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A ADDITIONAL DETAILS
A.1 Algorithm Pseudo-code

The training procedure for our method is outlined in Algorithm
1. We introduce the decomposed parameter matrices AW; into the
fixed pretrained vision transformer W; for each domain i. The de-
composed parameter matrices consist of the subspaces A° shared by
all M domains, the subspaces A; specific to each domain i, and their
corresponding coefficient matrix B;. At each training step, we derive
the importance score p; for these subspaces based on their gradients
and utilize the derived importance score p; to adaptively weight
the domain-shared parameter subspaces and domain-specific pa-
rameter subspaces. Then, we obtain the feature for each sample
by utilizing the feature extractor constructed by combining the
pretrained model Wy with the importance-aware parameter ma-
trices AW;. Subsequently, we leverage these features to calculate
the per-sample cross-entropy loss. Next, we calculate the cross-
domain contrastive loss on current and historical domain-specific
parameter subspaces, as to amplify the distinctions between them.
Moreover, we calculate the orthogonality penalty loss between the
domain-shared subspaces A° and domain-specific subspaces A3, as
to minimize the interference between them. The aforementioned
three losses are aggregated and utilized as the overall loss function
for optimizing the domain-specific parameter subspaces A and
the coefficient matrix B;. As for the domain-shared subspaces, we
conduct momentum update on them to smoothly and incremen-
tally capture shared information across different domains while
mitigating forgetting.

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Ablation Study

To further validate the effectiveness of the momentum update strat-
egy on domain-shared subspaces, we design several variants and
conduct experiments on three datasets. The results are reported in
Table IV. “Ours-w.0.-A}” denotes our method without exploiting
the domain-specific subspaces A;}. "Ours-w.o.-mom-w.o.-A;" refers
to our method that replaces the momentum update strategy with
gradient updates on the domain-shared subspaces and does not uti-
lize the domain-specific subspaces A?. "Ours-w.0.-A;" outperforms
"Ours-w.o.-mom-w.0.-A}", demonstrating that the application of
the momentum update strategy on domain-shared subspaces effec-
tively mitigates forgetting and contributes to an improvement in
performance. "Ours-w.o.-mom" indicates that our method utilizes
gradient updates on both the domain-specific and domain-shared
subspaces without employing the momentum update strategy. As
presented in Table IV, our method performs better than the three
aforementioned variants, illustrating the benefits of leveraging
momentum update on domain-shared subspaces and effectively
combining them with domain-specific subspaces.

Table IV: Ablation study of momentum update on domain-
shared subspaces across three datasets.

Method CDDB-Hard DomainNet CORe50

66.95+0.32 41.02+0.09 84.53+0.49
38.45+0.31 82.61+0.47
66.56+£0.39 89.76+0.56

Ours-w.o.-Als.
Ours-w.0.-mom-w.0.-Aj  62.92+0.40

Ours-w.0.-mom 88.71+0.51

Ours 90.10+0.38 67.80+0.11 91.07+0.52

Table V: Impact of different momentum coefficients (3) in
the momentum update strategy across three datasets.

Dataset n 0.999 0.9999 0.99999

3domains  90.194033 91.03+0.35 89.25+0.28
CDDB-Hard ¢S

5domains  89.35+0.33 90.10+£0.38  88.740.29
. 3domains 62414020 63.1420.07 62.96+0.10
DomainNet .

6domains 62974021 67.80+0.11 65.37+0.19
Coresp  ‘domains 89383040 89.79:x043  89.22039
ore

8domains  89.76+0.43 91.07+£0.52 90.52+0.44
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Figure VI: Empirical study on the importance of domain-
shared information for different domains. Different impor-
tance proportions of the domain-shared subspaces are manu-
ally applied to four domain data from the DomainNet dataset.

Momentum coefficient 7 of the momentum update strategy plays
an important role in smoothly accumulation of knowledge in the
current domain while mitigating the risk of forgetting the knowl-
edge acquired from previous domains. We conduct experiments
with different momentum coefficients () on three datasets. We test
two kinds of different numbers of domains for each dataset: the
first three domains and all five domains for CDDB-Hard, the first
three domains and all six domains for DomainNet, and the first four
domains and all eight domains for CORe50. The average results are
reported in Table V. We can observe that using a relatively small

59

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Algorithm 1: The training procedure of our network

Input: M training domains {D1, Do, - - - , D}, pretrained vision transformer backbone Wy, epochs E, hyperparameter a and f;
1 for each domaini from1 to M do
2 Attach the decomposed parameter matrices AW;, consisting of the domain-shared parameter subspaces A¢, domain-specific
parameter subspaces A and their corresponding coefficient matrix B;, to the pretrained transformer Wy as the feature extractor;

3 Initialize the dynamic importance weight p;(1) to 0.5;

4 for each epoche from 1 to E do

5 for each stept in epoch e do

6 Conduct importance-conditioned subspace enhancement with the derived importance weight p; as

AW (1) = Bi(1) (pi (1) A7 (1) + (1 = pi(1))A°(1));

7 Obtain the sample feature with the feature extractor Wy + AW;(t) and calculate the per sample cross entropy loss .L;

8 Calculate the cross-domain contrastive loss £, with current and historical domain-specific parameter subspaces;

9 Calculate the orthogonality penalty loss £, between the domain-shared subspaces A and domain-specific subspaces A3;
10 Calculate the final objective function L¢ine = L +aLe + fLo;

1 Update the domain-specific parameter subspaces A} and coefficients matrix B} with the final objective Lyinqr;

12 Conduct momentum update on the shared subspaces A€ to smoothly accumulate knowledge of the current domain i;

13 Dynamically derive the importance weight p;(t + 1) for these parameter subspaces based on the gradients of these

subspaces at current step t;

14 end
15 end
16 end

Output: The learned network.
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Figure VII: Heatmap of the importance of domain-specific subspaces (denoted as S) and the importance of domain-shared
subspaces (denoted as C) of six domains from the DomainNet dataset.

value (e.g., 0.999) can lead to the integration of excessive unstable
new knowledge when incrementally learning new domains at each
step. On the other hand, employing a significantly larger value
(e.g., 0.99999) can result in the shared subspaces being unable to
effectively absorb new knowledge. In all of our experiments in the
paper, we set the momentum coefficient 5 to 0.9999. Our experi-
mental results in Table V demonstrate that this value yields the
best performance.

B.2 Analysis of Importance Weighting

B.2.1 Effect of Different Importance Weighting. We addi-
tionally conduct experiments on the DomainNet dataset to illus-
trate that domain-shared parameter subspaces hold varying degrees
of importance to different domains. We utilize the first cross en-
tropy loss term L to acquire domain-shared subspaces and domain-
specific subspaces in a momentum update manner. After that, we

manually introduce varying proportions of importance on domain-
shared subspaces and domain-specific subspaces, ranging from
{0,0.1,0.2, - - - , 1}. The results are shown in Figure VI. We obtain
similar observations to those described in the main paper’s experi-
ments on the CDDB-Hard dataset(Section 4.2.3) as: (1) There is a
notable variation in the importance of domain-shared information
across each domain. (2) The utilization of domain-shared infor-
mation enhances performance for each domain in the DomainNet
dataset (When the proportion is set to zero, it means that we do
not use domain-shared information). (3) The optimal proportion
of domain-shared information significantly varies across different
domains. We can draw the conclusion that dynamically assigning
an importance weight to the domain-shared subspaces benefits the
final performance of DIL.
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Figure VIII: Heatmap of the importance of domain-specific subspaces (denoted as S) and the importance of domain-shared
subspaces (denoted as C) of eight domains from the Core50 dataset.
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Figure IX: Parameter sensitivity analysis of the hyperparameter in the objective function described in Eq.(21) of the main paper

on the DomainNet and Core50 datasets.

B.2.2 Visualization of the Obtained Importance. We addi-
tionally visualize the obtained importance of domain-shared and
domain-specific subspaces by our method on the DomainNet and
Core50 dataset. During the incremental training process of six do-
mains on DomainNet and eight domains on Core50, we attach the
decomposed subspaces to the first 10 transformer blocks. Specifi-
cally, we introduce the decomposed subspaces into the widely used
query and value projection matrix (denoted as Wy and W) for the
selected transformer layer, following [1]. Once the training is com-
pleted, we obtain the dynamical importance scores for different
layers of all different domains. As shown in Figure VII and Figure
VIII, we can clearly observe that there indeed exists varying im-
portance degrees of domain-shared and domain-specific subspaces
across different domains.

B.3 Impact for Hyper-parameters

We conduct the parameter sensitivity analysis on the hyperparam-
eters o and f introduced in the final objective function (Eq.(21)) of
the main paper. This analysis is additionally performed on the Do-
mainNet and Core50 datasets. Recall that & is hyper-parameter of
the cross-domain contrastive constraints, and f is the trade-off pa-
rameter involved in enforcing orthogonality on the domain-shared

and domain-specific subspaces. For evaluation, we keep all other
hyperparameters to be fixed except for the one being tested. For
two dataset, we analyse @ and f varying from {0.05,0.1,0.5,1,5}
respectively, and report the results in Figure IX. we can see the
performance of our method is relatively stable in a relatively wide
range.
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