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A SOURCE CODE

The source code for evaluation and visualization can be found in an anonymized repository. Please
visit: https://anonymous.4open.science/r/TFL-8390|to access this resource.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EVALUATING OOF-RESILIENCY ON OFFICEHOME

We conduct additional experiments on OfficeHome (Venkateswara et al.,[2017) dataset. It contains
15, 588 images from four domains: art, clipart, product, and real world. The task is a 65-class clas-
sification problem. Like PACS’s experimental setup, we evenly split each domain into 5 subsets,
yielding 20 subsets, and treat each subset as a client. We followed the common leave-one-domain-
out experiment, where 3 domains are used (15 clients) for training and 1 domain (5 clients) for
testing. We use ResNet50 (He et al.l [2016) as our model and train the model for 100 communica-
tion rounds. Each local client optimized the model using stochastic gradient descent (SGD) with a
learning rate of 0.01, a momentum of 0.9, weight decay of 5¢~#, and a batch size of 64. The model
is evaluated using classification accuracy.

Table 1: Accuracy on the OfficeHome dataset. We conduct experiments using a leave-one-domain-
out approach, meaning each domain serves as the evaluation domain in turn. Existing methods
typically consider each domain as an individual client (Liu et al., 2021} Nguyen et al., | 2022). How-
ever, in order to simulate a large-scale distributed setting, we took a different approach by further
dividing each domain into 5 subsets and treating each subset as a separate client. This increased
the total number of clients to 20. Our method outperformed others across all experimental settings,
demonstrating superior results.

Models Backbone OfficeHome

A C P R Average
Centralized Mixup (Xu et al.![2020) ResNet50  64.7 54.7 77.3 79.2 69.0
Methods CORAL (Sun & Saenko][2016) ResNet50 644 553 767 779 68.6
FedAvg ResNet50 24.10 23.16 40.19 4347 32.73
Federated FedProx ResNet50 23.16 2347 41.08 42.66 32.59
Learning DRFA ResNet50 2529 2398 41.23 4235 3321
Methods FedSR ResNet50 23.51 2293 39.30 4148 31.81
TFL (Ours) ResNet50 26.37 2447 4396 44.74  34.89

B.2 DATA PRE-PROCESSING ON EICU

We follow (Huang et al) [2019) to predict patient mortality using drug features. These features
pertain to the medications administered to patients during the initial 48 hours of their ICU stay.
We’ve extracted pertinent patient and corresponding drug feature data from two primary sources: the
’medication.csv’ and “patient.csv’ files. Our final dataset is a table with the dimension of 19000 x
1411. Each row in this matrix symbolizes a unique patient, while each column corresponds to a
distinct medication.
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Figure 1: Additional results on eICU (ID vs. OOF performance). eICU’s 72 hospitals are dis-
tributed across the United States. Specifically, there are 14 hospitals in the WEST, 28 hospitals in
the MIDWEST, 26 hospitals in the SOUTH, and 4 hospitals in the NORTHEAST. We employ a
leave-one-region-out approach, designating one geographic region as the OOF region while the re-
maining as ID regions. We observe a considerable gap between ID and OOF performance, indicating
that current FL methods are not robust against OOF data.

B.3 MORE RESULTS ON EICU

We conduct more experiments on the eICU dataset to evaluate the gap between in-distribution (ID)
and out-of-distribution (OOF) and visualize the results in Figure |[l} We observe that existing FL
methods are not robust against OOF data.

C DETAILED DISCUSSION OF RELATED WORK

Federated learning. Federated learning (Li et al., 2020a; Kairouz et al., 2021) has emerged as a
powerful tool to protect data privacy in the distributed setting. It allows multiple clients/devices
to collaborate in training a predictive model without sharing their local data. Despite the success,
current FL methods are vulnerable to heterogeneous data (non-IID data) (Li et al., 2020b; [Sattler,
et al} [2019), a common issue in real-world FL. Data heterogeneity posits significant challenges
to FL, such as the severe convergence issue (Li et al., 2020b) and poor generalization ability to
new clients (Sattler et al., 2019). To improve the model’s robustness against data heterogeneity,
FedProx add a proximal term to restrict the local model updating, avoiding biased models toward
local data distribution. SCAFFOLD (Karimireddy et al., [2020) introduces a control variate to rectify
the local update. FedAlign (Mendieta et al) |2022) improve the heterogeneous robustness by
training local models with better generalization ability. However, most FL. methods focus on the
model’s in-distribution performance. Orthogonal to existing work, we propose leveraging client
relationships to improve the model’s OOF generalization capability.

FL generalization to unseen clients. A handful of works tackle generalization to unseen clients
in the FL setting. FedDG (Liu et al.l 2021) is proposed to solve domain generalization in medi-
cal image classification. The key idea is to share the amplitude spectrum of images among local
clients to augment the local data distributions. FedADG (Zhang et al., 2021) adopts the federated
adversarial training to measure and align the local client distributions to a reference distribution.
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Figure 2: Additional qualitative results comparison on unseen patients of the FeTS dataset. We
show both the tumor segmentation and DSC (1) score. Our method demonstrates consistent superior
OOF-resiliency across a range of local demographics.

FedGMA (Tenison et al.,|2022) proposes gradient masking averaging to prioritize gradients aligned
with the overall domain direction across clients. FedSR (Nguyen et al.|[2022) proposes regularizing
latent representation’s £ norm and class conditional information to enhance the OOF performance.
However, existing methods often ignore scalability issues, yielding inferior performance in large-
scale distributed setting (Bai et al.| |2023). In this paper, we introduce an approach that employs
client topology to strike a good balance between OOF-resilency and scalability.

Graph topology learning. The problem of graph topology learning has been studied in different
fields. In graph signal processing (Mateos et al.,[2019; Dong et al.,|2019; [Stankovi¢ et al.,2020), ex-
isting work explore various way to learn the graph structure from data with structural regularization
(e.g., sparsity, smoothness, and community preservation (Zhu et al., 2021))). In Graph Neural Net-
works (GNNs) (Wu et al., [2020; |Welling & Kipf}, [2016)), researchers have explored scenarios where
the initial graph structure is unavailable, wherein a graph has to be estimated from objectives (L1
et al., 2018} Norcliffe-Brown et al.| |2018)) or words (Chen et al.| [2019; |2020). The existing graph
topology learning methods often require centralizing the data, making it inapplicable in federated
learning. However, how to estimate the graph topology with a privacy guarantee has been less in-
vestigated. In this paper, we explore simple methods to infer the graph topology using non-private
information, i.e., model weights.

D ADDITIONAL ABLATION STUDY

Hyperparameter g. We investigate the Table 2: Ablation study evaluating the efficacy of hy-
impact of hyperparameter 7 on eICU. Our perparameter tuning, centrality., and similarity metric.
findings demonstrate that setting ¢ = 0.1
yields the best results. Centrality. We em-

Effectiveness of ¢, ROC AUC 1

. . =1.0 =le! g=le2 =1le? =le4
ployed betweenness centrality to derive the a iz 9= =< =<
topological prior. However, it is worth not- 3791 5831 3743 2696 5729
ing that other types of centrality, such as Effectiveness of centrality, ROC AUC T
degree (Freeman et al', 2002) and close- Betweenness Degree  Closeness Eigenvector Current flow
ness (Bavelas|, [1950), could also be utilized. 58.28 57.69 57.86 57.57 57.83
‘We conducted experiments on elICU to ver- Effectiveness of similarity measure, Accuracy 1
ify the impact of different centrality mea- 0 £ dot produt cosin
sures on TFL. Our findings indicate that be- ~ OOF Accuracy ~ 58.11 58.26 59.14 58.52

tweenness centrality produces the best re-
sult. Similarity metrics. We investigate how the model performs under different similarity metrics
on PACS. We found that the dot product-based metric produces the best results.
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Algorithm 1 Topology-aware Federated Learning

Input: K clients; learning rate 7y and 7),; communication round 7'; initial model 00 initial
A9 topology update frequency f .
while not convergence do
for each communication round ¢t = 1,--- 7T do
server samples m clients according to A(®)
for each clienti = 1, - - - m in parallel do
07! = 0] — 1g: Vot F(6))
client i send 6! back to the server
end for
server computes 07! = S
if t%f == 0 then
Updating graph G via Equation 4
end if
calculating topological prior p from G
calculating V) F(8FD  XA®)) via Equation 6
AFL = Pp (A + nf Vo F(OUFD, A®))
end for
end while

m  pt4+1
i=19;

E IMPLEMENTATION DETAILS

Experiment settings and evaluation metrics. For the PACS dataset, we evenly split each domain
into 5 subsets, yielding 20 subsets, and we treat each subset as a client. We followed the common
“leave-one-domain-out” experiment, where 3 domains are used (15 clients) for training and 1 do-
main (5 clients) for testing. We evaluated the model’s performance using classification accuracy.
‘We use ResNet18 (He et al.,[2016)) as our model and train the model for 100 communication rounds.
Each local client optimized the model using stochastic gradient descent (SGD) with a learning rate
of 0.01, momentum of 0.9, weight decay of 5e~4, and a batch size of 8. For CIFAR-10/100, we
adopt the same model architecture as FedAvg (McMahan et al.,|2017). The model has 2 convolution
layers with 32, 64 5 x 5 kernels, and 2 fully connected layers with 512 hidden units. we use Dirichlet
distribution (Hsu et al., |2019) to partition the dataset into the heterogeneous setting with 25 and 50
clients. For the eICU dataset, we treat each hospital as a client. We use a network of three fully
connected layers. This architecture is similar to (Huang et al.| 2019} [Sheikhalishahi et al.| [2020)).
We train our model for 30 communication rounds, using a batch size of 64 and a learning rate of
0.01, and report the performance on unseen hospitals. Within each communication round, clients
performs 5 epochs (E = 5) of local optimization using SGD. The evaluation metric employed was
the ROC-AUC, a common practice in eICU (Huang et al.,|2019). For the FeTS dataset, we treat
each institution as a client. We adopt the widely used U-Net (Ronneberger et al.,|2015) model. We
train our model for 20 communication rounds, using a learning rate of 0.01 and a batch size of 64.
We conduct training with 16 intuitions and report results on 5 unseen institutions. Each institution
performs 2 epochs of local optimization (E = 2) using SGD. The evaluation metric is Dice Similarity
Coefficient (DSC 7). For TPT-48, we consider two generalization tasks: (1) E(24) — W(24): Using
the 24 eastern states as IF clients and the 24 western states as OOF clients; (2) N(24) — S(24):
Using the 24 northern states as IF clients and the 24 southern states as OOF clients. We use a model
similar to (Xu et al.,2022), which has 8 fully connected layers with 512 hidden units. We use SGD
optimizer with a fixed momentum of 0.9. The evaluation metric is Mean Squared Error (MSE ).
Algorithm [I shows the overall algorithm of TFL. In implementation, we used dot product as the
metric to measure client similarity.

F DISCUSSION OF LIMITATIONS

In this section, we discuss the limitations of TFL and the potential solutions.

Concerns on privacy leakage. Client topology learning may raise concerns about (unintentional)
privacy leakage. However, we argue that any such leakage would be a general issue for FL. methods
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rather than a unique concern for our approach. In comparison to standard FL, our method does
not require additional information to construct the client topology, thus providing no worse privacy
guarantees than well-established methods like FedAvg (McMahan et al., 2017) and FedProx (L1
et al.| 2020b). Nonetheless, FL may still be vulnerable to attacks that aim to extract sensitive infor-
mation (Bhowmick et al., 2018; Melis et al.,|2019). In future work, we plan to explore methods for
mitigating (unintentional) privacy leakage.

Concerns on high-dimensional node embedding. As outlined in Section 3.1, we harness model
weights as node embeddings. Nevertheless, incorporating large-scale models, such as Transform-
ers (Vaswani et al.| |2017; |Dosovitskiy et al.l [2021), may present a formidable obstacle, producing
an overwhelmingly high-dimensional node vector. This will significantly increase computational
demands for assessing node similarity. We argue that this can be addressed by dimension reduction.
There are two possible ways: @ Utilizing model weights of certain layers as node embedding instead
of the whole model. @ Directly learning the low-dimensional node embedding. One simple idea is
to leverage Hypernetworks (Shamsian et al., 2021) to learn the node embedding with controllable
dimensions.

Concerns on high computation cost for Table 3: Compassion of computation of wall-clock
cross-device FL. Client topology learn- time on eICU dataset. Our clustering approach sig-
ing requiris O(N?) computation complex- nificantly reduces computation costs by 69%, with only
ity for IV clients. This quadratic complexity q small decrease in OOF performance by 0.77%.

is prohibitively expensive in cross-device
FL, where hundreds, thousands, or millions | ROC-AUC | Wall-clock time (s)

of clients/devices may be involved. In this  FedAvg 57.18 £0.03 120.15
case, we argue that the computation cost  TFL _ 58.41 +0.06 437.61
can be significantly reduced by client clus- ~_ TFL w/ Clustering | 57.96 +0.18 133.08

tering (Sattler et al.l [2020; Ghosh et al.,

2020). By partitioning the clients into clusters, the total number of “clients” is reduced, allow-
ing for cluster-level client topology learning to estimate the topology with reduced computation
costs. We conducted experiments on the elCU dataset to empirically validate the effectiveness of
our clustering-based method. The eICU dataset was selected for its large scale (72 clients) compared
to all other evaluated datasets. Specifically, during client topology learning, we use KMeans (Lloyd,
1982) to partition the training clients into several (e.g, 10) clusters and learn the client topology at
the cluster level. As shown in Table 3] our clustering approach significantly reduces computation
costs by 69%, with only a small decrease in OOF performance by 0.77%.
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