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A ADDITIONAL DETAILS
A.1 Algorithm Pseudo-code
The training procedure for our method is outlined in Algorithm
1. We introduce the decomposed parameter matrices Δ𝑊𝑖 into the
fixed pretrained vision transformer𝑊0 for each domain 𝑖 . The de-
composed parameter matrices consist of the subspaces𝐴𝑐 shared by
all𝑀 domains, the subspaces𝐴𝑠

𝑖
specific to each domain 𝑖 , and their

corresponding coefficient matrix 𝐵𝑖 . At each training step, we derive
the importance score 𝜌𝑖 for these subspaces based on their gradients
and utilize the derived importance score 𝜌𝑖 to adaptively weight
the domain-shared parameter subspaces and domain-specific pa-
rameter subspaces. Then, we obtain the feature for each sample
by utilizing the feature extractor constructed by combining the
pretrained model𝑊0 with the importance-aware parameter ma-
trices Δ𝑊𝑖 . Subsequently, we leverage these features to calculate
the per-sample cross-entropy loss. Next, we calculate the cross-
domain contrastive loss on current and historical domain-specific
parameter subspaces, as to amplify the distinctions between them.
Moreover, we calculate the orthogonality penalty loss between the
domain-shared subspaces 𝐴𝑐 and domain-specific subspaces 𝐴𝑠

𝑖
, as

to minimize the interference between them. The aforementioned
three losses are aggregated and utilized as the overall loss function
for optimizing the domain-specific parameter subspaces 𝐴𝑠

𝑖
and

the coefficient matrix 𝐵𝑖 . As for the domain-shared subspaces, we
conduct momentum update on them to smoothly and incremen-
tally capture shared information across different domains while
mitigating forgetting.

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Ablation Study
To further validate the effectiveness of the momentum update strat-
egy on domain-shared subspaces, we design several variants and
conduct experiments on three datasets. The results are reported in
Table IV. “Ours-w.o.-𝐴𝑠

𝑖
” denotes our method without exploiting

the domain-specific subspaces 𝐴𝑠
𝑖
. "Ours-w.o.-mom-w.o.-𝐴𝑠

𝑖
" refers

to our method that replaces the momentum update strategy with
gradient updates on the domain-shared subspaces and does not uti-
lize the domain-specific subspaces 𝐴𝑠

𝑖
. "Ours-w.o.-𝐴𝑠

𝑖
" outperforms

"Ours-w.o.-mom-w.o.-𝐴𝑠
𝑖
", demonstrating that the application of

the momentum update strategy on domain-shared subspaces effec-
tively mitigates forgetting and contributes to an improvement in
performance. "Ours-w.o.-mom" indicates that our method utilizes
gradient updates on both the domain-specific and domain-shared
subspaces without employing the momentum update strategy. As
presented in Table IV, our method performs better than the three
aforementioned variants, illustrating the benefits of leveraging
momentum update on domain-shared subspaces and effectively
combining them with domain-specific subspaces.

Table IV: Ablation study of momentum update on domain-
shared subspaces across three datasets.

Method CDDB-Hard DomainNet CORe50

Ours-w.o.-𝐴𝑠
𝑖

66.95±0.32 41.02±0.09 84.53±0.49
Ours-w.o.-mom-w.o.-𝐴𝑠

𝑖
62.92±0.40 38.45±0.31 82.61±0.47

Ours-w.o.-mom 88.71±0.51 66.56±0.39 89.76±0.56

Ours 90.10±0.38 67.80±0.11 91.07±0.52

Table V: Impact of different momentum coefficients (𝜂) in
the momentum update strategy across three datasets.

Dataset 𝜂 0.999 0.9999 0.99999

CDDB-Hard 3domains 90.19±0.33 91.03±0.35 89.25±0.28
5domains 89.35±0.33 90.10±0.38 88.74±0.29

DomainNet 3domains 62.41±0.20 63.14±0.07 62.96±0.10
6domains 62.97±0.21 67.80±0.11 65.37±0.19

Core50 4domains 89.38±0.40 89.79±0.43 89.22±0.39
8domains 89.76±0.43 91.07±0.52 90.52±0.44
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Figure VI: Empirical study on the importance of domain-
shared information for different domains. Different impor-
tance proportions of the domain-shared subspaces are manu-
ally applied to four domain data from theDomainNet dataset.

Momentum coefficient 𝜂 of the momentum update strategy plays
an important role in smoothly accumulation of knowledge in the
current domain while mitigating the risk of forgetting the knowl-
edge acquired from previous domains. We conduct experiments
with different momentum coefficients (𝜂) on three datasets. We test
two kinds of different numbers of domains for each dataset: the
first three domains and all five domains for CDDB-Hard, the first
three domains and all six domains for DomainNet, and the first four
domains and all eight domains for CORe50. The average results are
reported in Table V. We can observe that using a relatively small
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Algorithm 1: The training procedure of our network
Input:𝑀 training domains {D1,D2, · · · ,D𝑀 }, pretrained vision transformer backbone𝑊0, epochs 𝐸, hyperparameter 𝛼 and 𝛽 ;

1 for each domain 𝑖 from 1 to𝑀 do
2 Attach the decomposed parameter matrices Δ𝑊𝑖 , consisting of the domain-shared parameter subspaces 𝐴𝑐 , domain-specific

parameter subspaces 𝐴𝑠
𝑖
and their corresponding coefficient matrix 𝐵𝑖 , to the pretrained transformer𝑊0 as the feature extractor;

3 Initialize the dynamic importance weight 𝜌𝑖 (1) to 0.5;
4 for each epoch 𝑒 from 1 to 𝐸 do
5 for each step 𝑡 in epoch 𝑒 do
6 Conduct importance-conditioned subspace enhancement with the derived importance weight 𝜌𝑖 as

Δ𝑊𝑖 (𝑡) = 𝐵𝑖 (𝑡) (𝜌𝑖 (𝑡)𝐴𝑠
𝑖
(𝑡) + (1 − 𝜌𝑖 (𝑡))𝐴𝑐 (𝑡));

7 Obtain the sample feature with the feature extractor𝑊0 + Δ𝑊𝑖 (𝑡) and calculate the per sample cross entropy loss L;
8 Calculate the cross-domain contrastive loss L𝑐 with current and historical domain-specific parameter subspaces;
9 Calculate the orthogonality penalty loss L𝑜 between the domain-shared subspaces 𝐴𝑐 and domain-specific subspaces 𝐴𝑠

𝑖
;

10 Calculate the final objective function L𝑓 𝑖𝑛𝑎𝑙 = L + 𝛼L𝑐 + 𝛽L𝑜 ;
11 Update the domain-specific parameter subspaces 𝐴𝑠

𝑖
and coefficients matrix 𝐵𝑠

𝑖
with the final objective L𝑓 𝑖𝑛𝑎𝑙 ;

12 Conduct momentum update on the shared subspaces 𝐴𝑐 to smoothly accumulate knowledge of the current domain 𝑖;
13 Dynamically derive the importance weight 𝜌𝑖 (𝑡 + 1) for these parameter subspaces based on the gradients of these

subspaces at current step 𝑡 ;
14 end
15 end
16 end

Output: The learned network.
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Figure VII: Heatmap of the importance of domain-specific subspaces (denoted as S) and the importance of domain-shared
subspaces (denoted as C) of six domains from the DomainNet dataset.

value (e.g., 0.999) can lead to the integration of excessive unstable
new knowledge when incrementally learning new domains at each
step. On the other hand, employing a significantly larger value
(e.g., 0.99999) can result in the shared subspaces being unable to
effectively absorb new knowledge. In all of our experiments in the
paper, we set the momentum coefficient 𝜂 to 0.9999. Our experi-
mental results in Table V demonstrate that this value yields the
best performance.

B.2 Analysis of Importance Weighting
B.2.1 Effect of Different Importance Weighting. We addi-
tionally conduct experiments on the DomainNet dataset to illus-
trate that domain-shared parameter subspaces hold varying degrees
of importance to different domains. We utilize the first cross en-
tropy loss term L to acquire domain-shared subspaces and domain-
specific subspaces in a momentum update manner. After that, we

manually introduce varying proportions of importance on domain-
shared subspaces and domain-specific subspaces, ranging from
{0, 0.1, 0.2, · · · , 1}. The results are shown in Figure VI. We obtain
similar observations to those described in the main paper’s experi-
ments on the CDDB-Hard dataset(Section 4.2.3) as: (1) There is a
notable variation in the importance of domain-shared information
across each domain. (2) The utilization of domain-shared infor-
mation enhances performance for each domain in the DomainNet
dataset (When the proportion is set to zero, it means that we do
not use domain-shared information). (3) The optimal proportion
of domain-shared information significantly varies across different
domains. We can draw the conclusion that dynamically assigning
an importance weight to the domain-shared subspaces benefits the
final performance of DIL.
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Figure VIII: Heatmap of the importance of domain-specific subspaces (denoted as S) and the importance of domain-shared
subspaces (denoted as C) of eight domains from the Core50 dataset.
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(c) 𝛼 for Core50
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Figure IX: Parameter sensitivity analysis of the hyperparameter in the objective function described in Eq.(21) of the main paper
on the DomainNet and Core50 datasets.

B.2.2 Visualization of the Obtained Importance. We addi-
tionally visualize the obtained importance of domain-shared and
domain-specific subspaces by our method on the DomainNet and
Core50 dataset. During the incremental training process of six do-
mains on DomainNet and eight domains on Core50, we attach the
decomposed subspaces to the first 10 transformer blocks. Specifi-
cally, we introduce the decomposed subspaces into the widely used
query and value projection matrix (denoted as𝑊𝑞 and𝑊𝑣 ) for the
selected transformer layer, following [1]. Once the training is com-
pleted, we obtain the dynamical importance scores for different
layers of all different domains. As shown in Figure VII and Figure
VIII, we can clearly observe that there indeed exists varying im-
portance degrees of domain-shared and domain-specific subspaces
across different domains.

B.3 Impact for Hyper-parameters
We conduct the parameter sensitivity analysis on the hyperparam-
eters 𝛼 and 𝛽 introduced in the final objective function (Eq.(21)) of
the main paper. This analysis is additionally performed on the Do-
mainNet and Core50 datasets. Recall that 𝛼 is hyper-parameter of
the cross-domain contrastive constraints, and 𝛽 is the trade-off pa-
rameter involved in enforcing orthogonality on the domain-shared

and domain-specific subspaces. For evaluation, we keep all other
hyperparameters to be fixed except for the one being tested. For
two dataset, we analyse 𝛼 and 𝛽 varying from {0.05, 0.1, 0.5, 1, 5}
respectively, and report the results in Figure IX. we can see the
performance of our method is relatively stable in a relatively wide
range.
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