
A Contributions

PT: Led project formulation, writing, designing & running experiments, and discussion. PT originally
conceived of representing generic graph augmentations using composable, graph edit operations
to derive a generalization bound based on SpecLoss and made early attempts at this derivation, as
well as its interpretation. ESL: Contributed to project formulation, writing, experimental design,
and discussion. ESL led theory section, deriving Defn. 3.8 (partition dissimilarity) and Thm 3.9
(generalization bound). ESL and PT refined the analysis together. ESL and PT jointly conceived of
using the synthetic dataset and corresponding experiments. PT led the corresponding section. MH:
Contributed to running experiments, discussion, writing, and figure generation. DK:assisted in early
project ideation. JJT: senior advisor, contributed to project formulation, discussion, writing, and
experimental design.

B Reproducibility and Broader Impact

For reproducibility, we have included code at https://github.com/pujacomputes/datapropsgraphSSL.
git. Code is under-development and will be finalized soon. Our code uses the open source torch
geometric [53] and PyGCL [54] frameworks.

Self-supervised representation learning is an increasingly popular paradigm for graph representation
learning. Critical to many SSL frameworks is the choice of augmentation strategy. As we discuss
in this paper, the properties or invariances induced by a particular augmentation strategy are often
not well-understood. Failure to understand these properties can lead to unintended effects when the
representations are used in downstream tasks. We hope that our work is useful in better understanding
the role of augmentations and other data-centric properties on graph representation learning.

C Extended Discussion

C.1 Extending our Analysis to other Loss Functions

While our analysis focuses on the spectral contrastive loss (SpecLoss) [15] for ease of exposition, it
can also be extended to other contrastive loss functions and predictive methods, such as BYOL [21].
As we noted in Sec. 2, this can be easily accomplished by leveraging our insights on representing
graph augmentations through composable graph-edit operations and extending the analyses of Saunshi
et al. [41] or Wei et al. [28].

Specifically, the contemporary work of Saunshi et al. proposes a general analysis of contrastive loss
functionals and yields a generalization bound similar to Thm. 3.9, e.g., a bound that is dependent
on similar data-centric properties and assumptions. In Sec. 3, we decompose GGAs using GED,
and then derive expressions for data-centric properties, such as partition dissimilarity, using this
decomposition. Since the focus of our analysis is on understanding these data-centric properties in
terms of intrinsic dataset attributes (e.g., GED between samples), our theory is complementary to
the strategy used by Saunshi et al. Indeed, SpecLoss can be replaced with an alternative contrastive
loss functional and adapting the analysis conducted in Sec. 3, we can extend our results to other
contrastive losses. For predictive methods, we can leverage recent work by Wei et al. [28] which
provides an analysis for unsupervised learning methods for continuous data domains (such as images)
by enforcing representation consistency on augmented samples–i.e., BYOL-like methods. Critically,
Wei et al.’s generalization analysis relies on properties of the data-generating process’s latent space
and makes analogous assumptions to the unified recoverability plus separability assumption used in
our own work. Thus, our theoretical analysis can be extended to BYOL-like methods by deriving
equivalent analytical expressions for the latent-space properties used by Wei et al. Moreover, by
representing GGAs using graph edit operations, our derivation of such properties relies upon minimal
assumptions and is straight-forward. We do note, however, that Wei et al. assume that the dimension
of learned representations is equivalent to the number of classes in the dataset. This can be an invalid
assumption in unsupervised learning. In contrast, our analysis is more flexible since we only assume
the latent dimension is greater than the number of classes.

15

https://github.com/pujacomputes/datapropsgraphSSL.git
https://github.com/pujacomputes/datapropsgraphSSL.git


C.2 Evaluation on a Non-Synthetic Dataset

Our analysis in Sec. 3 motivates the need for content-aware augmentations (CAAs) by demonstrating
that generic graph augmentations (GGAs) often lead to inconsistent samples, harming representation
separability and yielding task irrelevant invariances. In Sec. 4.2, we empirically validated these
claims in a controlled setting through our new synthetic benchmark and the corresponding oracle
CAAs (see Fig. 5). To demonstrate the generality of our analysis in a practical setup, we repeat
this experiment in a realistic setting where domain knowledge is available to design content-aware
augmentations.

Experimental Setup. We analyze BACE, a molecule-protein interaction dataset. We train our models
by closely following the setup of Sun et al. [52], who propose biochemistry-inspired augmentations
for learning domain-informed representations. In our paper’s terminology, these augmentations can
be regarded as content-aware augmentations. To ensure fair comparison, we use only “local" CAA,
which does not incorporate additional “global" domain knowledge (see Sun et al. [52] for further
details). We compare against the strongest GGA baseline reported by the authors, called “mask edge
features" augmentation.

Figure 6: Invariance vs. Separability. On BACE
[51], a molecule-protein interaction dataset, we com-
pare the content-aware biochemistry-inspired aug-
mentations from MoCL [52] against the GGAs. In
this real-world setting, we see that CAAs induce
better invariance and separability (Contours are not
filled to improve legibility).

For evaluation, we use the trained models to com-
pute the invariance and separability for each sample.
As in Sec. 4.2.3, an invariance score is obtained
by computing the mean cosine similarity of a sam-
ple’s representation with 30 of its augmentations.
A separability score is computed by dividing the
maximum cosine similarity of a given sample and
same-class samples by the maximum cosine similar-
ity of a given sample and different-class samples.

Results. As demonstrated in Fig. 6, the
biochemistry-inspired content-aware augmentations
induce much better invariance and separability than
the GGA. These results provide further corrobora-
tion to our synthetic dataset experiments in 5) and
theory in Sec. 3, where we argued that preserving
content improves recoverability and leads to task-
relevant invariances with better separability.

C.3 On Using Mutual Information
for Analyzing Task-Relevance in Augmentations

While several different perspectives have been re-
cently proposed for studying self-supervised learning’s behavior, many of these frameworks assume
that augmentations induce invariance to information that is irrelevant to the downstream task, ignoring
the potential for augmentations to induce invariance to task-relevant information and harm generaliza-
tion performance. However, as we discussed in Sec. 2, a notable exception is the information-theoretic
analysis of Tian et al. [16]. Specifically, Tian et al. rely upon an information-theoretic framework
that interprets the InfoNCE loss as a lower bound of mutual information between two samples.
They demonstrate under this framework that optimal augmentations are ones that maximally perturb
information irrelevant to the downstream task. However, this viewpoint suffers from the fallacy
that InfoNCE is rarely empirically correlated with mutual information. Indeed, Poole et al.[55]
demonstrate that this interpretation is only valid when mutual information between two samples is
very large. For high-dimensional inputs, this will hold true when an augmentation does not alter the
input at all, which does not align with the practical behavior of graph (or even image) augmentations.
This renders the analysis by Tian et al. relatively inexact compared to our own analysis.

In contrast, we emphasize that our analysis, which has been designed from the ground-up for graph
data and augmentations, is more exact. By representing graph augmentations as composable graph-
edit distance (GED) operations, we are able to rigorously relate the generalization abilities of a
contrastive trained model to intrinsic dataset properties. Specifically, by deriving definitions for
partition dissimilarity (Defn 3.8) and inconsistent samples (Lemma 3.6) using GED, our generalization
bound relies upon minimal additional assumptions (Thm 3.9). In Sec. 4.2.3 and Sec. C.2, we verify

16



that our theoretical observations are well supported by our experiments on both synthetic and real-
world datasets, further demonstrating the validity of our chosen analysis framework.

D Generic Graph Augmentations and Graph Edit Distance

The key insight for our analysis in Sec. 3 is that GGAs can be instantiated in a general manner as
a composition of graph edit operations. This allows us to derive a unifying assumption related to
recoverability and separability in terms of the graph edit distance (GED) between samples. Here, we
provide proofs and additional discussion for the statements made in Sec. 3. We also discuss how our
analysis can be interpreted with respect to the population augmentation graph (PAG) proposed by
HaoChen et al. [15].

Table 2: Notation

Symbol Definition

X The original or natural dataset.
X Set of all augmented data.

g 2 X Natural (attributed) graph sample.
g, g0 2 X Augmented (attributed) graph samples

Eg Edge set of g.
Vg Node set of g.

� 2 [0, 1] Augmentation strength. Controls the % of edges or nodes that may be perturbed
by the selected augmentation.

A(g) The set of augmented samples that can be generated from Augmentation, A,
given natural sample g and �.

A(·|g) Distribution of augmentations given a natural sample, g.
A(g|g) Probability of generating g from g given augmentation A.

f Representation Encoder, f : {X ,X} ! Rd

h Classifier, h : Rd ! y

D.1 GGA and Graph Edit Distance

Graph edit distance (GED) is used to capture similarity between two graphs. Intuitively, it captures
the cost of making elementary edit operations on a graph, g1, to transform it to be isomorphic to
another graph, g2. Formally,
Definition D.1 (Graph Edit Distance (Defn. 3.1)). Let the elementary graph operators (node insertion,
node deletion, edge deletion, edge addition), and the categorical feature replacement operator
comprise the set of graph edits. Then, GED (g1, g2) = min(e1,...,ek)2P(g1,g2)

Pk
i=1 c (ei), where

P (g1, g2) is the set of paths (series of edit operations) that transforms g1 to be isomorphic to g2.
Here, ei is i-th edit operation in the path, and c(ei) is the cost for performing the edit.

Table 3: Generic Graph Augmentations vs. Graph
Edit Operators. (Reproduced. Table 1.) GGA can be
straightforwardly expressed using graph edit operators.

Augmentations Graph Edit Operators
Node Dropping Node Deletion
Edge Perturbation Edge Deletion, Edge Addition
Categorical Attribute Masking Categorical Feature Replacement Operator
Sub-graph Sampling Node Deletions

As shown in Table. 1, elementary graph edit oper-
ators can be used to straight-forwardly represent
the node dropping, edge perturbation and sub-

graph sampling generic graph augmentations
[22]. By introducing an additional graph opera-
tor, categorical feature replacement, we are also
able to consider distance with respect to categor-
ical node attributes. This operator performs a
“replacement” whenever there is a disagreement between g1 and g2’s node attributes. Then, the GED
is the total cost of structural changes and attribute disagreements between two graphs. Here, we
assign a unit cost per operation so all operations are treated equally. Assigning cost to reflect different
inductive biases over augmentations is an interesting direction left for future work. Next, we briefly
discuss some examples of using graph edit operators to represent GGAs.

Let (g, g) represent the original and augmented graph respectively, where we perform node dropping

to obtain g. Recall that the node dropping augmentation may only drop up to some fraction of
nodes in g. Then, clearly the minimum cost path can then be found using only node deletion

operators, and the GED(g, g) is bounded by the number of allowed node drops. Similarly, if g was

17



obtained through the edge perturbation augmentation, which randomly adds or removes a fraction
of edges, then GED(g, g) is bounded by the number of allowable edge modifications and can
be obtained using only edge addition/deletion operators. (Here, we allow nodes without edges to
still exist, so performing node addition/deletion would not result in a lesser GED.) The sub-graph

sampling augmentation extracts a connected sub-graph that contains at most a fraction of total nodes.
The minimum cost path can then be defined using only node deletions, e.g. where the operator is
applied to all nodes not in the sampled sub-graph. Therefore, GED(g, g) is bounded by |g|� |g|.
As discussed above, the categorical attribute masking augmentation can be recovered by directly
applying the categorical feature replacement operator. Then, the minimum cost path is then the
number of differences between the augmented and original samples’ node attributes. We formalize
the relationships between augmentations and GED in the following Lemmas.
Lemma D.2. Allowable augmentations can be expressed using GED. (Reproduction of Lemma
3.2) Let g be a natural sample in X , A be some GGA, g ⇠ A(·|g) be an augmented sample generated

from g and � be the augmentation strength or the fraction of the graph that GGAs may modify. Then,

� 2 {b�|Vg|c, b�|Eg|c} represents the number of discrete, allowable modifications for the specified

GGA, so GED(g, g)  �. Correspondingly, we have g 2 A(g) , GED(g, g)  �.

Proof. Let P be the shortest path comprised of the edit operators defined in Table. 1 for the given
GGA, A. Then, given that at most � discrete modifications are permitted and each operator has unit
cost, len(P)  � and

P
ei2P c(ei)  �. Thus, GED(g, g)  �.

Lemma D.3. Upper-bound on Size of Augmentation Set. The size of A(g) can be upper-bounded

through a combinatorial counting process. For example, to determine A(g) when the considered

augmentation is node dropping, we can delineate all sets of possible nodes with size up-to �|Vg|.
Formally, the upper-bound on the number of samples generated using node dropping are:

|A(g)| 
�|Vg|X

j=1

|Vg|!
(|Vg|� j)!j!

We note that this value is an upper-bound because isomorphic pairs are treated as two separate

graphs. Furthermore, note the size of the augmentation set grows exponentially with graph size.

A similar counting process can be used to determine the number of possible augmented samples

obtained through edge perturbation, sub-graph sampling or feature masking. For example, the

edge-dropping augmentation could be counted as: |A(g)| 
P|�Eg|

j=1
|Eg|!

(|Eg|�j)!j! .

We further note that because generic graph augmentations (GGAs) perturb the graph randomly, each
augmented sample, g 2 A(g), is equally likely, e.g., A(g|g) = 1

|A| .

E Details for Generalization Analysis

E.1 Generalization Analysis

Recently, HaoChen et al. [15] demonstrated that spectral clustering over a graph that captures
similarity of augmented data can recover class partitions as augmentations belonging to the same
class are more similar, and thus well-connected. These well-aligned partitions can be recovered
through spectral decomposition of the similarity graph and the resulting embeddings can be used
as features for downstream tasks. The SpecLoss objective, which performs this decomposition, is
then defined as follows [15]: Let g ⇠ A(·|g), g+ ⇠ A(·|g), given g 2 X and g� ⇠ A(·|g0), given
x
0 ⇠ PX ^ g0 6= g. Then, for the positive/negative pairs (g, g+)/(g, g�), the loss L(f) is:

�2 · Eg,g+

⇥
f(g)>f(g+)

⇤
+ Eg,g�

h�
f(g)>f(g�)

�2i

By defining SpecLoss through spectral decomposition, its generalization error can be bounded using
the recoverability and separability assumptions, which can also be understood in terms of the structure
of the similarity graph.

Indeed, in Sec. 3, we demonstrated how GGAs and GED influence recoverability and separability
by deriving an analogous generalization bound for SpecLoss that is tailored for graph data. At a

18



high-level, to find this bound, we derived expressions for recoverability, ↵, and separability, ⇢, based
on graph edit distance, and then used these expression to recover the SpecLoss bound. We then
performed some additional manipulation to derive the final expression presented in Thm. 3.9. Here,
we provide the details and proofs behind these steps. We begin by restating the Separability plus
Recoverability assumption.
Assumption E.1 (Separability plus Recoverability Assumption, (Reproduction of Assm. 3.3)).
Let g 2 X and y(g) be its label, and g ⇠ A(·|g). Assume that there exists a classifier h, such that
h(g) = y(g) with probability at least 1� ↵. We refer to ↵ as the error of h.

Now, recall from Sec. 3, that h will incur irreducible error on inconsistent samples, which are defined
as follows:
Corollary E.2. (Co-occuring augmentations.,Reproduction of Coll. 3.4) Let g 2 X and

g, g0 2 X . Then, g ⇠ A(g) ^ g0 ⇠ A(g) , GED(g, g0)  2�, where � =
min{b�|Vg|c, b�|Eg|c b�|Vg|c, b�|Eg|c}.

Proof. Recall, that g ⇠ A(g) () GED(g, g)  � and g0 ⇠ A(g) () GED(g0
, g)  �.

Then, GED(g, g0)  2� and are co-occurring augmentations as they both belong to A(g).

Definition E.3 (Inconsistent Samples, Reproduction of Defn. 3.5). Let g 2 X , and y : X ! r be a
labeling function. Further, let X in = {g|g 2 X ^GED(g, g)  �} be the set of natural samples that
may have generated g and Y

⇤
in = {y(g)|g 2 X in} be the set of unique labels. If g is an inconsistent

sample, |Y ⇤
in| > 1.

Now, we fix the behavior of h on inconsistent samples such that h(g) = y, for some fixed y 2 Y
⇤
in.

Then, h induces an r-way partition over X , such that each sample, g, belongs to a partition, Sh(g).
Further, because h will always incur error on inconsistent samples, ↵ can be lower bounded by the
ratio of inconsistent to total samples. To this end, we use GED to identify inconsistent samples by
identifying disagreement amongst partitions as follows.
Lemma E.4 (Using GED to identify inconsistent samples, Reproduction of Lemma 3.6). Let

g, g0 2 X and GED(g, g0)  2� such that g 2 Si ^ g0 2 Sj and i 6= j, where partitions are

induced by h. Then, at least one g̃ 2 {g, g0} must be an inconsistent sample.

Proof. By definition, GED(g, g0)  2� implies that at least one of the following must be true:
(i) g1 2 X 3 y(g1) = i ^ GED(g1, g)  � ^ GED(g1, g

0)  � or (ii) g2 2 X 3 y(g2) =
j ^ GED(g2, g)  � ^ GED(g2, g

0)  �. WLOG, assume (i). Now, g0 2 Sj , h(g) = j, so
j 2 |Y ⇤

in|. However, GED(g1, g)  �, so by Lemma 3.2 and Defn. 3.5, y(g1) = i 2 Y
⇤
in. Since,

i 6= j, |Y ⇤
in| > 1, g must be an inconsistent sample. Note, if (ii) holds, then g0 is an inconsistent

sample.

Note that the above lemma does not rely on ground-truth label information to identify inconsistent
samples, but only GED from natural samples. Given that the error on inconsistent samples is
irreducible, as it is unclear which y 2 Yin is correct, we can lower bound the error of h as follows:
Corollary E.5 (Error bound due to Inconsistent Samples, Reproduction of Coll. 3.7). The error

of h can be lower-bounded as

↵ �
Pr

i

P
g2Si,g0 /2Si

1(GED(g, g0)  2�)

|X | .

Here, the number of inconsistent samples can be approximated viaPr
i

P
g2Si,g0 /2Si

1(GED(g, g0)  2�) and |X | can be estimated using a combinatorial
counting procedure. Thus, the above corollary reflects the fact that error on inconsistent samples
cannot be reduced due to label un-identifiability.

Partition dissimilarity, which induces a notion of clustering of similar data-points in our analysis, can
be defined as the following:
Definition E.6 (Partition Dissimilarity, Reproduction of Defn. 3.8). Let S1, . . . , Sr be an r-way
partition of X . Then, we define the partition dissimilarity for a given partition as

�X (Si) =

P
g2S,g0 /2S 1(GED(g, g0)  2�)

P
g2S |{g0|GED(g, g0)  2�}| .

19



We can now state the main result that re-derives the generalization error of SpecLoss in terms of
GGAs, using the definitions of co-occurring pairs (Def. 3.4) and dissimilar partitions (Def. 3.8).
Notably, we decompose bound in terms of the number of co-occurring augmentation-pairs within
the same partition and the number of pairs that cross partitions, which are defined respectively as,
� =

P
g2S⇤,g02S⇤

1(GED(g, g0)  2�), and µ =
P

g2S⇤,g0 /2S⇤
1(GED(g, g0)  2�).

Theorem E.7 (Generalization Bound for SpecLoss with GGA, Reproduction of Thm 3.9). Assume

the representation dimension k � 2r and Assm. 3.7 holds for ↵ � 0. Let F be a hypothesis class

containing a minimizer f
⇤
pop of SpecLoss, L(f), which produces a bk/2c-way partition of X denoted

by {S⇤}. Let its most dissimilar partition have dissimilarity denoted by ⇢bk/2c = mini �(Si 2 {S⇤}).
Then, f

⇤
pop has a generalization error bounded as, where the middle term is from the original SpecLoss

bound:

E(f⇤
pop)  eO

⇣
↵/⇢

2
bk/2c

⌘
= eO

✓
r

|X |


µ+ 2�+

�
2

µ

�◆
,

Proof. The conversion from recoverability (↵) and conductance (⇢) and within partition (µ) and
across partition pairs (�), can be derived as follows. We assume that the data distribution is I.I.D and
the size of the class partitions are roughly equivalent.

E(f⇤
pop)  eO

⇣
↵/⇢

2
bk/2c

⌘
= eO

0

B@
Pr

i

P
g2Si,g0 /2Si

1(GED(g, g0)  2�)

|X |
1

hP
g2S⇤,g0 /2S⇤ 1(GED(g,g0)2�)P

x2S⇤ wx

i2

1

CA

E(f⇤
pop)  eO

�
↵/⇢

2
bk/2c

�
= eO

0

B@
Pr

i

P
g2Si,g0 /2Si

1(GED(g, g0)  2�)

|X |

hP
x2S⇤

wx

i2

hP
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)
i2

1

CA

= eO

0

B@
r
P

g2S⇤,g0 /2S⇤
1(GED(g, g0)  2�)

|X |

hP
x2S⇤

wx

i2

hP
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)
i2

1

CA

= eO

0

B@
r

hP
x2S⇤

wx

i2

|X |
hP

g2S⇤,g0 /2S⇤
1(GED(g, g0)  2�)

i

1

CA

= eO

0

B@
r

hP
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�) +
P

g2S⇤,g02S⇤
1(GED(g, g0)  2�)

i2

|X |
hP

g2S⇤,g0 /2S⇤
1(GED(g, g0)  2�)

i

1

CA

= eO
 

r

|X |

"hP
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)
i2

hP
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)
i

+
2
hP

g2S⇤,g0 /2S⇤
1(GED(g, g0)  2�)

P
g2S⇤,g02S⇤

1(GED(g, g0)  2�)
i

hP
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)
i +

P
g2S⇤,g02S⇤

1(GED(g, g0)  2�)
P

g2S⇤,g0 /2S⇤
1(GED(g, g0)  2�)

#!

= eO
 

r

|X |

"
X

g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)

+ 2
X

g2S⇤,g02S⇤

1(GED(g, g0)  2�) +

hP
g2S⇤,g02S⇤

1(GED(g, g0)  2�)
i2

P
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)

#!

(4)

Now, notice that the above equation can be understood as the number of inconsistent sam-
ples vs. the original samples. Let, � =

P
g2S⇤,g02S⇤

1(GED(g, g0)  2�) and µ =P
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�). Then, we have recovered the bound presented in Theorem

20



3.9.

eO
�
↵/⇢

2
bk/2c

�
= eO

 
r

|X |

"
X

g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)

+ 2
X

g2S⇤,g02S⇤

1(GED(g, g0)  2�) +

hP
g2S⇤,g02S⇤

1(GED(g, g0)  2�)
i2

P
g2S⇤,g0 /2S⇤

1(GED(g, g0)  2�)

#!

⇡ eO

0

BBB@
r

|X |

2

6664
µ|{z}

inconsistent samples

+ 2�|{z}
valid samples

+

valid samplesz}|{
�
2

µ|{z}
inconsistent samples

3

7775

1

CCCA
.

(5)

Recall, that inconsistent samples can be determined through graph edit distance (Defn. 3.5) between
augmented samples. Moreover, that the maximum allowable edit distance between augmented
samples is determined by augmentation strength.

E.2 Connections to the Population Augmentation Graph

The original bound for SpecLoss uses the population augmentation graph (PAG). While we did not
use the PAG in our analysis for ease of exposition, we note that our analysis can be adapted for the
PAG as follows:
Definition E.8 (Population Augmentation Graph [15]). Let Gp be the PAG where the vertex set is
all augmented data X . For any two augmented data g, g0 2 X , define the edge weight wgg0 as the
marginal probability of generating g and g0 from a random natural data g ⇠ PX :

wgg0 := Eg2PX
[A(g|g)A(g0|g)]. (6)

To extend our analysis to the PAG, we show that connectivity in the PAG is also determined by
GED. Then, the definition of inconsistent samples, and partition dissimilarity (conductance) straight-
forwardly follow.

Lemma E.9. Connectivity in the PAG is determined by GED. Let g, g0 2 X , and g 2 X . Then,

wgg0 > 0 , GED(g, g0)  2�.

Proof. By Lemma 3.4, wgg0 > 0 , A(g|g) > 0 ^A(g0|g) > 0. Moreover, if A(g|g) > 0 then, g
is the augmentation set of g. If g 2 A(g) then, GED(g, g)  �. Then, wgg0 > 0 , GED(g, g) 
� ^GED(g0

, g)  �, which in turn applies, wgg0 > 0 , GED(g, g0)  2�.

Corollary E.10 (Conductance according to GGA). Recall, the conductance �G of a partition Si

in a graph G measures how many edges cross partitions relative to total number of edges a node

possesses and that A(g|g) ⇡ 1
|A(g)| . Then,

�G(Si) =

P
x2S,x0 /2S 1(wxx0 > 0)

P
x2S wx

,

where wx represents the size of x’s edge-set.

Using this definition, we can substitute into the original SpecLoss generalization bound and recover
the result presented in Thm. 3.9.

F Dataset Generation and Experimental Details

We use the motifs shown in Fig. F to define a 6 class graph classification task. It is important to
ensure that the motifs are not isomorphic, as many GNNs are less expressive than the 1-Weisfeiler
Lehman’s test for isomorphism ([56]). For each class, 1000 random samples are generated as
follows: (i) We randomly select between 1-3 motifs to be in each sample. At this time, motifs all
belong to the same class, though this condition could easily be changed for a more difficult task.
(ii) We define the number of content nodes, Cn, as the size of the selected motif, scaled by the

21



Figure 7: Motifs used to determine class labels.

Table 4: Dataset Description

Name Graphs Classes Avg. Nodes Avg. Edges Domain
IMDB-BINARY [57] 1000 2 19.77 96.53 Social
REDDIT-BINARY [57] 2000 2 429.63 497.75 Social
MUTAG [58] 188 2 17.93 19.79 Molecule
PROTEINS [59] 1113 2 39.06 72.82 Bioinf.
DD [60] 1178 2 284.32 715.66 Bioinf.
NCI1 [61] 4110 2 29.87 32.30 Molecule

number of motifs in the sample. (iii) For a given style ratio, we determine the number of possible
style nodes as Sn = ⇢Cn (iv). We define RBG(n) using networkx’s 2 random tree generator:
networkx.generators.trees.random_tree. We note that other random graph generators would
also be well suited for this task. (v) For additional randomness, we create background graphs using
Sn ± 2, and also randomly perturb up-to 10% of edges in sample. We repeat this set-up with
⇢ 2 {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, 8.0} to generate the datasets used
in Sec 4.2.

Experimental Set-up: We follow You et al. [22] for TUDataset experiments. When reporting the
kNN accuracy, we tune k 2 {5, 10, 15, 20} separately on validation data for each dataset and method
to allow for the strongest baselines. For synthetic datasets we use the following setup. Our encoder is
a 5-layer GIN model with mean pooling. We set input node features to be a constant 10-dimensional
feature vector, and a hidden layer dimension is 32; we concatenate hidden representations for a
representation dimension of 160. Models are pretrained for 60 epochs. Subsequently, we use a linear
evaluation protocol and train a linear head for 200 epochs. All models are trained with Adam, lr =
0.01.

G Related Work

Table 5: Selected Graph Contrastive Learning Frameworks. We provide a brief description of augmentations
used by selected frameworks. Most frameworks use random corruptive, sampling, or diffusion-based approaches
to generate augmentations.

Method Augmentations

GraphCL ([22]) Node Dropping, Edge Adding/Dropping, Attribute
Masking, Subgraph Extraction

GCC ([62]) RWR Subgraph Extraction of Ego Network
MVGRL ([23]) PPR Diffusion + Sampling
GCA ([25]) Edge Dropping, Attribute Masking (both weighted by

centrality)
BGRL ([24]) Edge Dropping, Attribute Masking
SelfGNN ([63]) Attribute Splitting, Attribute Standardization + Scaling,

Local Degree Profile, Paste + Local Degree Profile

Graph Data Augmentation: Unlike images, graphs are discrete objects that do not naturally lie in
Euclidiean space, making it difficult to define meaningful augmentations. Furthermore, while for
images or natural language, there may be an intuitive understanding of what changes will preserve
task-relevant information, this is not the case for graphs. Indeed, a single edge change can completely

2https://networkx.org/documentation/stable/

22



change the properties of a molecular graph. Therefore, only a few works consider graph data
augmentation. [64] note that a node classification task can be perfectly solved if edges only exist
between same class samples. They increase homophily by adding edges between nodes that a
neural network predicts belong to the same class and breaking edges between nodes of predicted
dissimilar classes. However, this approach is expensive and not applicable to graph classification.
[30] argue that information preserving topological transformations are difficult for the aforementioned
reasons and instead focus on feature augmentations. Throughout training, they add an adversarial
perturbation to node features to improve generalization, computing the gradient of the model weights
while computing the gradients of the adversarial perturbation to avoid more expensive adversarial
training [65]. This approach is not directly applicable to contrastive learning, where label information
cannot be used to generate the adversarial perturbation.

Graph Self-Supervised Learning: In graphs, recent works have explored several paradigms for
self-supervised learning: see [66] for an up-to-date survey. Graph pre-text tasks are often reminiscent
of image in-painting tasks [67], and seek to complete masked graphs and/or node features ([68, 13]).
Other successful approaches include predicting auxiliary properties of nodes or entire graphs during
pre-training or part of regular training to prevent overfitting ([13]). These tasks often must be carefully
selected to avoid negative transfer between tasks. Many contrast-based unsupervised approaches
have also been proposed, often inspired by techniques designed for non-graph data. [26, 69] draw
inspiration from [9] and maximize the mutual information between global and local representations.
MVGRL ([23]) contrasts different views at multiple granularities similar to [8]. [22, 62, 25, 24, 63]
use augmentations (which we summarize in Table G) to generate views for contrastive learning. We
note that random corruption, sampling or diffusion based approaches used to create generic graph
augmentations often do not preserve task-relevant information or introduce meaningful invariances.

23



References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework

for contrastive learning of visual representations. In Proc. Int. Conf. on Machine Learning

(ICML), 2020.

[2] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proc. Int.

Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[3] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Proc. Int. Conf. on Machine Learning (ICML),
2021.

[4] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast
for unsupervised visual representation learning. In Proc. Int. Conf. on Computer Vision and

Pattern Recognition (CVPR). IEEE, 2020.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, and Piotr Bojanowski. Unsuper-
vised learning of visual features by contrasting cluster assignments. In Proc. Adv. in Neural

Information Processing Systems (NeurIPS), 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proc. Int.

Conf. on Computer Vision (ICCV), 2021.

[7] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Proc. Euro.

Conf. on Computer Vision (ECCV), 2020.

[8] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2018.

[9] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

[10] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised
learning can improve model robustness and uncertainty. In Proc. Adv. in Neural Information

Processing Systems (NeurIPS), 2019.

[11] Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more
robust to dataset imbalance. In Proc. Int. Conf. on Learning Representations (ICLR), 2022.

[12] Linus Ericsson, Henry Gouk, and Timothy M. Hospedales. How well do self-supervised models
transfer? In Proc. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In Proc. Int. Conf. on Learning

Representations (ICLR), 2020.

[14] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj
Saunshi. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. In Proc.

Int. Conf. on Machine Learning (ICML), 2019.

[15] Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-
supervised deep learning with spectral contrastive loss. In Proc. Adv. in Neural Information

Processing Systems (NeurIPS), 2021.

[16] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? In Proc. Adv. in Neural Information Processing

Systems (NeurIPS), 2020.

[17] Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf,
Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations
provably isolates content from style. In Proc. Adv. in Neural Information Processing Systems

(NeurIPS), 2021.

11



[18] Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland
Brendel. Contrastive learning inverts the data generating process. In Proc. Int. Conf. on

Machine Learning (ICML), 2021.

[19] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Proc. Int. Conf. on Machine Learning (ICML),
2020.

[20] Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learning:
Invariances, augmentations and dataset biases. In Proc. Adv. in Neural Information Processing

Systems (NeurIPS), 2020.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Mohammad Gheshlaghi Azar, Bilal Piot,
Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A new
approach to self-supervised learning. In Proc. Adv. in Neural Information Processing Systems

(NeurIPS), 2020.

[22] Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2020.

[23] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning
on graphs. In Proc. Int. Conf. on Machine Learning (ICML), 2020.

[24] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Medhi Azabou, Eva Dyer,
Rémi Munos, Petar Velickovic, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In Proc. Int. Conf. on Learning Representations (ICLR), 2022.

[25] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proc. ACM Conf. on World Wide Web (WWW), 2020.

[26] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
Proc. Int. Conf. on Learning Representations (ICLR), 2020.

[27] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-
supervised learning from a multi-view perspective. In Proc. Int. Conf. on Learning Representa-

tions (ICLR), 2021.

[28] Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In Proc. Int. Conf. on Learning Representations (ICLR),
2021.

[29] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Proc. Int. Conf. on Machine Learning (ICML), 2021.

[30] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. FLAG: adversarial data augmentation for graph neural networks. CoRR,
2020.

[31] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In Proc. Adv. in Neural Information Processing Systems

(NeurIPS), 2021.

[32] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. Simgrace: A simple framework
for graph contrastive learning without data augmentation. In Proc. ACM Conf. on World Wide

Web (WWW), 2022.

[33] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. In Proc. Int. Conf. on Learning Representations (ICLR),
2021.

12



[34] Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the Generalization of Contrastive
Self-Supervised Learning. arXiv, abs/2111.00743, 2021.

[35] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised Learning
Dynamics without Contrastive Pairs. In Proc. Int. Conf. on Machine Learning (ICML), 2021.

[36] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[37] Ashwini Pokle, Jinjin Tian, Yuchen Li, and Andrej Risteski. Contrasting the landscape of
contrastive and non-contrastive learning. arXiv preprint arXiv:2203.15702, 2022.

[38] Liu Ziyin, Ekdeep Singh Lubana, Masahito Ueda, and Hidenori Tanaka. What shapes the loss
landscape of self-supervised learning? arXiv preprint arXiv:2210.00638, 2022.

[39] Maria-Florina Balcan, Avrim Blum, and Ke Yang. Co-training and expansion: Towards bridging
theory and practice. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2004.

[40] Ekdeep Singh Lubana, Chi Ian Tang, Fahim Kawsar, Robert P Dick, and Akhil Mathur. Or-
chestra: Unsupervised federated learning via globally consistent clustering. arXiv preprint

arXiv:2205.11506, 2022.

[41] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. In Proc. Int. Conf. on Machine Learning (ICML), 2022.

[42] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra. Augmenta-
tions in graph contrastive learning: Current methodological flaws & towards better practices. In
Proc. ACM Conf. on World Wide Web (WWW), 2022.

[43] SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Classification and geometry of general
perceptual manifolds. Phys. Rev. X, 8, 2018.

[44] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In Bayesian Deep Learning

Workshop (NeurIPS), 2016.

[45] William Falcon, Ananya Harsh Jha, Teddy Koker, and Kyunghyun Cho. AAVAE: augmentation-
augmented variational autoencoders. CoRR, 2021.

[46] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proc. Int. Conf. on Learning Representations (ICLR), 2017.

[47] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-
level representation learning with local and global structure. In Proc. Int. Conf. on Machine

Learning (ICML), 2021.

[48] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In Proc. Int. Conf. on Learning Representations (ICLR), 2017.

[49] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In Proc. Int. Conf. on Machine

Learning (ICML), 2021.

[50] Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing network communities. Nature

Communications, 2018.

[51] Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny Denny.
Computational modeling of �-secretase 1 (bace-1) inhibitors using ligand based approaches.
Journal of Chemical Information and Modeling, 2016.

[52] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-driven
molecular fingerprint via knowledge-aware contrastive learning from molecular graph. In Proc.

ACM Int. Conf. on Knowledge Discovery & Data Mining (SIGKDD), 2021.

13



[53] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[54] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive
learning. In Proc. Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks

Track, 2021.

[55] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George Tucker. On
Variational Bounds of Mutual Information. In Proc. Int. Conf. on Machine Learning (ICML),
2019.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

[57] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Proc. ACM Int. Conf. on

Knowledge Discovery & Data Mining (SIGKDD), 2015.

[58] Nils M. Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proc. Int.

Conf. on Machine Learning (ICML), 2012.

[59] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J.
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. In Proceedings

Thirteenth International Conference on Intelligent Systems for Molecular Biology, 2005.

[60] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research (JMLR),
2011.

[61] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Proc. Int. Conf. on Data Mining (ICDM), 2006.

[62] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training. In
Proc. ACM Int. Conf. on Knowledge Discovery & Data Mining (SIGKDD), 2020.

[63] Zekarias T. Kefato and Sarunas Girdzijauskas. Self-supervised graph neural networks without
explicit negative sampling. In Int. Workshop on Self-Supervised Learning for the Web (WWW’21),
2021.

[64] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proc. Association for Advancment of Artificial

Intelligence (AAAI), 2020.

[65] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer,
Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Proc. Adv.

in Neural Information Processing Systems (NeurIPS), 2019.

[66] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph self-supervised
learning: A survey. IEEE Trans. on Knowledge and Data Engineering, 2022.

[67] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Generative
image inpainting with contextual attention. In Proc. Int. Conf. on Computer Vision and Pattern

Recognition (CVPR), 2018.

[68] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? In Proc. Int. Conf. on Machine Learning (ICML), 2020.

[69] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In Proc. Int. Conf. on Learning Representations (ICLR), 2019.

14


	Introduction
	Background
	Generalization Bounds for CL with GGA
	Experimental Verification
	A Closer Look at the Effectiveness of Invariance to GGA
	Evaluating Graph SSL Methods in a Controlled Setting
	Synthetic Data Generation Process
	Difficulties in Recovering Style Invariant Representations
	Invariance vs. Separability


	Conclusion
	Contributions
	Reproducibility and Broader Impact
	Extended Discussion
	Extending our Analysis to other Loss Functions
	Evaluation on a Non-Synthetic Dataset
	On Using Mutual Information for Analyzing Task-Relevance in Augmentations

	Generic Graph Augmentations and Graph Edit Distance
	GGA and Graph Edit Distance

	Details for Generalization Analysis
	Generalization Analysis
	Connections to the Population Augmentation Graph

	Dataset Generation and Experimental Details
	Related Work

