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TOWARDS GENERALIZED VIDEO QUALITY ASSESS-
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Figure 1: Examples of videos from different categories in our large dataset.

A MORE DETAILS OF OUR DW2S DATABASE

A.1 ANALYSIS OF THE COLLECTED VIDEOS

As shown in Fig. 2, our dataset is collected from multiple popular social media platforms with
relatively uniform sampling, comprising 20% from Bilibili, 20% from Youku, 25% from YouTube,
and 35% from TikTok. All videos are obtained through a filtering pipeline that ensures only
publicly available content with permissive licenses is included. Notably, our dataset covers a
diverse range of content categories, exceeding twenty in total. In addition to common categories
such as lifestyle, food, and animals, it also includes specialized categories such as gaming, AI-
generated content, and high-resolution content. To illustrate the diversity of our dataset, we present a
variety of video samples in Fig. 1, showcasing the broad range of content available in our large-scale
video quality assessment (VQA) dataset. Unlike existing datasets, which often focus on specific
formats, our dataset encompasses a wider variety of formats, including both landscape and portrait
orientations, as well as various resolutions. This diversity enhances the comprehensiveness of our
dataset, making it more suitable for evaluating video quality across a wide kinds of scenarios. A
detailed breakdown of our database, including pair types and the corresponding number of videos,
is provided in Table 1.

A.2 ANALYSIS OF LOW-LEVEL METRICS

Our data selection strategy is based on a mixed-integer programming method (Vonikakis et al.,
2017), which optimizes dataset composition by aligning feature histograms. Specifically, we utilize
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Figure 2: Our dataset is collected from multiple popular social media platforms and encompasses a
wide range of content categories.

Table 1: Statistics of raw videos and video pairs in the Dw2s dataset.

Category Subtype Videos Video Pairs

D
(1)
w2s D

(2)
w2s D

(3)
w2s D

(1)
w2s D

(2)
w2s D

(3)
w2s

Ensembling homogeneous teachers - 200k 100k 50k 250k 85k 85k

Integrating heterogeneous teachers
Spatial 50k 2k 2k 160k 5k 5k

Temporal 20k 1k 1k 40k 5k 5k
Compression 10k 1k 1k 50k 5k 5k

Total 280k 384k 438k 500k 600k 700k

this approach to match the distributions of nine low-level metrics (blockiness (Romaniak et al.,
2012), blur (Narvekar & Karam, 2011), contrast (Peli, 1990), noise, flickering (Pandel, 2008),
colourfulness (Hasler & Suesstrunk, 2003), luminance, spatial information (SI) (ITU-T P.910,
2008), and temporal information (TI) (ITU-T P.910, 2008)) between our dataset and the LSVQ
dataset. Each metric is computed as follows:
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Figure 3: Distribution of nine metrics on the LSVQ dataset, as well as on our dataset before and
after sampling.

Blockiness (Romaniak et al., 2012) is quantified by analyzing the luminance differences between
pixels within and across encoding blocks. Specifically, we compute the absolute luminance differ-
ences between adjacent pixel pairs within the same encoding block (internal pixel pairs) and those
spanning adjacent blocks (external pixel pairs). The blockiness metric is then determined as the ratio

2
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of the total sum of internal pixel difference values to the total sum of external pixel difference values
across the entire video frame:

B =

∑
(x,y)∈I |I(x, y)− I(x+ 1, y)|∑
(x,y)∈E |I(x, y)− I(x+ 1, y)|

, (1)

where I(x, y) represents the luminance value at pixel location (x, y), I denotes the set of internal
pixel pairs, and E represents the set of external pixel pairs. A higher blockiness value indicates
stronger blocking artifacts, which typically result from aggressive video compression.

Blur is measured using the Cumulative Probability of Blur Detection (CPBD) (Narvekar &
Karam, 2011), which evaluates perceptual sharpness based on edge width distribution. A higher
CPBD value indicates a sharper image. Given an edge pixel ei, its width w(ei) is compared with
the Just Noticeale Blur (JNB) threshold, determining the blur detection probability wJNB(ei). The
final CPBD score is computed as:

CPBD = P (PBLUR ≤ PJNB) =

PJNB∑
PBLUR=0

P (PBLUR). (2)

Contrast is a measure of the dispersion of pixel intensity values within the video frame and can
be quantified using the standard deviation of grayscale intensities (Peli, 1990). Specifically, for a
grayscale image I(x, y), the mean intensity µ is first computed as:

µ =
1

M ×N

M∑
x=1

N∑
y=1

I(x, y), (3)

where M and N denote the width and height of the image, respectively, and I(x, y) represents the
intensity at pixel (x, y). The contrast value σ is then obtained by calculating the standard deviation
of intensity values:

σ =

√√√√ 1

M ×N

M∑
x=1

N∑
y=1

(I(x, y)− µ)2. (4)

The standard deviation σ represents the contrast of the video frame, where a higher σ value indicates
a greater dispersion of intensity values and thus a higher contrast.

Flickering occurs when an encoder skips macroblocks to conserve bitrate, especially in low-
texture, slow-motion regions (Pandel, 2008). It is quantified by counting macroblock transitions
from an “unupdated” to an “updated” state, with a threshold Tf ensuring only significant changes
are considered. The flickering metric is computed as:

F =
1

M ×N

M∑
x=1

N∑
y=1

I (|It(x, y)− It−1(x, y)| > Tf ) , (5)

where It(x, y) is the luminance at pixel (x, y) in frame t, and I(·) is an indicator function. A higher
F indicates stronger flickering artifacts.

Colourfulness quantifies color distribution differences across RGB channels, following (Hasler &
Suesstrunk, 2003). Given a frame with RGB channels R,G,B, we compute:

rg = R−G, yb =
1

2
(R+G)−B. (6)

The Colourfulness metric is then:

3
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Figure 4: Illustration of different levels of spatial distortion video frames in our large-scale dataset.

C =
√
σ2
rg + σ2

yb
+ 0.3×

√
µ2
rg + µ2

yb
, (7)

where σ and µ denote the standard deviations and means of rg and yb, respectively.

Luminance is measured as the combined intensity of the three RGB channels, defined as:

L = R+G+B. (8)

SI measures spatial complexity using the Sobel filter. The standard deviation of the Sobel-filtered
frame over all pixels is computed, and the maximum value over time represents the SI:

SI = max
time

{stdspace [Sobel(Fn)]} . (9)

TI measures motion intensity by calculating the difference between consecutive frames. The tem-
poral difference at pixel (i, j) is:

Mn(i, j) = Fn(i, j)− Fn−1(i, j). (10)

The TI value is the maximum standard deviation of Mn(i, j) over time and space:
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Figure 5: Illustration of different levels of streaming distortion video frames in our large-scale
dataset.

TI = max
time

{stdspace[Mn(i, j)]} . (11)

To optimize computational efficiency, all metrics are extracted at a sampling rate of one frame per
second.

A.3 MORE DETAILS ON SYNTHETIC DISTORTION DATA

A.3.1 SPATIAL DISTORTIONS

We introduce five common spatial distortions: resizing, Gaussian blur, Gaussian noise, darkening,
and brightening. Each distortion is applied at five different levels to simulate varying degrees of
degradation, ranging from mild to severe. Fig. 4 illustrates examples of these distortions, where
the quality of video frames progressively deteriorates as the distortion level increases. Below, we
provide details on how these spatial distortions are generated, where I represents the original frame,
and I ′ denotes the distorted frame.

Resizing: The frame is first downsampled by a scaling factor s and then upsampled back to its
original size. This process reduces spatial details and introduces pixelation artifacts, simulating
resolution loss. The transformation is defined as:

I ′ = Upsample(Downsample(I, s), s), (12)
where s takes values from the set {2, 3, 4, 8, 16}.

Gaussian Blur: The frame is convolved with a Gaussian kernel, where the standard deviation
σblur controls the extent of the blur. A larger σblur results in a wider spread of the Gaussian function,
leading to a stronger blurring effect by averaging pixel intensities over a larger neighborhood. The
blurring process is defined as:

I ′ = I ∗G(σblur), (13)

where G(σblur) is a Gaussian kernel with standard deviation σblur which takes values from the set
{0.1, 0.5, 1, 2, 5}, and ∗ denotes the convolution operation.
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Table 2: An overview of our testing datasets.
Dataset Year # of Videos # of Scenes Resolution Duration Frame Rate Distortion Type

KoNViD-1k (Hosu et al., 2017) 2017 1,200 1,200 540p 8 24, 25, 30 In-the-wild
LIVE-VQC (Sinno & Bovik, 2018) 2018 585 585 240p–1080p 10 30 In-the-wild
YouTube-UGC (Wang et al., 2019) 2019 1,380 1,380 360p–4K 20 30 In-the-wild
LSVQ (Ying et al., 2021) 2021 38,811 38,811 99p–4K 5–12 < 60 In-the-wild

Waterloo-IVC-4K (Li et al., 2019) 2019 1200 20 540p, 1080p, 4k 9-10 24, 25, 30 H.264 compression
LIVE-YT-HFR (Madhusudana et al., 2021) 2021 480 16 1080p 6-10 24, 30, 60, 82, 98, 120 Frame rate, VP9 compression
LIVE-YT-Gaming (Yu et al., 2022) 2022 600 600 360p–1080p 8–9 30, 60 PGC, UGC
CGVDS (Saha et al., 2023) 2023 360 15 480p, 720p, 1080p 30 20, 30, 60 H.264 compression
KVQ (Lu et al., 2024) 2024 4200 600 - 3-8 - UGC

Gaussian noise: Gaussian noise is introduced by adding random variations to each pixel, follow-
ing a normal distribution with mean µ and standard deviation σnoise. The noise level is controlled
by adjusting σnoise, where higher values result in more pronounced noise artifacts. The process is
defined as:

I ′ = I +N(µ, σ2
noise), (14)

where N(µ, σ2
noise) represents Gaussian noise with mean µ and variance σ2

noise, added indepen-
dently to each pixel. σ takes values from the set {0.001, 0.002, 0.003, 0.005, 0.01}.

Darkening: Darkening is applied by reducing the luminance component in the color space. The
effect is controlled by a parameter p, which determines the degree of brightness reduction. The
luminance channel L is adjusted using an interpolation function f(L, p) as follows:

L′ = f(L, p). (15)

The parameter p is selected from a predefined set of values {0.05, 0.1, 0.2, 0.4, 0.8}, with larger
values leading to stronger darkening effects.

Brightening: In contrast, brightening is achieved by enhancing the luminance component in the
color space. The luminance channel L is modified using a nonlinear transformation function g(L, p):

L′ = g(L, p), (16)

The parameter p is selected from {0.1, 0.2, 0.4, 0.7, 1.1}, with larger values producing a stronger
brightening effects.

A.3.2 TEMPORAL DISTORTIONS

We introduce two types of temporal distortions: jitter and stuttering, each distortion maintain three
different levels.

Jitter: Jitter introduces random shifts and random cropping followed by resizing of video frames.
The amount of shift is determined by the jitter level, which controls the extent of spatial displace-
ment.

For each frame, random horizontal and vertical shifts are applied using an affine transformation
matrix, which shifts the frame along the x- and y-axes. Additionally, each frame is cropped by
a small amount from the edges and resized back to its original dimensions, simulating pixelation
effects or lower-quality views. The transformation matrix is described as follows:

M =

[
1 0 random shift x
0 1 random shift y

]
(17)

where random shift x and random shift y are random values determined by the jitter level.
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Stuttering: Stuttering is introduced by randomly dropping frames at a controlled rate. The drop
rate pd is determined by the distortion level, where higher levels correspond to increased frame loss.
For each frame It, a random probability is drawn and compared with pd. If the frame is dropped, it
is replaced by the previous frame It−1, simulating temporal freezing in the video. The process can
be formulated as:

I ′t =

{
It−1, if r < pd,

It, otherwise
(18)

where r ∼ U(0, 1) is a random variable drawn from a uniform distribution.

A.3.3 STREAMING DISTORTIONS

As illustrated in Fig. 5, we select the two most common compression standards, H.264 and H.265,
to simulate video quality degradation for the compression distortion. These distortions are applied
using the ffmpeg tool, a widely used multimedia framework, to encode the videos with different
compression settings. Specifically, we chose four fixed constant rate factor (CRF) values for each
compression standard to control the level of distortion.

For H.264 compression, we selected the fast encoding mode, which provides a good balance
between encoding speed and compression efficiency, making it suitable for real-time applications.
To cover a wide range of compression levels, we applied H.264 compression using CRF values of
24, 36, 48, and 63, ensuring the simulation of various quality degradation scenarios.

In contrast, for H.265 compression, we selected the very slow encoding mode, which prioritizes
compression efficiency over speed, leading to higher quality video at the cost of longer encoding
times. To achieve fine-grained quality simulation, we applied H.265 compression with a narrower
CRF range of 36, 40, 44, and 48, allowing for precise control over compression artifacts.

These encoding settings help to simulate typical real-world compression scenarios, where differ-
ent modes and CRF values are chosen based on the trade-off between video quality and encoding
performance.

A.4 MORE DETAILS ON TESTING DATASETS

Table 2 provides an overview of our testing datasets, which encompass diverse content types, res-
olutions, durations, frame rates, and distortion types. The first four datasets consist of in-the-wild
videos containing various authentic distortions, while the remaining datasets focus on specific con-
tent types and distortion factors. For example, LIVE-YT-Gaming is dedicated to gaming content,
LIVE-YT-HFR targets frame rate distortions, and Waterloo-IVC-4K covers different types of com-
pression artifacts. By evaluating our model across these nine datasets, we demonstrate its robustness
and effectiveness in both in-domain and out-of-distribution (OOD) quality assessment scenarios.

B MORE DETAILS OF QUALITY ANNOTATION

B.1 WEAK MODELS FOR PSEUDO-LABELING

Table 3: Comparison of model parameters and architecture.
Model Parameters (M) Architecture

MinimalisticVQA(VII) 86.93 Swin-B
MinimalisticVQA (IX) 121.59 Swin-B + SlowFast
FAST-VQA 29.97 Swin-Tiny
DOVER 58.06 Swin-Tiny + Conv-Tiny
Q-Align 8204.56 mPLUG-Owl2
Our strong model 8075.24 LLaVA-OneVision-Chat + SlowFast

We choose five SOTA VQA models: MinimalisticVQA (VII) (Sun et al., 2024), MinimalisticVQA
(IX) (Sun et al., 2024), FAST-VQA (Wu et al., 2022), DOVER (Wu et al., 2023a), and Q-Align (Wu
et al., 2023b) as weak teachers to formulate our pseudo quality annotation. The detail introduction
of the five models is as follows:
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MinimalisticVQA (VII) employs Swin Transformer-B (Liu et al., 2022), pre-trained on
ImageNet-1K (Deng et al., 2009), as the spatial quality analyzer to extract quality-aware spatial
features from key frames, ensuring robust spatial quality assessment.

MinimalisticVQA (IX) builds upon MinimalisticVQA (VII) by incorporating a temporal qual-
ity analyzer to account for motion distortions. The temporal quality analyzer, implemented using
the SlowFast (Feichtenhofer et al., 2019) network pre-trained on the Kinetics-400 (Carreira & Zis-
serman, 2017) dataset, extracts motion-related features from video chunks, enhancing the model’s
ability to assess temporal quality variations.

FAST-VQA introduces Grid Mini-patch Sampling (GMS) strategy, which preserves local quality
by sampling patches at raw resolution and maintains global quality through uniformly sampled mini-
patches. These mini-patches are spliced and temporally aligned into fragments. To process these
fragments, the Fragment Attention Network (FANet) is designed to effectively extract video qual-
ity features. Combining GMS and FANet, FAST-VQA achieves efficient end-to-end video quality
assessment with effective feature representation learning.

DOVER builds upon FAST-VQA as its technical branch to capture low-level distortions, while
introducing an additional aesthetic branch to assess high-level semantic composition, which relates
to user preferences and content recommendation. By disentangling these two perspectives, DOVER
establishes a more human-aligned and interpretable framework for video quality assessment.

Q-Align presents a novel training strategy for large multimodal model (LMM) in VQA by re-
placing direct numerical score predictions with discrete, text-defined rating levels (e.g., “excellent”,
“good”, “fair”, “poor”, “bad”) as learning targets. During inference, Q-Align extracts the log prob-
abilities of each rating level, applies softmax normalization to obtain a probability distribution, and
computes a weighted average to derive the final predicted quality score.

B.2 PROMPTS FOR MODEL TRAINING

We construct the label prompts for our large-scale dataset using a fixed template. For the single-
video input:

Question: "You will now receive a video: <image>. Please
watch the video carefully and answer the following question:
What is your overall rating of the quality of this video?"
Answer: "[quality score]"

For the dual-video input:

Question: "You will now receive two videos. The first
video: <image>. The second video: <image>. Please watch
both videos carefully and answer the following question:
Compared to the first video, how would you rate the quality
of the second video?"
Answer: "The quality of the second video is [level] compared
to the first video."

C MORE DETAILS OF OUR STRONG STUDENT MODEL

C.1 MODEL STRUCTURE

As illustrated in Fig. 3 in the main paper, our model comprises three components: a visual feature
extractor, a text tokenizer, and an LLM decoder.

Visual Feature Extractor. The visual feature extractor adopts a dual-branch design: a spatial branch
with image encoder FI (i.e., SigLIP) processes key frames, while a temporal branch with pre-trained

8
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motion encoder FM (i.e., SlowFast) analyzes frame sequences. Both branches employ dedicated
projection layers PI and PF (i.e., two-layer MLPs) to map spatial and temporal features into visual
tokens aligned with language space. Specifically, given an input video x = {xi}N−1

i=0 containing N

frames at frame rate r, we first partition it into Nc = ⌊N/r⌋ continuous chunks {ck}Nc−1
k=0 , where

each chunk ck = {xj}(k+1)∗r
j=k∗r spans r frames. Spatial features fs

k are extracted from the first frame
xkr of each chunk, while temporal features f t

k are computed over all frames in ck. The feature
extraction process is formally expressed as:

fs
k = PI(FI(xkr)), f t

k = PM (FM (ck)),

fv = Concat
(
[fs

k ,f
t
k]

Nc−1
k=0

)
,

(19)

where fv is the extracted visual features of x. Given a video pair (xA,xB), we can derive the visual
features (fv

A,f
v
B).

Feature Fusion via the LLM. Given an input prompt p, we first encode it into text tokens fp =
T (p) using tokenizer T . The visual features of a video pair (fv

A,f
v
B) are then concatenated with

f t and fed to a pretrained LLM decoder (i.e., Qwen-2) for multimodal fusion to derive the output
response for quality ranking:

r = L(fv
A,f

v
B ,f

p), (20)

where r is expected to belong to {“superior”, “better”, “similar”, “worse”, “inferior”}.

C.2 TRAINING DETAILS

C.2.1 TRAINING SETUP

The model is trained using the DeepSpeed framework with mixed-precision floating-point opera-
tions to optimize memory and computational efficiency. The training is conducted for one epoch
with a batch size of 1 per device and a gradient accumulation step of 1. The optimizer follows
AdamW with a initial learning rate of 1 × 10−4, a cosine learning rate schedule, and a warm-up
ratio of 0.03.

We employ a joint training strategy for images and videos. For the image encoder, videos are
sampled at a rate of one frame per second, with each sampled frame resized to a resolution of
384× 384, while images are directly resized to the same resolution. For the motion encoder, videos
are fully encoded across all frames to capture temporal dynamics, whereas images, which lack
temporal information, are assigned an all-zero tensor as their temporal representation.

C.2.2 AUXILIARY CONFIDENCE LOSS

As mentioned in Section 4.3 in the main paper, we introduce an auxiliary confidence loss to encour-
age the model to maintain high-confidence predictions, especially in the presence of noisy weak su-
pervision. The final training objective is a dynamically weighted combination of the cross-entropy
loss LCE and the confidence loss Lconf:

L = (1− λ) · LCE + λ · Lconf, (21)

where λ is an adaptive weighting factor that balances between trusting the weak labels and relying
on the model’s own confidence. The confidence loss is defined as the average entropy over the
predicted token probability distributions:

Lconf =
1

N

N∑
i=1

H(pθ(xi)) = − 1

N

N∑
i=1

∑
c

pθ(c|xi) log pθ(c|xi), (22)

where pθ(c|xi) denotes the predicted probability of vocabulary token c given input xi. By mini-
mizing the entropy of the predicted distribution, we encourage the model to produce more confident
next-token predictions.
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To dynamically adjust λ during training, we introduce a temperature-based confidence estimation
mechanism. Specifically, we define:

λ = α ·min

(
1.0,

t

Twarmup

)
, (23)

where t denotes the current training step ratio (normalized to [0, 1]), and Twarmup is the warm-up
period, which we set to 10% of the total training steps. This warm-up phase ensures that the strong
model gradually learns to rely on its own confidence, while initially being guided by the weak labels.
The factor α is computed as the ratio between the temperature-scaled exponentials of the two losses:

α =
exp(Lconf/T )

exp(Lconf/T ) + exp(LCE/T )
. (24)

Here, T is a temperature parameter that controls the sharpness of the weighting between the two
loss components. We linearly decrease T from 0.5 to 0.1 during the warm-up period to gradually
increase the sensitivity of α to differences in the two loss values.

C.3 INFERRING DETAILS

C.3.1 PROBABILITY MODELING

Though we employ video pairs to train our model by enabling it to determine whether the second
video is better than the first, our goal during inference is to obtain an absolute quality score for a
single video. To achieve this, we propose a method that converts the probability of a test video being
better or worse than anchor videos into a final quality score.

First, we describe how to construct the probability distribution for comparative quality assessments.
The comparative token set is defined as:

S = {sk}5k=1 = {inferior,worse, similar, better, superior}. (25)

The probability of each token is computed using the softmax function:

qsk =
esk∑r

m=1 e
sm

, (26)

where qsk represents the probability of the k-th token, and r denotes the number of levels.

To obtain a quality score for the test video veval, we aggregate its comparative probabilities against
anchor videos using a weighted summation:

P (vanchor, veval) =

r∑
k=1

αkqsk (vanchor, veval) , r = 1 . . . p. (27)

where αk are fixed weights that reflect the comparative levels. Specifically, the weights are defined
as:

{αk}5k=1 = {0, 0.25, 0.5, 0.75, 1}. (28)
This approach enables the model to generate a continuous quality score for a single video by lever-
aging its relative comparisons against anchor videos in the training set.

C.3.2 SCORE MODELING

Finally, we construct a probability matrix based on pairwise comparisons with a set of anchor videos.
Given a set of five anchor videos, we first define a probability matrix:

Mr ∈ R5×5, (29)
where each entry P (b(i), b(j)) represents the probability that anchor video b(i) is preferred over b(j).
This probability satisfies:
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Table 4: Performance of weak-to-strong models trained with pseudo-labels from weak models. For
comparison, we also report the performance of our model trained directly on the LSVQ dataset.

In-domain Datasets LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC YouTube-UGC Overall

# of videos 7,182 3,573 1,200 585 1,020 -

Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Weak Teachers
MinimalisticVQA(VII) 0.861 0.859 0.740 0.784 0.843 0.841 0.757 0.813 0.775 0.779 0.817 0.830
MinimalisticVQA(IX) 0.885 0.882 0.792 0.828 0.862 0.859 0.775 0.821 0.826 0.821 0.849 0.859
FAST-VQA 0.880 0.880 0.781 0.813 0.859 0.854 0.826 0.845 0.730 0.747 0.838 0.849
DOVER 0.878 0.866 0.782 0.813 0.874 0.869 0.817 0.840 0.771 0.781 0.842 0.845
Q-Align 0.886 0.884 0.761 0.822 0.876 0.878 0.783 0.819 0.834 0.846 0.844 0.861
Weak-to-Strong Students
MinimalisticVQA(VII)-labeled 0.855 0.852 0.762 0.795 0.859 0.857 0.771 0.813 0.808 0.821 0.824 0.833
MinimalisticVQA(IX)-labeled 0.879 0.878 0.794 0.826 0.869 0.871 0.786 0.822 0.843 0.846 0.849 0.859
FAST-VQA-labeled 0.871 0.868 0.785 0.819 0.849 0.855 0.798 0.833 0.825 0.834 0.840 0.850
DOVER-labeled 0.877 0.869 0.780 0.813 0.870 0.875 0.792 0.829 0.819 0.831 0.843 0.850
Q-Align-labeled 0.878 0.876 0.794 0.824 0.873 0.880 0.781 0.825 0.833 0.853 0.848 0.859
Supervised Student
LSVQ-labeled 0.881 0.878 0.797 0.834 0.874 0.874 0.797 0.828 0.830 0.838 0.851 0.861

Out of Distribution Datasets LIVE-YT-Gaming CGVDS LIVE-YT-HFR Waterloo-IVC-4K KVQ Overall

# of videos 600 357 480 1,200 2,926 -

Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Weak Teachers
MinimalisticVQA(VII) 0.596 0.682 0.681 0.733 0.061 0.130 0.275 0.338 0.604 0.659 0.490 0.551
MinimalisticVQA(IX) 0.686 0.746 0.797 0.816 0.301 0.388 0.459 0.502 0.615 0.661 0.574 0.622
FAST-VQA 0.631 0.677 0.725 0.747 0.326 0.415 0.327 0.363 0.518 0.526 0.486 0.512
DOVER 0.647 0.728 0.694 0.747 0.360 0.465 0.368 0.418 0.559 0.593 0.519 0.569
Q-Align 0.611 0.681 0.756 0.798 0.329 0.342 0.414 0.497 0.613 0.655 0.555 0.606
Weak-to-Strong Students
MinimalisticVQA(VII)-labeled 0.632 0.717 0.718 0.773 0.318 0.386 0.356 0.412 0.604 0.652 0.536 0.593
MinimalisticVQA(IX)-labeled 0.687 0.748 0.763 0.810 0.383 0.461 0.459 0.515 0.638 0.676 0.591 0.639
FAST-VQA-labeled 0.658 0.766 0.752 0.785 0.392 0.422 0.414 0.493 0.585 0.624 0.550 0.604
DOVER-labeled 0.662 0.758 0.752 0.809 0.449 0.482 0.435 0.519 0.574 0.627 0.554 0.617
Q-Align-labeled 0.671 0.738 0.744 0.785 0.437 0.480 0.450 0.525 0.620 0.668 0.581 0.636
Supervised Student
LSVQ-labeled 0.643 0.713 0.713 0.770 0.451 0.490 0.451 0.485 0.619 0.636 0.577 0.608

P (b(i), b(j)) = 1− P (b(j), b(i)), P (b(i), b(i)) = 0.5. (30)

To evaluate a test video vtest, we compute its comparative probabilities against all anchor videos,
forming the probability vector:

c =
[
P (b(1), vtest), P (b(2), vtest), . . . , P (b(5), vtest)

]
. (31)

Next, we integrate this vector into the complete probability matrix:

M ∈ R(5+1)×(5+1),M =

[
Mr c

(1− c)⊤ 0.5

]
. (32)

With this probability matrix, we estimate the final quality score using maximum a posteriori
(MAP) (Tsukida et al., 2011) estimation under Thurstone’s Case V model (Thurstone, 2017). This
is formulated as the following convex optimization problem:

argmax
q̂

∑
i,j

Mi,j log
(
Φ(q̂(i) − q̂(j))

)
−

∑
i

q̂(i)

2
, s.t.

∑
i

q̂(i) = 0.

(33)
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Here, Φ(·) denotes the standard normal cumulative distribution function, and the final score q̂(n+1)

corresponds to the estimated quality of the test video.

D MORE DETAILS OF EXPERIMENTAL RESULTS

D.1 MORE DETAILS OF WEAK-TO-STRONG GENERALIZATION EFFECT

Table 4 presents the per-dataset results from the experiments described in Section 3.3 of the main pa-
per. For in-domain benchmarks, the student model achieves performance comparable to its teachers,
with slight improvements, demonstrating that our simple knowledge distillation approach effectively
transfers quality assessment knowledge from weak to strong models. For OOD benchmarks, the
student model shows substantial improvements over its teachers, highlighting a pronounced weak-
to-strong generalization effect.
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