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A APPENDIX

A.1 IMPLEMENTATION DETAILS

As mentioned in Section 5.1, we used almost identical hyper-parameters as FixMatch (Sohn et al.,
2020) on CIFAR-10, CIFAR-100, STL-10 and mini-ImageNet. Here, we provide a complete list of
hyper-parameters in Table [A.T] where xx/xx denote the parameters in FixMatch/Ours and xx is the
common parameter.

Notation H\ﬁ Itl;glﬁsi_ozo ilsljigﬁ:}l{lislt(-)go STL-10 | mini-ImageNet
confidence threshold To 0.95
unlabel loss weight Au 1
#unlabeled/#label in batch n 7
labeled data batch-size b 64
start learning rate Ir 0.03
momentum m 0.9
CAP coefficient I NA/0.99
CAI coefficient B8 NA/0.5
weight decay w 0.0005 0.001/0.0015 ‘ 0.0005 ‘ 0.0005

Table A.1: Complete list of hyper-parameters for CIFAR-10, CIFAR-100, STL-10 and mini-
ImageNet.

For DARP (Kim et al.,|2020), the original implementation needs abundant labeled data as the vali-
dation set to estimate the unlabeled data distribution, which is not practical in our case (the minimal
number of labeled data of classes is 1). As an alternative, we provide DARP with the ground truth
unlabeled data distribution.

A.2 DOUBLE ROBUSTNESS OF THE DR ESTIMATOR

Scenario 1: CAP is correct, i.e., the propensity p(*) successfully reflects the data missing mecha-
nism. We have:
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As B, [1 —m®] = p® is the probability that a data is labeled, we have Eq.[A.3|equals 0.

Scenario 2: CAl is correct, i.e., the imputed label plays the same role as the true label:
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whose expectation equals to 0 as the second term in summation is expected to be 0 when imputation

is ideal.

A.3 ALGORITHM

Algorithm 1 Our Class-Aware Doubly Robust Method

I: Input :Djp, Dy > labeled and unlabeled data
2: Input : model 6, , strong augmentation A, threshold 7,

3: Output : 6

4: Initialize 6 randomly, Iteration ¢ = 0, P(Y") is uniform

5: for i < Maxlter do

6: {X5, Y.} + D, {Xy}+ Dy > sample a mini-batch
7: Output; (6) U Output,; (0) < fo({ X, Y} U{Xu}) > Model prediction
8: P(Y|X;0) < SOFTMAX(Output; (9) U Output;, (9)) > softmax probability
9: # For supervised labeled data:
10: P(Y), P(Y;0) < CAP(Output; (¢) U Output,, (), P(Y)) > CAP
11: CS(XL,YL) — CAP-LOSS(P(YL‘XL;9),P(Y;9)) > Eq. (5-9)
12: # For imputed unlabeled data:
13: @, con(Q) < MaX(Output;(9)) > imputed label with confidence
14: T+ 7, P(Y),Q > Eq. (11)
15: L, (Xy) < CAI-Loss(Output,;(6),7) > Eq. (13)
16: # Model update:
17: 0+ 0 — VyDR-LOSS(Ls(X1, Y1), Lo(Xy), X1, P(Y;0),7) > Eq. (14)
18: end for
19: Return 0

A.4 MORE EXPERIMENTS

A4l

MORE COMPARISONS OF LABELING DEPENDENCE ON CLASSES

In this section, we performed experiments with the dependence of labeling on class varying in the
intermediate range by increasing the labeling imbalance ration ~ from 1 to 200 gradually. As shown
in Table[A.2] our method can consistently boost the performance of baseline FixMatch under differ-
ent levels of label dependence. Besides, the improvement is more significant with larger v, i.e., the
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Figure A.1: Details about our constructed 20 classes subset of the iNaturalist dataset. (a) The
example image for each class. (b) Class distribution of the labeled and unlabeled training data.

high dependence of labeling on class. This observation is reasonable since the baseline method grad-
ually fails to handle the data distribution shift between the labeled and unlabeled data in challenging
MNAR problems.

Methods v=1 2 5 10 20 50 100 200
FixMatch 78.54 76.77 74771 70.53 66.79 59.13 5478 50.62
Ours 79.02 77.71 7632 7437 73.47 70.06 6447 63.30

Table A.2: Comparison of mean accuracies (%) under different labeling dependence on the class.
We alter the imbalance ratio  of the labeled data in the intermediate range from 1 to 200, where
~v = 1 is the case where the label is missing completely at random. The experiments are conducted
on CIFAR-100, and we keep N, = 200 across all settings.

A.4.2 APPLICATION TO INATURALIST

To apply our methods to real-data MNAR occasions, we conducted experiments on the subsets of
iNaturalist (Van Horn et al.| 2018), a real-world dataset comprised of the natural images and labels
collected from a citizen science Websiteﬂ iNaturalist has two popular versions, iNaturalist-2018 for
long-tailed recognitiotﬂ and iNaturalist-2021 for nearly balanced data recognitimﬂ As iNaturalist-
2021 supplements iNaturalist-2018 with abundant additional data in their overlapped classes, these
two versions can be naturally used for our MNAR setting in SSL. Specifically, we sampled IV classes
from the iNaturalist dataset, where the data in iNaturalist-2018 are used as the labeled data and the
additionally released data in iNaturalist-2021 as the unlabeled. Figure [A.T] depicts the details of
our 20-class subset, and the data distribution of 20/50-class subsets are shown in Figure [A.T(b) and
Figure[A.2] separately, where an obvious imbalanced distribution over the labeled data is observed.

N =20 50
Supervised 25.30 17.09
FixMatch 43.20 47.24
w/ CAP 48.80 51.32
w/ CAI 47.50 48.43

w/o CADR 50.80 49.48
w/ CADR 51.60 50.14

Table A.3: Comparisons of mean accuracies (%) on the iNaturalist-subsets between the fully-
supervised method, FixMatch, and ours. We marked the best and second-best accuracies.

To train the dataset, we resize the images to 64 x 64, remove the overlapped images and sample
50 images per class from iNaturalist2021 for performance evaluation, and train each network with

Ywww.inaturalist. org
Thttps://sites.google.com/view/fgvc5/competitions/inaturalist
Shttps://sites.google.com/view/fgvc8/competitions/inatchallenge2021
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Figure A.2: Class distribution of the labeled and unlabeled training data in our constructed 50 classes
subset of the iNaturalist dataset.

Wide ResNet (WRN)-28-2 by 215 iterations. Other hyper-parameters are shown in Table The
performance comparisons are shown in Table[A.3] It shows that our proposed methods outperform
the baseline FixMatch by large margins, demonstrating the effectiveness of our methods in handling
real-world imbalanced labeled data.

A.4.3 MORE ABLATION ON OTHER BASELINES

In this section, we perform the ablation experiments on more baseline methods, MixMatch
and RemixMatch (Berthelot et al] 2019a). As they do not have a threshold in
label imputation, CAI is not directly applicable, and we only apply CAP on them. As shown in
Table[A-4] our method consistently boosts the performance, especially outperforming the baselines
by large margins on CIFAR-10 and STL-10.

CIFAR-10 CIFAR-100 STL-10 mini-ImageNet
Methods v=20 50 100 100 200 100 100
MixMatch 26.63 31.28 28.02 4132 4292 28.31 18.30
w/ CAP 40.34 43.51 4547 4245 46.54 34.76 22.09
ReMixMatch 41.84 38.44 38.20 39.71 39.22 39.55 23.50
w/ CAP 51.90 55.03 53.44 40.15 39.40 42.53 23.74

Table A.4: Comparison of mean accuracies (%) with more baselines. We alter the imbalance ratio
~ of labeled data and leave the unlabeled data balanced (v, = 1). We keep N4 = 7 SO that the
least number of labeled data among all the classes is always 1.
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