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OPEN EYES, THEN REASON: FINE-GRAINED VISUAL MATHEMATICAL
UNDERSTANDING IN MLLMS

A APPENDIX

In this supplementary material, we illustrate the related background for our method (§ A.1), provide
a detailed description for GeoGLIP (Geometric-Grounded Language-Image Pre-training) pipeline
(§ A.2), explain the process of synthetic data generation, and outline the datasets used for train-
ing GeoGLIP (§ A.3), present visualizations of the GeoGLIP detection results (§ A.4), offer case
studies that illustrate the practical application of our feature router mechanism and chain-of-thought
(CoT) reasoning results (§ A.5), demonstrate the training details/efficiency of SVE-Math (§ A.6)
and examine our model’s limitations while outlining potential directions for future work (§ A.7).

A.1 BACKGROUND

Grounded Language-Image Pre-training (GLIP). GLIP (Li et al., 2022b) unifies detection and
grounding by reformulating object detection as phrase grounding. It accepts paired image-text in-
puts, where the text consists of candidate detection categories, such as the 80 COCO object class
names joined by ‘.’, i.e., person. bicycle. car. · · · toothbrush. In GLIP, object classification logits
in the box classifier (traditional object detection) are replaced with word-region alignment scores,
computed as the dot product between region visual features and phrase language features. GLIP
operates as a two-stage detector, composed of: 1) A Swin Transformer as a visual encoder, which
extracts features FI of images XI and passes FI to a Region Proposal Network (RPN) to generate
region coordinates, and then corresponding region features OI are cropped from FI ; 2) A pre-trained
BERT model as the language encoder, to embed the input text XL into token embeddings PL; 3)
A language-aware deep fusion module FusIL that fuses OI and PL in the last few encoding layers.
The final alignment scores Sground, calculated as:

OI = RPN(Swin(XI)), PL = BERT(XL), O′
I , P

′
L = FusIL(OI , PL) Sground = O′

I , P
′⊤
L .

Large Language and Vision Assistant (LLaVA). We adopt (Large Language and Vision Assis-
tant) LLaVA’s architecture (Liu et al., 2023b) as the basis. LLaVA leverages the complementary
strengths of pre-trained large language models and visual encoders to perform multi-modal tasks,
consisting of a large language model fϕ (Vicuna (Chiang et al., 2023)), a vision encoder (CLIP,
ViT-L/14) (Radford et al., 2021), and a projection layer. The projection layer projects the visual
embedding from the vision encoder into the text embedding space. LLaVA begins by processing an
input image XI through the CLIP visual encoder, which extracts visual features FI = CLIP(XI).
To bridge the gap between the image features and the language model’s word embedding space,
LLaVA applies a simple linear projection matrix Φ, converting visual features FI into visual tokens
HI , which are compatible with the language embedding space:

HI = Φ · FI , with FI = CLIP(XI)

The visual tokens HI and language instruction tokens PL are passed into the language model for
joint reasoning and language generation as fϕ([HI , PL]).

A.2 GEOGLIP

The GeoGLIP pipeline is shown in Fig. 7, where the RPN and language-aware deep fusion details
are omitted for clarity. The GeoGLIP takes image-text paired as input: an image containing ge-
ometric shapes and a text listing the shape classes (i.e., ‘circle. trapezoid. triangle. . . . line.’).
These inputs are processed by the GeoGLIP encoder, which generates feature pyramids at multiple
scales (F 1

geo, F
2
geo, F

3
geo, F

4
geo, F

5
geo). Each feature pyramid contains different levels of detail, cap-

turing varying levels of geometric information. These features are then routed to three separate
detectors: 1) Shape Detector: identifies and localizes basic geometric shapes by generating bound-
ing boxes for objects within the image; 2) Junction Detector: detects junctions or intersections of
geometric entities in the image; 3) Boundary Detector: identifies boundaries of geometric shapes,
refining their outlines for more accurate representation. The combination of the feature pyramids
with task-specific detectors allows GeoGLIP to perform fine-grained visual tasks in a mathematical
context.
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Figure 5: Fig. 5a presents the statistics of top-1 accuracy after manually correcting the visual percep-
tion errors shown in Fig.1a of the main paper, which initially caused incorrect answers to mathemat-
ical questions. Specifically, we restated the output of GPT-4o w.r.t. each type of visual recognition
error and calculated the accuracy of its answers. Overall, correcting these visual perception er-
rors led to an approximate 12% increase in accuracy on the corresponding mathematical questions.
Fig. 5b and Fig. 5c present the data statistics for synthetic math-specific datasets, including the dis-
tribution of geometric shapes/classes and the number of objects per image. Each geometric object
has a 70% probability of being assigned an alphanumeric text, leading to a higher proportion of the
‘Text’ class.
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Figure 6: The flow diagram depicts the process for generating synthetic math-specific datasets, along
with visualizations of the generated data samples.

In Fig. 9, we illustrate detailed designs about junction and boundary detectors:

• Junction Detector: The detector processes the feature F 1∗

geo through a decoder, identifying
the confidence of junction points within each grid cell and their relative positions. It also
predicts the orientations and confidence levels of intersecting lines within the grid, split
into multiple angular bins to cover the 360-degree range.

• Boundary Detector: It employs two successive perception blocks and upsampling opera-
tions to restore the feature map to the original image resolution for boundary decoding.

Both detectors use multi-resolution feature maps from the GeoGLIP encoder, and specific design
for each task is optimized to capture relevant geometric properties, contributing to enhanced mathe-
matical visual reasoning. Refer to § 3.2 of main paper for more details.
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A.3 TRAINING DATASET FOR GEOGLIP

Notably, our synthetic math-specific datasets diffies from the traditional mathematical instruction
datasets, and we do not create or use any additional self-generated instruction datasets beyond the
publicly available Geo170K Gao et al. (2023a) and MathV360K Shi et al. (2024) datasets for MLLM
training. Instead, our synthetic samples, annotated with box/pixel-level details, are exclusively uti-
lized to train the GeoGLIP. Compared to constructing mathematical instruction datasets, our syn-
thetic data generation process is significantly more efficient and resource-friendly. It does not re-
quire manual labeling, as all data can be programmatically generated, e.g., through the Matplotlib
Python library. In contrast, constructing instruction datasets often relies on GPT-4o to create diverse
prompts and necessitates human intervention, making the process labor-intensive and costly.

Shape grounding. To generate synthetic datasets for object grounding tasks, we employ an auto-
mated Python-based approach that efficiently creates images containing geometric shapes and text
with associated bounding boxes, class labels, and annotations. The geometric categories include
shapes like circles, ellipses, rectangles, triangles, parallelograms, trapezoids, and text. A variable
number of basic geometric shapes and alphanumeric text elements are generated, with font sizes
dynamically adjusted according to text length. These shapes are randomly distributed within a
1000×1000 pixel canvas, while text is positioned either inside or adjacent to the shapes with a 70%
probability. Bounding boxes are then calculated for each shape and text element, ensuring they re-
main within image bounds. Finally, shapes and text are assigned class labels and coordinates, saved
in a COCO-style JSON file for seamless integration with standard GLIP. Fig. 6 shows the detailed
flow diagram. Fig. 5b and Fig. Fig. 5c present the data statistics for synthetic math-specific datasets,
including the distribution of geometric shapes and the number of objects per image. Additionally,
we incorporated 20,672 images from the FigureQA training dataset with bounding box annotations
for the shape grounding task.

Junction and boundary detection. We utilized off-the-shelf models (Huang et al., 2018; Verbin
& Zickler, 2021) to extract junctions and boundary as ground truth on both our synthetic dataset
and public Geo170K training images. We then designed junction and boundary heads, parallel to
the object detection head, with all tasks sharing the same visual encoder. Through this multi-task
learning approach, our GeoGLIP can perceive rich visual information in the mathematical domain.

A.4 GEOGLIP DETECTION VISUALIZATIONS

Fig. 9 illustrates shape detection results on Geo170K, FigureQA and our synthetic test dataset,
while Fig. 10 presents the results for boundary and junction detection. Our detector successfully
localizes basic geometric shapes and junction points while providing pixel-level boundary results in
most cases. However, in complex scenarios such as overcrowded or occluded settings, the detector
may struggle. Moreover, in junction detection, some failure cases involve numerous detections but
with low accuracy. This issue arises due to noisy ground truth during the training phase, as man-
ually labeling junctions is tedious and time-consuming. To address this, we use an off-the-shelf
model (Huang et al., 2018) to generate ground-truth labels for junction detection. However, since
this model was trained on images of man-made environments, it faces an out-of-domain challenge
when applied to geometric objects, resulting in labels that are not fully accurate. Improving the
accuracy of these labels would significantly enhance junction detection performance.

A.5 CASE STUDIES

Selective visual information helps reasoning. Fig. 11 showcases GPT-4o’s responses based on
additional visual information from geometric primitives, alongside the question, choices, and di-
agram ⟨image⟩ as inputs. We provide hard-coded coordinates for bounding boxes and junctions
using instructions such as: ”there is a bounding box at ⟨x, y, w, h⟩ (the normalized center point and
width/height)” with shape names ⟨geometric shape⟩ (if shape information is provided), or ”candi-
date junction point ⟨x, y⟩. For boundary information, we use ”⟨boundary image⟩ is the boundary
sketch related to the main diagram” as instructions. The right side visualizes the provided visual
cues in the original geometric diagram for clarity, though these images are not input into GPT-4o.
Fig. 11 highlights the importance of providing relevant visual prompts for each case; otherwise, re-
dundant information may interfere with the solving process. For example, in case 1, bounding box
coordinates per object can be distracting when solving a perimeter question compared to junction lo-
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cations. In contrast, pixel-level visual information (boundary) aids the model in perceiving complex
geometric shapes, such as polygons and circles, and is beneficial for calculating overlap regions,
while relying on junctions may lead to biased answers. In practice, selecting supporting information
for each case is labor-intensive and requires the involvement of math experts. We address this chal-
lenge by using the feature router, which automatically learns which fine-grained visual information
is important during the training stage.

Notably, we do not claim that the feature router can explicitly select specific types of visual infor-
mation, such as bounding boxes, junctions, or shapes. This is because the inputs to the feature pyra-
mid of the GeoGLIP visual encoder do not clearly represent each type of information in a distinct
manner. Since GeoGLIP is trained on multiple tasks using a shared visual encoder, it becomes chal-
lenging to determine which specific feature maps correspond to which an individual learning task.
What our findings emphasize is the importance of selecting optimal visual cues, demonstrating that
while accuracy is crucial, more information does not always lead to better performance—relevance
is key. We anticipate that more advanced selection techniques could further enhance mathematical
problem-solving in visual contexts. Refer to Sec. A.7 for our future research directions.

Response comparison. Fig. 12 presents case studies comparing our SVE-Math-Deepseek-7B
with GPT-4o on the MathVerse testmini set. These examples highlight the strengths of SVE-
Math-Deepseek-7B in providing precise geometric visual information, enabling clear and logically
grounded mathematical reasoning in its responses. For instance, our model demonstrates sensitivity
to the positions of individual points/junctions, effectively capturing the relationships between differ-
ent lines. As shown in Fig. 12a, it successfully identifies angle 1 and its relationship with angle BEF,
enabling correct reasoning and answers. In contrast, GPT-4o fails to recognize these relationships,
leading to flawed reasoning and incorrect answers.

Fig. 13 and Fig. 14 present a Chain-of-Thought (CoT) comparison among SVE-Math-Deepseek-7B,
GPT-4V, and InternVL2. The results clearly demonstrate that providing geometry-aware visual cues
significantly aids LLMs in understanding the relationships between geometric elements, thereby
enhancing the entire reasoning process. In contrast, the other two MLLMs fail to achieve this level
of understanding, leading to incorrect reasoning and outcomes. This demonstrates that without
accurately recognizing visual elements, even strong LLMs struggle with reasoning tasks. As shown
in GPT-4V’s output, its initial misidentification of mathematical elements results in an incorrect
Chain-of-Thought (CoT) response.

A.6 MATHEMATICAL VISUAL TRAINING AND EFFICIENCY

A.6.1 TRAINING DETAILS

Our work follows a structured three-stage training pipeline, including multi-task visual perception
training for GeoGLIP, visual-language alignment, and mathematical instruction tuning for MLLMs.

Stage 1: To enable the visual encoder in GeoGLIP to ground geometric entities in mathematical
diagrams, we utilize synthetic and FigureQA training images annotated with bounding boxes for the
grounded pre-training. Specifically, we fine-tune a pre-trained GLIP-T model (with Swin-Tiny as
the backbone), adhering to the GLIP detection loss defined as:

Ldet = Lrpn + Lcls + Lreg (2)

where Lrpn refines the region proposals generated by the RPN, Lcls applies binary sigmoid loss to
alignment scores, and Lreg uses smooth ℓ1 loss for bounding box regression.

Following the process in (Huang et al., 2018), for the junction detection task, the input image is
divided into mesh grids, with each grid cell responsible for detecting a junction if its center falls
within the cell. Each ij-th cell predicts a confidence score cij , indicating the likelihood of a junction
in that cell. Since a junction represents the intersection of lines, the number of predictions per cell
varies depending on the number of lines intersecting. To capture orientations, each cell is further
divided into K equal bins (default K = 15), with each bin spanning 24 degrees to cover the full
360-degree range. Each junction is represented as JPij = (xij , cij , {θijk, cθijk}Kk=1), where xij

denotes the junction center coordinates, cij ∈ [0, 1] is the confidence score for the presence of a
junction, θijk is the angle of the k-th bin, and cθijk is the confidence score for that bin.
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The loss function for junction detection consists of four terms. Given a set of ground truth junctions
JP = jp1, . . . , jpN in an image, the loss function is formulated as:

Ljunc = λloc · (Lc
loc + Lb

loc) + λconf · (Lb
conf + Lb

conf ). (3)

The default values for the weights in Eq. 3 are λloc = 0.1 and λconf = 1, where the superscripts
c and b refer to cell and bin, respectively. Specifically, we apply the binary cross-entropy loss for
both Lc

conf and Lb
conf , and use ℓ2 loss to measure the relative position of the predictions against

the ground truth for Lc
loc and Lb

loc. Refer to (Huang et al., 2018) for more details. In the boundary
detection task, Lbodr minimizes the ℓ2 loss between the estimated heatmap values and the ground
truth values.

Our final loss function for multi-task visual perception training is defined as:

Lvis = Ldet + Ljunc + 5 · Lbodr, (4)

where the weight for Lbodr is set to 5, while the weights for Ldet and Ljunc are kept at 1.

Stage 2 & 3: During both phases, we freeze the GeoGLIP encoder. In Stage 2, we train only the
projection layers to align diagram-language pairs. In Stage 3, we unfreeze both the projection layer
and the LLM to perform comprehensive instruction-following tuning, culminating in SVE-Math-7B.
For these two stages, we employ the conventional LLaVA loss, formulated as:

Lllm = −
L∑

t=1

log p
[
St
tar|fϕ(s

(<t)
tar , Sin, I)

]
, (5)

where fϕ denotes the model parameterized by ϕ, I corresponds to the figure, Star and Sin represent
the target and input sentences, respectively; St

tar refers to the t-th token of the target output, and L
denotes the sequence length.

A.6.2 EFFICIENCY

SVE-Math-7B introduces minimal computational overhead, as detailed in the below comparison
Table 6. The GeoGLIP and Connector contribute an additional parameter size of 32.65MB and
8.73MB, and the Projectors accounting for 16.13MB. The inference time per sample increases
slightly, from 19.80s to 20.04s (+0.24s). Training is conducted on 8 A100 GPUs with a batch size of
128 using the Math360K dataset, which includes 40K images and 360K question-answer pairs. The
total training time shows only a marginal increase, from 10.35h to 10.54h (+0.19h), demonstrating
scalability for larger models and datasets.

Table 6: Comparison of computational overhead and parameter size for G-LLaVA and SVE-Math.
#Parameter size GeoGLIP Connector Projectors Time (inference/sample) Time (training/Math360K)

G-LLaVA - - 16.52MB 19.80s 10.35h
SVE-Math 32.65MB 8.73MB 31.20MB 20.04s 10.54h

A.7 LIMITATIONS AND FURTHER RESEARCH

Our research aims to offer a new perspective on solving mathematical visual reasoning problems
by first training a vision-centric model to provide visual prompts for LLMs, rather than focusing on
creating large visual instruction fine-tuning datasets for MLLMs. Despite the effectiveness of our
approach, there are several limitations to consider. First, the reliance on synthetic data for visual
tasks may not fully capture the complexity of real-world geometric problems, potentially limiting
generalization to more diverse datasets. Additionally, while the feature router provides automatic
selection of relevant visual cues, it may not always perfectly align with human intuition or domain-
specific knowledge, particularly in cases requiring more intricate reasoning.

For future research, one promising direction is to extend our method by incorporating real-world
mathematical datasets to improve generalization and robustness. However, this will require some
human labeling processes, as existing mathematical datasets lack detailed box or pixel-level annota-
tions. Incorporating such annotations would provide a more accurate and fine-grained understanding
of visual elements in mathematical problems, allowing models to better generalize to real-world sce-
narios. Developing efficient semi-automated labeling techniques or combining expert annotations
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𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒3
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BERT

Shape Detector Junction Detector Boundary Detector

Figure 7: GeoGLIP pipeline. A geometric multi-task detector. GeoGLIP simultaneously detects
multiple tasks, including basic geometric shapes, junctions, and boundaries, utilizing multi-scale
features to capture fine-grained geometric entities.

with synthetic data could also help reduce the manual effort required. With improved detection per-
formance, we may explore more advanced methods for designing soft prompts, such as object-level
prompts. Further refinement of the feature router, such as combining it with interpretable methods
to better understand its decision-making process, could also enhance the model’s performance. By
making the feature router more transparent, we could gain insights into how it selects and prioritizes
visual cues, allowing for fine-tuning that aligns better with human intuition and task-specific require-
ments. This, in turn, would allow for more informed adjustments, leading to better generalization
and accuracy in complex mathematical problem-solving scenarios.
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Figure 8: Designs for the junction and boundary detectors: We first use an attention mechanism
(MHSA) to fuse two-scale features, followed by upsampling and addition with the highest resolution
features, resulting in F 1∗

geo. Separate perception blocks are then applied for junction and boundary
detection. For junction detection, the detector provides cell confidence (C), cell location (X), bin
confidence (Cθ), and bin orientation (θ). Green check-marked features indicate candidate features
for soft prompts, with D,W,H representing channel dim., and spatial resolution (width&height).
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No labels

(a) (b) (c)
Figure 9: The visualization of shape detection on FigrueQA, Geo170K and our synthetic test dataset.
The left panel (a) displays accurate shape detection results generated by GeoGLIP where even small-
scale x-ticks are correctly recognized (zoom in 280% for details). GeoGLIP successfully classifies
bars in histograms and rectangular shapes in geometric diagrams. The middle panel (b) represents
failure cases, with all errors highlighted using a magnifying glass. For instance, in the first row
figure, the cyan line is misrecognized, and three crowded lines are incorrectly grouped within a
single bounding box. The results in the last panel (c) are generated by the original GLIP, trained on
natural images. It is evident that most geometric shapes are misclassified as lines or text, and GLIP
struggles to recognize small-scale objects, where GeoGLIP excels.

(a) (b)

Figure 10: The visualization of junction and boundary detection results. The left panel (a) illustrates
accurate detections, while the right panel (b) represents failure cases. Junction detection failures
frequently exhibit redundant detections.
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Question: Find the perimeter of the figure. Round to the nearest tenth 
if necessary.
Choices: (A) 20 (B) 21 (C) 24 (D) 25

Case 1: Junction Point Scenario

GPT-4o: (D) X 
GPT-4o with Junction Point: (C) ✓ 

Question: The segment is tangent to the circle. Find x. Round to 
the nearest tenth.
Choices: (A) 7.5 (B) 8.5 (C) 9.2 (D) 13.0

Case 2: Bounding Box Scenario

GPT-4o: (A) X 
GPT-4o with Bounding Box: (B) ✓ 

Question: Circle J has a radius of 10 units, Circle K has a radius 
of 8 units, and BC = 5.4 units. Find CK.
Choices: (A) 2.4 (B) 2.6 (C) 2.8 (D) 4

Case 3: Bounding Box & Shape Scenario

GPT-4o: (C) X 
GPT-4o with Bounding Box & Shape: (B) ✓ 

Question: Find the area of the shaded region formed by the circle 
and regular polygon. Round to the nearest tenth.
Choices: (A) 76.4 (B) 237.8 (C) 266.6 (D) 314.2

Case 4: Boundary Scenario

GPT-4o: (C) X 
GPT-4o with Boundary: (A) ✓ 

GPT-4o with Bounding Box: (D) X 

GPT-4o with Bounding Box & Shape: (D) X 

GPT-4o with Boundary: (A) X 

GPT-4o with Junction Point: (B) X 
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Figure 11: A case study on the Geo170K dataset (Gao et al., 2023a) highlights the importance of
providing relevant visual information for each math visual question answer. Zoom in for best view.

Question:
As shown in the figure, AB parallel CD,
straight line EF intersects AB at point E,
intersects CD at point F, EG bisects angle
BEF, and it intersects CD at point G,
angle 1 = 50.0, then angle 2 is equal to?

Choices:
A: 50° B: 60° C: 65° D: 90°

Since AB is parallel to CD, we have 
the relationships: ∠1+∠ BEF = 180°, 
∠1 = 50°, ∠BEF = 130°. Also, since 
EG bisects ∠BEF, we have ∠BEG = 
1/2 ∠BEF = 65°. Therefore, ∠2 = 
∠BEG = 65°. Thus, the answer is C

Since AB is parallel to CD and EF is a
transversal, the alternate interior angles
are equal. Thus, ∠BEF=∠EFG=50°. EG 
bisects ∠BEF, which means ∠BEF= 
∠GEF=25°. Because ∠EFG and ∠EGF
are supplementary (they form a linear
pair along EG), ∠EGF=50°-25°=25°.
Finally, ∠2=∠GEF+∠EGF=50°. Thus,
the answer is A

(a)

Question:
As shown in the figure, given that
angle P = 50.0, then the size of
angle ACB is?

Choices:
A: 65° B: 60° C: 55° D: 50°

Connect OA and OB. Since PA and PB
is a tangent to circle O, we have ∠OAP
= ∠ OBP = 90°. Also, ∠ P = 50°.
Therefore, ∠AOB = 360° - 90° - 90° -
50° = 130°. Thus, ∠ACB = 1/2 ∠AOB =
65°. Therefore, the answer is A

Using the tangent-secant theorem, the 
angle between a tangent and a chord 
(∠APB) equals the angle subtended by 
the chord in the alternate segment 
(∠ACB). Given ∠APB=50°, it follows 
that ∠ACB=50°. Thus, the size of 
∠ACB is 50°, and the correct option is 
D.

(b)

Figure 12: Response comparison of our SVE-Math-Deepseek-7B and GPT-4o. Refer to the main
text for detailed analysis. Zoom in for best view.
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Question:
If the ratio of the length of
AB to the length of EB is 5:1,
and the area of the triangle
BED is 5𝑎𝑎2 + 10, what is the
area of triangle ABC?
Choices:
A: 5𝑎𝑎2 + 10   
B: 25𝑎𝑎2 + 50   
C: 25𝑎𝑎2 + 100   
D: 𝟏𝟏𝟏𝟏𝟓𝟓𝒂𝒂𝟏𝟏 + 𝟏𝟏𝟓𝟓𝟐𝟐
E: Cannot be determined

SVE-Math

Since AB:EB=5:1, we have
AB=5 ×  EB

Therefore, the ratio of the areas of
∆ABC to ∆BED is equal to the
square of the ratio of AB to EB,
which is (AB/EB)²=25

The area of ∆ABC is 25 ×
5𝑎𝑎2 + 10 = 125 × 𝑎𝑎2 + 250

Therefore, the answer is D 

GPT-4V

The ratio of the length of AB to 
EB is given as 5:1. This means 
AB = 5 ×  EB

The area of  ∆ A B C is 5 ×
5𝑎𝑎2 + 10 = 25 × 𝑎𝑎2 + 50

Therefore, the answer is B

The ∆ABC and ∆EBC share the 
same height from point C

∠A is congruent to ∠BED and ∠C 
is congruent to ∠D, so we can 
conclude that ∆ABC is similar to 
∆BED

Thus, the ratio of their areas is the 
same as the ratio of their bases 
(AB to EB), which is 5:1

InternVL2

Since AB:EB=5:1, we have
AB=5 ×  EB

E is a point on AB, and ED is 
parallel to AC. When a line is 
drawn parallel to one side of a 
triangle and intersects the other 
two sides, it forms a similar 
triangle. Therefore, ∆ ABC is 
similar to ∆BED

Since AB:EB=5:1, the ratio of 
areas will be 5²:1=25:1

The area of ∆ABC is (
)

5𝑎𝑎2 +
10 × 25 = 125 × 𝑎𝑎2 + 250
Therefore, the answer is D

Figure 13: Chain-of-Thought (CoT) response comparison of our SVE-Math-Deepseek-7B, GPT-4V
and InternVL2. Refer to the main text for detailed analysis. Zoom in for best view.

Question:
As shown in the figure, when 
angle OBC = 40.0, the degree 
of angle A is?

Choices:
A: 50° B: 55° C: 60 D: 65°

SVE-Math GPT-4V

The image shows a circle with a 
central angle ∠OBC, and we 
know that the measure of a 
central angle is equal to the 
measure of the arc it intercepts. 
So, the arc BC would also 
measure 40 degrees.

InternVL2

The figure shows a circle with 
center O, and points A, B, and C 
on the circumference. Angle 
OBC is given as 40 degrees.

In a circle, the angle subtended by 
an arc at the center is twice the 
angle subtended at any point on 
the circumference on the same 
side of the arc. This is known as 
the Inscribed Angle Theorem

∠OBC is 40 degrees. ∠A is the 
angle subtended by the arc BC at 
point A. Based on the Inscribed 
Angle Theorem, ∠A is half of 
∠OBC= 40°/ 2 = 20°. The given 
choices do not include 20°

As shown in the figure, OB = 
OC, ∠ OBC = 40° , therefore 
∠OCB = ∠OBC = 40°

∠ COB = 180° - 40° - 40° = 100°

Therefore  ∠A = 1/2 ∠COB = 50°. 
So the answer is A

So, if the arc BC is 40 degrees, 
then angle A, which is an 
inscribed angle intercepting that 
arc, would be half of that

Therefore  ∠A = 1/2 ∠OCB = 20°. 
However, this result does not seem 
to match any of the given options

Figure 14: Chain-of-Thought (CoT) response comparison of our SVE-Math-Deepseek-7B, GPT-4V
and InternVL2. Refer to the main text for detailed analysis. Zoom in for best view.
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