes, detailing the similarity and differences between

the original and new MILP.
• The names of the new constraints, variables, or data should be full words starting with

one of the letter {five_random_letters}.
3. Generate the new MILP code by following these procedures step-by-step:

• [Mutate Requirements, see Appendix A.4.3] (We set prompt_optim="reflect
the new real world application" for the general mutate prompt.)

• [General Requirements, see Appendix A.4.4]
4. Output Format:

• Description of the given MILP:
〈text to explain of the given MILP and its real-world application 〉

• Description of the new MILP:
Names: 〈The full words of the names of constraint/variable/objective/data/parameter
which starts with the capital letter selected from above. 〉
〈text to explain the new MILP and its real-world application 〉

• New complete MILP code:
“‘python
〈complete code that incorporates modified constraints, data generation, and parame-
ters〉
“‘

5. Here is the given MILP Code: {code}
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Topic New Prompt

Follow these step-by-step instructions to generate a diverse and realistic MILP following the
given MILP code structure:
1. Provide a Detailed Description of the python coding style of the given MILP code.

• The description should only focus on the code style, but not the MILP details.
2. Provide a Detailed Description of new MILP code to suite a different optimization prob-

lem under the topic {topic} with a specific real world application.
• Discuss the novelty of the new MILP code in terms of constraints, variables, objective

function, data and parameters and how they align with the given topic and the associ-
ated real-world scenario.

• The names of the new constraints, variables, or data should be full words starting with
one of the letter {five_random_letters}.

3. Generate the new MILP code by following the coding style of the given MILP code. For
example, it must contain the following components
• [New Requirements, see Appendix A.4.3] (We set prompt_optim="reflect
the given topic and the associated real world
application" for topic new prompt.)

• [General Requirements, see Appendix A.4.4]
4. Output Format:

• Description of the python coding style of the given MILP:
〈text to explain of the python coding style 〉

• Description of the new MILP:
Names: 〈The full words of the names of constraint/variable/objective/data/parameter
which starts with the capital letter selected from above.〉
〈text to describe how to incorporate the specific topic to generate the new MILP 〉

• New complete MILP code:
“‘python
〈complete code that incorporates modified constraints, data generation, and parameters
〉”’

5. Here is the given MILP Code: {code}
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Delete Prompt

Follow these step-by-step instructions to generate a diverse and realistic MILP by removing
less important components from the given MILP code:

1. Provide a Detailed Description of the given MILP code.
2. Provide a Detailed Description of the new MILP code that removes the less important

and components.
• Explain how the new MILP removes the less important components from the given

MILP.
• You may modify the constraints, variables, or objectives, data generation or parameters

to make the resulting MILP coherent.
• The resulting MILP should still be complex and challenging to solve.

3. Generate the new MILP code by following these procedures step-by-step:
• [Delete Requirements, see Appendix A.4.3]
• [General Requirements, see Appendix A.4.4]

4. Output Format:
• Description of the given MILP: 〈text to describe in the given MILP 〉
• Description of the new MILP: 〈text to explain what need to be changed to remove the

less important components from the given MILP 〉
• New complete MILP code:

“‘python
〈complete code that incorporates modified constraints, data generation, and parame-
ters〉“‘

5. Here is the given MILP code {code}
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A.4.3 PROMPT-TYPE SPECIFIC REQUIREMENTS

Add / Cross-Over Requirements

• Add Constraints, Variables, or Objectives:
– Introduce new elements to increase problem complexity while ensuring feasibility.
– Place these in the solve function between ### given constraints and variables and

objective code ends here and ### new constraints and variables and objective code ends
here to {prompt_optim}.

• Modify Data Generation:
– Use functions like random.rand or random.randint or
np.random.normal or np.random.gamma or nx.erdos_renyi_graph or
nx.barabasi_albert_graph or similar functions to create diverse datasets.

– Insert new data in the get_instance function between ### given instance data code
ends here and ### new instance data code ends here to support the added constraints,
variables, or objectives.

• Update the Parameters:
– Define new parameters in if __name__ == ’__main__’ between ### given pa-

rameter code ends here and ### new parameter code ends here to support the data
generation for the optimization.

– The value of each parameter should be a constant (e.g. integer, float, boolean, string).
That is, if there is a tuple value, you should break down the tuple into individual parame-
ters with constant values. If it is a more complicated data structure (a list, dictionary, set,
or a function), please put the data structure in the get_instance function and only
put the required constants to construct the data structure in the parameters dictionary.

– Ensure parameters are adjustable to scale the problem’s complexity.

Mutate Requirements

• Modify Realistic Constraints, Variables, or Objectives:
– Modify the ‘solve‘ function by updating the constraints, variables, or objective to

{prompt_optim}.
– Ensure the modifications challenge the solver and vary in difficulty, contributing to

diverse solving times and gap improvements.
• Modify the Data Generation Procedure:

– Modify the get_instance function by updating the res dictionary to support the
modified constraints, variables, or objectives.

– Use functions like random.rand or random.randint or
np.random.normal or np.random.gamma or nx.erdos_renyi_graph or
nx.barabasi_albert_graph or similar functions to create datasets of varying
sizes.

• Modify the Parameters:
– Modify the parameters within the if __name__ == ’__main__’ block to sup-

port the data generation for the optimization.
– The value of each parameter should be a constant (e.g. integer, float, boolean, string).

That is, if there is a tuple value, you should break down the tuple into individual parame-
ters with constant values. If it is a more complicated data structure (a list, dictionary, set,
or a function), please put the data structure in the get_instance function and only
put the required constants to construct the data structure in the parameters dictionary.

– Ensure parameters can be modified easily to scale up the problem or to alter its com-
plexity.
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New Requirements

• Generate Realistic Constraints, Variables, or Objectives:
– Inside the solve function, define the constraints, variables, or objective to

{prompt_optim}.
– Ensure the new optimization problem challenge the solver and vary in difficulty, con-

tributing to diverse solving times and gap improvements.
• Generate the Data Generation Procedure:

– Inside the get_instance function, define the data generation and the res dictionary
to support the new constraints, variables or objective.

– Use functions like random.rand or random.randint or
np.random.normal or np.random.gamma or nx.erdos_renyi_graph or
nx.barabasi_albert_graph or similar functions to create datasets of varying
sizes.

– Ensure the new generated data support the generated constraints, variables, or objec-
tives.

• Generate the Parameters:
– Under the if __name__ == ’__main__’ block, generate the parameters to sup-

port the data generation for the optimization.
– The value of each parameter should be a constant (e.g. integer, float, boolean, string).

That is, if there is a tuple value, you should break down the tuple into individual parame-
ters with constant values. If it is a more complicated data structure (a list, dictionary, set,
or a function), please put the data structure in the get_instance function and only
put the required constants to construct the data structure in the parameters dictionary.

– Ensure parameters can be modified easily to scale up the problem or to alter its com-
plexity.

• Avoid Repeating Existing Code. Make the modified constraints, variables, objectives,
data, and parameters distinct from the original.
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Delete Requirements

• Modify Realistic Constraints, Variables, or Objectives:
– Modify the solve function by removing less important constraints or variables, or

simplifying the objectives.
• Modify the Data Generation Procedure:

– Modify the get_instance function by updating the res dictionary to support the
modified optimization modeling.

– Use functions like random.rand or random.randint or
np.random.normal or np.random.gamma or nx.erdos_renyi_graph or
nx.barabasi_albert_graph or similar functions to create datasets of varying
sizes.

– Ensure the modified data support the modified constraints, variables, or objectives.
• Modify the Parameters:

– Modify the parameters within the if __name__ == ’__main__’ block to sup-
port the data generation.

– The value of each parameter should be a constant (e.g. integer, float, boolean, string).
That is, if there is a tuple value, you should break down the tuple into individual parame-
ters with constant values. If it is a more complicated data structure (a list, dictionary, set,
or a function), please put the data structure in the get_instance function and only
put the required constants to construct the data structure in the parameters dictionary.

– Ensure parameters can be modified easily to scale up the problem or to alter its com-
plexity.
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A.4.4 GENERAL REQUIREMENTS

General Requirements

Ensure the Following:
• Code completeness:

– Provide the COMPLETE, EXECUTABLE code, including all necessary library im-
ports, the MILP class, and the parameters and code to call the MILP class.

– Do not omit any part of the provided MILP code with ‘... (same as before) ...’, even if
it is not modified. Do not inherit from a previously defined class; instead, provide the
entire codebase.

• Novelty and Increased difficulty for the new MILP while maintaining feasibility and re-
ducing redundacy:
– The new constraints, variables, objectives, data, and parameters types should be diverse,

such as having different constraint types, and creative data generation schemes with
correct syntax.

– The complexity of the new MILP can be achieved by more complicated constraint,
objective, data generation scheme or larger parameter values.

– Avoid adding redundant constraints, variables, or objectives that do not contribute to the
problem’s complexity, but do provide a clear, concise, and complete executable MILP
code.

• Modularity and executability of the new MILP code:
– Maintain function integrity by ensuring that no references to out-of-scope variables are

used.
– Define any new helper functions within the get_instance or solve functions, en-

suring they are correctly scoped and called.
– Use clear, descriptive names for new parameters and variables, ensuring they align with

the real-world context and adhere to correct syntax.
– Ensure the code remains modular and can easily scale to larger or different MILP prob-

lems by simply adjusting parameters, without altering core functions.
• Do not include ### given constraints and variables and objective code ends here, ### new

constraints and variables and objective code ends here, ### given instance data code ends
here, ### new instance data code ends here, ### given parameter code ends here and ###
new parameter code ends here in your final code.
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