
SceneMotifCoder: Example-driven Visual Program Learning
for Generating 3D Object Arrangements

Supplementary Material

We provide additional implementation details for the
baseline approaches (Appendix A.1) and demonstration of
how we can use OpenCLIP [1] for more fine-grained re-
trieval of matching objects (Appendix A.2). We also pro-
vide evaluation details (Appendix B), additional examples
of generated 3D arrangements (Appendix C), and gener-
ated programs (Appendix D). Finally, we include the LLM
prompts we used (Appendix E) and an example LLM ses-
sion (Appendix F).

A. Implementation Details

A.1. Baseline Details

For MVDream, we use the default configuration without
soft shading and lower the second stage resolution to 128
for computational efficiency. Since GraphDreamer’s pub-
lic implementation only takes scene graphs as input and the
prompts used in the paper are not available, we implement
a text-to-scene-graph module using GPT-4 and follow the
general strategy from the paper. We also use the hyperpa-
rameter settings in GraphDreamer’s demo scripts for all ob-
jects, except that we set center dispersion to 0.2 to allow
the SDF for each object to be initialized at a reasonable dis-
tance from other objects. Similar to MVDream, we lower
GraphDreamer’s 2nd stage resolution to 128 with batch size
1 to minimize VRAM usage. Generating all 202 arrange-
ments took a combined 152 GPU hours on three Nvidia
L40S GPUs for MVDream, and 263 hours on four L40S
and two A40 GPUs for GraphDreamer. GraphDreamer of-
ten crashes due to out-of-memory errors for object arrange-
ments that consist of more than three objects or contain
larger objects. For these arrangements, we re-run on two
A100 GPUs with 80GB VRAM, which took another 181
GPU hours. However, twelve input descriptions still crash
due to out-of-memory errors.

A.2. Mesh Retrieval Approach

Our work retrieves meshes to instantiate object arrange-
ments based on object category and bounding box dimen-
sions. We tried incorporating OpenCLIP [1] to enable ob-
ject appearance-based retrieval. However, since our eval-
uation is focused on the generated object layouts, our test
descriptions reflect that and do not specify appearance at-
tributes such as colour. As a result, the retrieved meshes
do not differ significantly from the simpler approach when
evaluated against the input text description. Therefore, we
opted for the simpler approach in our final system. We note

A cup on top of
a plate

A yellow cup
on top of

a blue plate

Input Category-based
Retrieval

OpenCLIP-based
Retrieval

△ ✓

✓✓

Figure 1. Results using category-based and OpenCLIP-based
retrieval. First row: Input description does not specify object ap-
pearance. Both results are correct. This is the case for our test
set descriptions. Second row: OpenCLIP-based retrieval is useful
when the input description contains appearance attributes.

that in real life usage, users may have specific preferences
to the appearances of the generated arrangements, making
the feature-based retrieval module a worthwhile extension
to our work. See Figure 1 for a demonstrative example.

B. Evaluation Details
B.1. Manual Verification Guidelines

We provide the guidelines the annotator received below.

Looking at two views of each generation result,
judge the generation quality based on the follow-
ing three criteria. Give a binary judgment (Y/N)
for each.

• # Objs - Correct number of objects as specified
in the text description. Can you reasonably say
there are X instances of the object?

• Layout - Correct layout in terms of the relative
positions between objects as specified in the
text description. Ignoring the appearances and
labels of the objects, are the objects arranged
correctly? If you were to classify the result into
one of the motif types, will it fall into the same
type as the description?

• Plaus - Physical Plausibility. Is the generation
result physically plausible? Can the result ex-
ists in real life?

B.2. Perceptual Study Instructions

We provide the instructions the study participants received
below.

This study asks you to judge the quality of 3D
object arrangements in terms of

• Text Alignment - does the object arrangement
fit the text description? E.g., for “a stack of
three books”, an arrangement with two books
stacked on top of each other does not fit the de-
scription.

• Realism - is the object arrangement realistic?
You should disregard the fine-grained style and
textured appearance of the objects. E.g., a chair
that changes shape across view points and a
teddy bear with five legs are unrealistic.

Judge the arrangements solely on these two as-
pects. In each question you will see a text descrip-
tion followed by two object arrangements Left
and Right, with a short video showing you differ-
ent views of the arrangements. Select the better
arrangement according to the two aspects above.
Each question should take 5-10 sec. There are 60
questions in total.

C. Additional Qualitative Results

In Fig. 2 we see how a meta-program can be called with
varying text descriptions to produce quite distinct, yet re-
alistic arrangements. This is a concrete example of the re-
usability and generality of our framework.

Figure 3 provides additional qualitative comparisons of
generated object arrangements with prior work. Figure 4
provides additional examples of arrangements generated us-
ing SceneMotifCoder. The results showcase a variety of
motif types, exhibiting different spatial arrangements.

In addition, Fig. 5 shows how SceneMotifCoder’s gen-
erated arrangements can be used as part of generating new
compositional arrangements. By treating previously gen-
erated arrangements as retrieval assets, SMC can invoke
learned meta-programs to retrieve them and compose new
arrangements with extra layers of complexity. The results
show that SMC can generate new arrangements that are
significantly more complex than the original ones within a
few iterations, demonstrating SMC’s potential at generating
complex and diverse arrangements.

D. Example Programs

In Tables 1 and 2, we provide example meta-programs gen-
erated by SceneMotifCoder, and compare them to two sim-
pler prompting strategies:

def create_surround_motif(central_object_attrs, num_surround_objs, radius,
surround_obj_attrs, rotation_offsets, height_adjust=0):

"""
Creates a spatial motif with a central object surrounded circularly by other objects.
Args:

central_object_attrs (dict): Attributes for the central object, including …
"""
objs = []

Create and position the central object
central_obj = create(central_obj_attrs['label'], central_obj_attrs['half_size'])
move(central_obj, *central_obj_attrs['centroid'])
objs.append(central_obj)

Calculate positions and create surrounding objects
for i in range(num_surround_objs):

angle_deg = 360 / num_surround_objs * i
angle_rad = np.radians(angle_deg)

Calculate x and z using the given radius and angle
x = central_object_attrs['centroid'][0] + radius * np.cos(angle_rad)
y = central_object_attrs['centroid'][1] + height_adjustment
z = central_object_attrs['centroid'][2] + radius * np.sin(angle_rad)

Create and position surrounding objects
surround_obj = create(surround_obj_attrs['label’],

surround_obj_attrs['half_size'])
move(surround_obj , x, y, z)

Calculate rotation to face the center, adjust by rotation offset
if isinstance(rotation_offsets, dict):

rotate(surrounding_obj, 'y', rotation_offsets.get(i, 0) - angle_deg)
else: # Assuming list type

rotate(surrounding_obj, 'y', rotation_offsets[i] - angle_deg)
objs.append(surrounding_obj)

return objs

Suitable
Arguments

Documentation

DSL Usage

Motif Structure
Arithmetic
3rd Party Library

Relative
Relations

Conditional

Five chairs
surrounding a table

Sixteen rocks surrounding
a potted plant

Six small plants
surrounding a large plant

Three plates
surrounding a cake

Figure 2. Meta-program for surround motif learned from the
text and arrangement pair in blue box. The arrangements at the
bottom are generated from the meta-program given the input text
above each arrangement. Note the significant variations in object
counts and types, all captured by human-interpretable and editable
calls to the same meta-program.

• direct-from-description: the LLM is prompted directly
for a program from a description of a spatial motif, with-
out information from example arrangements.

• direct-from-motif-program: the LLM is prompted to gen-
erate a meta-program given a set of motif programs, with-
out any observation and reasoning steps.

The two direct-from-description programs create naı̈ve lists
of repetitive statements with hard-coded values. They can-
not adapt to changes in the input description and can-
not be reused to generate other arrangements. While the
direct-from-motif-program programs are more flexible, they
make strong assumptions on the object poses in their pro-
gram structures. These assumptions result in programs that
lack generality, compared to the SceneMotifCoder meta-
programs which are compact, human-readable, and admit
many variations through setting of appropriate arguments in
the function signature. Analyzing the programs shows that
58% of the direct-from-motif-program programs, compared
to only 5% of meta-programs from SMC, have this issue.

These comparisons of concrete code examples help to
demonstrate the value of the SceneMotifCoder visual pro-
gram synthesis framework.

GraphDreamer SMC (ours)

A potted plant on
top of a book

A cup on a saucer

A row of three tables

A stack of seven plates

MVDream

A letter P made of cups

❌ Only three books ❌ Janus problem

❌
Extra

surface

❌ Only two jugs

LayoutPrompterInputExample

A stack of
two cups

A letter P
made of plates

A row of
three jugs

A stack of
four books

A stack of seven plates

❌ Floating books

A grid of six cups

❌ Not a grid ❌ Not a grid

A rectangle grid
of four potted plants

A row of two
potted plants

A row of three tables

❌
Floating

cup

❌
Floating

plant

❌Wrong objects

❌ Not a stack

❌
Implausible

shape

❌ Implausible shape❌
Implausible

shape

❌ Not a letter P

Three chairs circularly
surrounding a table

Five chairs surrounding
a circular table

❌ Implausible shape ❌ Extra surface
❌ Intersecting chairs

A footrest in front
of an armchair

❌
Extra

surface

❌ Janus problem
❌

Floating
coffee
maker

A cup in front
of a coffee maker

❌ Extra plate

Figure 3. Additional qualitative comparisons of generated 3D object arrangements. Each blue box on the left is the text and arrange-
ment pair used for learning a meta-program capturing the arrangement motif. The SceneMotifCoder arrangements better respect the input
text in terms of number and type of objects present, and exhibit more plausible spatial configurations and object appearance.

A letter A
made of candles

A letter A
made of plates

A letter A
made of cups

A horizontal row
of two wall arts

A horizontal row of
three wall clocks

A row of
three baskets

A row of
four bottles

A mobile in front
of a clock

A teacup in front
of a laptop

A grid of eight sodas A grid of nine chairs

A teapot on top
of a cafeteria tray

A lamp left of
a clock

A cup on top of
a bowl

A vacuum cleaner
left of a bucket

A stack of
ten plates

A stack of
three trays

A cup
on a saucer

A horizontal row of
two wall paintings

A grid of
six cups

A stack of
seven plates

Four chairs circularly
surrounding a table

Three spoons
circularly surrounding

a bowl

Five chairs
surrounding a table

A fork left
of a knife

A row of
three tables

A footrest
in front of a chair

A rectangular rug
with four armchairs

A rectangular table with
eight dining chairs

A rectangular table
with six dining chairs

Figure 4. Additional examples of generated object arrangements. Our SceneMotifCoder framework generalizes the motifs exhibited
by the text and arrangement example to produce diverse arrangements with differing object categories, counts, and spatial configurations.

A letter A made of
stacks of plates

A stack of books on top of a rectangular
table with four chairs around it

A stack of cups on top of a stack
of plates left of a coffee machine

A row of three
stacks of plates

Figure 5. Arrangements using compositional meta-programs. SceneMotifCoder’s generated object arrangements can be used in gener-
ating new arrangements by treating them as retrieval assets. The generated arrangements exhibit compounded layers of complexity within
a few iterations. Such compositions enable generation of more complex arrangements, opening the door to a wide range of possibilities.

direct-from-description
Initialize a list to hold

all created objects↪→
objs = []

Create four seat cushions
with labels and half
sizes, appending them to
objs list

↪→
↪→
↪→
objs.append ⌋

(create("cushion1",
[0.3, 0.1, 0.3]))

↪→
↪→
objs.append ⌋

(create("cushion2",
[0.3, 0.1, 0.3]))

↪→
↪→
objs.append ⌋

(create("cushion3",
[0.3, 0.1, 0.3]))

↪→
↪→
objs.append ⌋

(create("cushion4",
[0.3, 0.1, 0.3]))

↪→
↪→

Set initial position for
the first cushion↪→

move(objs[0], 0, 0.1, 0)

Stack the second cushion
on top of the first↪→

move(objs[1], 0, 0.3, 0) #
Additional 0.2 meters up
from the first cushion's
top surface

↪→
↪→
↪→

Stack the third cushion on
top of the second↪→

move(objs[2], 0, 0.5, 0) #
Additional 0.2 meters up
from the second
cushion's top surface

↪→
↪→
↪→

Stack the fourth cushion
on top of the third↪→

move(objs[3], 0, 0.7, 0) #
Additional 0.2 meters up
from the third cushion's
top surface

↪→
↪→
↪→

direct-from-motif-program
def create_pile(label_prefix,

num_objects, half_size,
base_position, y_gap,
rotation_angle):

↪→
↪→
↪→

"""
Creates a spatial motif of type

'pile' with the given properties.↪→

Args:
- label_prefix (str): prefix for the

label of each object in the pile.↪→
- num_objects (int): number of

objects to create in the pile.↪→
- half_size (list[float]): list of

three floats representing half
the size (x, y, z) of each
object.

↪→
↪→
↪→
- base_position (tuple[float]):

starting (x, y, z) position for
the base of the pile.

↪→
↪→
- y_gap (float): additional gap

between each object in the pile
on the y-axis.

↪→
↪→
- rotation_angle (float): angle to

rotate alternating objects, to
add naturalism.

↪→
↪→

Returns:
- list: list containing each created

and positioned object.↪→
"""
objs = []
base_x, base_y, base_z =

base_position↪→

for i in range(num_objects):
Calculate the y offset for each

subsequent object to simulate
the pile

↪→
↪→
new_y = base_y + i *

(half_size[1] * 2 + y_gap)↪→

Create an object with a unique
label based on index↪→

obj =
create(f"{label_prefix}_{i+1}",
half_size)

↪→
↪→

Move the object to its
designated position↪→

move(obj, base_x, new_y, base_z)

Alternate rotation for a more
natural-looking pile↪→

if i % 2 == 0:
rotate(obj, 'z',

rotation_angle)↪→
else:

rotate(obj, 'z',
-rotation_angle)↪→

Append the positioned object to
the list↪→

objs.append(obj)

return objs

Meta-program from SceneMotifCoder
import random

def create_pile_motif(object_type, num_objects,
base_position, size_variations,
position_offsets, rotations=[], seed=None):

↪→
↪→

"""
Creates a spatial motif of type 'pile' with

configurable positions, sizes, and
rotations.

↪→
↪→

Args:
- object_type (str or list[str]): The type

label(s) for the objects in the pile.↪→
- num_objects (int): The number of objects

to include in the pile.↪→
- base_position (list of float): The

starting position [x, y, z] for the
first object in the pile.

↪→
↪→
- size_variations (list of list of float):

The dimensions [width, height, depth]
for each object.

↪→
↪→
- position_offsets (list of list of float):

Position offsets [x, y, z] relative to
the base for each object.

↪→
↪→
- rotations (list of tuples): Rotations to

apply, each as (axis, angle, index).↪→
- seed (int, optional): Seed for the random

number generator for reproducibility.↪→

Returns:
- list: A list of objects representing the

created pile.↪→
"""
if seed is not None:

random.seed(seed)

objs = []

Iterate over each object to be created
for i in range(num_objects):

Determine the object type if a list
is provided↪→

obj_type = object_type[i] if
isinstance(object_type, list) else
object_type

↪→
↪→

Calculate size and position for the
current object↪→

obj_half_size = size_variations[i]
pos_offset = position_offsets[i]
position = [base_position[0] +

pos_offset[0], base_position[1] +
pos_offset[1], base_position[2] +
pos_offset[2]]

↪→
↪→
↪→

Create the object
obj = create(obj_type, obj_half_size)
move(obj, *position)

Apply rotations if specified for this
object↪→

for rotation in rotations:
if rotation[2] == i: # Check if

the rotation is meant for the
current object

↪→
↪→

rotate(obj, rotation[0],
rotation[1])↪→

Append the object to the list
objs.append(obj)

return objs

Table 1. Different programs for generating “a pile of four seat cushions”. The direct-from-description program is not reusable for generating
new arrangements with different number of objects and types. The direct-from-motif-program program is reusable, but it makes a strong
assumption on how to orient the objects (only alternating rotations around the z axis). In contrast, SceneMotifCoder’s program is less
restrictive and takes into account for more potential object poses, which is especially important for the pile motif type.

direct-from-description
List to keep track of all created

objects↪→
objs = []

Create the table
table = create("table", [1.5, 0.1, 1])
objs.append(table)

Move the table to the center of the
scene (assume it is at coordinate
(0, 0, 0))

↪→
↪→
move(table, 0, 0, 0)

Create the chairs and place them
around the table↪→

Chair size is arbitrarily chosen to
be smaller than half the table size↪→

Create chairs
chairs = [create(f"chair_{i}", [0.3,

0.3, 0.3]) for i in range(8)]↪→
objs.extend(chairs)

Positions for chairs around the table
positions = [

(1.8, 0.3, 0), # right
(-1.8, 0.3, 0), # left
(0, 0.3, 1.3), # bottom
(0, 0.3, -1.3), # top
(1.3, 0.3, 1.3), # bottom-right
(1.3, 0.3, -1.3), # top-right
(-1.3, 0.3, 1.3), # bottom-left
(-1.3, 0.3, -1.3) # top-left

]

Move and rotate chairs
for i, (x, y, z) in

enumerate(positions):↪→
move(chairs[i], x, y, z)
if i in [0, 1]: # right or left

chair↪→
rotate(chairs[i], 'y', 90)

elif i in [2, 3]: # bottom or top
chair↪→
rotate(chairs[i], 'y', 0)

elif i in [4, 7]: # corner chairs
(right side)↪→
rotate(chairs[i], 'y', 45)

elif i in [5, 6]: # corner chairs
(left side)↪→
rotate(chairs[i], 'y', -45)

direct-from-motif-program
def create_rectangular_perimeter_motif(

center_obj_label, center_obj_half_size,
perimeter_obj_label, perimeter_obj_half_size,
num_perimeter_objs, center_position):

↪→
↪→
↪→

"""
Create a spatial motif where a central object

is surrounded by a number of perimeter
objects

↪→
↪→
in a rectangular perimeter pattern.

Args:
center_obj_label (str): The label for the

central object.↪→
center_obj_half_size (list[float]): The half

size of the central object [hx, hy, hz].↪→
perimeter_obj_label (str): The label for the

perimeter objects.↪→
perimeter_obj_half_size (list[float]): The

half size of the perimeter objects [hx,
hy, hz].

↪→
↪→
num_perimeter_objs (int): The number of

perimeter objects.↪→
center_position (list[float]): The position

[x, y, z] of the central object.↪→

Returns:
list: List of all created objects (central

and perimeter).↪→
"""
objs = []

Create the central object
center_obj = create(center_obj_label,

center_obj_half_size)↪→
move(center_obj, center_position[0],

center_position[1], center_position[2])↪→
objs.append(center_obj)

Calculate positions for perimeter objects
center_x, center_y, center_z =

center_position↪→
cx, cy, cz = center_obj_half_size
px, py, pz = perimeter_obj_half_size
perimeter_positions = []

Calculate the rectangular perimeter
spacing_x = cx + px + 0.1 # Additional

spacing↪→
spacing_z = cz + pz + 0.1 # Additional

spacing↪→

for i in range(num_perimeter_objs):
if i % 2 == 0: # Left and right sides

sign = -1 if (i // 2) % 2 == 0 else 1
x = center_x + sign * (spacing_x +

px)↪→
z = center_z + (i // 4) * spacing_z

else: # Front and back sides
sign = -1 if ((i - 1) // 2) % 2 == 0

else 1↪→
x = center_x + ((i - 1) // 4) *

spacing_x↪→
z = center_z + sign * (spacing_z +

pz)↪→

perimeter_positions.append((x, center_y,
z))↪→

Create and position the perimeter objects
for pos in perimeter_positions:

perimeter_obj =
create(perimeter_obj_label,
perimeter_obj_half_size)

↪→
↪→
move(perimeter_obj, pos[0], pos[1],

pos[2])↪→
objs.append(perimeter_obj)

return objs

Meta-program from SceneMotifCoder
def create_rectangular_perimeter_motif(

central_label, central_half_size, central_position,
surrounding_label, surrounding_half_size,
count_long_sides, count_short_sides,
long_side_offset, short_side_offset,
rotation_long_sides, rotation_short_sides,
y_offset):
"""
Create a spatial motif of type 'rectangular_perimeter' with the

specified attributes.↪→

Args:
- central_label (str): Label/type of the central object (e.g.,

'table').↪→
- central_half_size (list of float): Half-size dimensions of the

central object [x, y, z].↪→
- central_position (tuple of float): Position of the central object

(x, y, z).↪→
- surrounding_label (str): Label/type of the surrounding objects

(e.g., 'chair').↪→
- surrounding_half_size (list of float): Half-size dimensions of the

surrounding objects [x, y, z].↪→
- count_long_sides (int): Number of surrounding objects on the longer

sides (x-axis) of the central object.↪→
- count_short_sides (int): Number of surrounding objects on the

shorter ends (z-axis) of the central object.↪→
- long_side_offset (tuple of float): Positional offsets (x, z) for

objects on the longer sides.↪→
- short_side_offset (tuple of float): Positional offsets (x, z) for

objects on the shorter ends.↪→
- rotation_long_sides (float): Rotation angle for objects on the

longer sides.↪→
- rotation_short_sides (float): Rotation angle for objects on the

shorter ends.↪→
- y_offset (float): Vertical offset to place all surrounding objects

at a specified height.↪→

Returns:
- list: List of all created objects.

Example:
Example call to recreate the example program 1
objs = create_rectangular_perimeter_motif(

'table', [1.00012, 0.38418, 0.49848], (0.0, 0.0, 0.0), 'chair',
[0.28401, 0.48686, 0.32049],↪→

2, 4, (1.01483, 0.01433), (0.41141, 0.62215), -90.0, 180.0,
0.06209↪→

)
"""
objs = []

Create and place the central object
central_obj = create(central_label, central_half_size)
move(central_obj, *central_position)
objs.append(central_obj)

Create and place objects on the longer sides
for i in range(count_long_sides // 2):

for sign in [-1, 1]: # Use -1 and 1 to cover both sides
surrounding_obj = create(surrounding_label,

surrounding_half_size)↪→
Compute x and z positions based on offsets and symmetry
x_pos = central_position[0] + sign * long_side_offset[0]
z_pos = central_position[2] + (i - count_long_sides // 4) *

long_side_offset[1]↪→
move(surrounding_obj, x_pos, y_offset, z_pos)
rotate(surrounding_obj, 'y', sign * rotation_long_sides)
objs.append(surrounding_obj)

Create and place objects on the shorter ends
for i in range(count_short_sides // 2):

for sign in [-1, 1]: # Use -1 and 1 to cover both sides
surrounding_obj = create(surrounding_label,

surrounding_half_size)↪→
Compute x and z positions based on offsets and symmetry
x_pos = central_position[0] + (i - count_short_sides // 4) *

short_side_offset[0]↪→
z_pos = central_position[2] + sign * short_side_offset[1]
move(surrounding_obj, x_pos, y_offset, z_pos)
if sign == 1:

rotate(surrounding_obj, 'y', rotation_short_sides)
objs.append(surrounding_obj)

return objs

Table 2. Different programs for generating “a rectangular table with eight chairs around it”. The direct-from-description program is not
reusable for generating new arrangements with different number of objects and types. The direct-from-motif-program program is reusable,
but it assumes equal spacing between objects (hard-coded as 0.1) and evenly-distributed objects around the center object, limiting what it
can generate. In contrast, SceneMotifCoder’s program is less restrictive and allows for a wide range of customization.

E. LLM Prompts
We provide the LLM prompts used for various phases
in our SceneMotifCoder framework. We provide general
prompts in Appendix E.1, prompts for generating motif
programs from naı̈ve programs in Appendix E.2, prompts
for generating meta-programs from sets of motif-programs
in Appendix E.3, inference prompts in Appendix E.4, and
prompts for our ablation study in Appendix E.5. For
the motif-program and meta-program generation, we have
prompts that ask the LLM to make high-level observations
about the input, to generate the motif or meta-program, val-
idate the generated program, and feedback prompts to ask
the LLM to iterate if the validation fails. For the meta-
program generation, we also have reasoning prompts that
ask the LLM to reason about the arguments and structure of
the function to be generated.

E.1. General Prompts

We have two general prompts:
• System introduction prompt specifying the DSL used for

our visual programs.
• Classification prompt for identifying the scene motif type

given a description. This classify prompt is used both
during inference and as part of the motif-program gener-
ation to determine the motif type that the generated pro-
gram should be stored under.

Define prompts used when prompting LLM.
system: >-

You are a Python programmer.
You have access to all Python built-in functions and

libraries that are available in Python 3.10.↪→
To use a function or a library, you need to import it

first.↪→
However, you are not allowed to use any third-party

libraries except numpy, which is available as np.↪→
Everything you write will be content inside a

function, unless otherwise specified.↪→
Do not write the function signature or any other code

outside the function, unless you are explicitly
asked to do so.

↪→
↪→
If the prompt asks you to respond with code only, you

should not include any example usage nor text
description in your response.

↪→
↪→
Write comments to describe your thinking process.
Your responses should strictly follow the requirements

specified in the prompts.↪→
You will work with a domain-specific language (DSL)

for describing spatial motif of objects.↪→
You will be asked to perform some tasks related to

spatial motif programs written using this DSL.↪→
All functions in the DSL are valid Python functions.
Here are the functions that exists:
1. create(label: str, half_size: list[float]) -> Obj:

Create a new object with the given `label` and
`half_size`. The `half_size` is a list of three
floats representing the half of the size of the
object in the x, y, and z dimensions.

↪→
↪→
↪→
↪→
2. move(obj: Obj, x: float, y: float, z: float) ->

None: Move the object `obj` to the world
coordinate (x, y, z). The object's position is the
centroid of the object's bounding box.

↪→
↪→
↪→
3. rotate(obj: Obj, axis: str, angle: float) -> None:

Rotate the object `obj` around its local axis (x,
y, or z) by the given angle.

↪→
↪→
Units are in meters for x, y, z dimensions and degrees

for angle.↪→

The world is in a right-handed coordinate system, that
is, when looking from the front, the x-axis is to
the right, the y-axis is up, and the z-axis is
towards the viewer.

↪→
↪→
↪→
When looking from above, the origin (0, 0, 0) is at

the top-left corner of the screen, and the x-axis
increases to the right, the z-axis increases
towards the bottom of the screen.

↪→
↪→
↪→

classify: >-
Based on your observations, classify the spatial motif

of objects "<DESCRIPTION>" into one of the
following motif types:

↪→
↪→
1. stack - multiple objects of the same type are

placed orderly on top of each other↪→
2. pile - objects are placed on top of each other but

not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)

↪→
↪→
↪→
3. row - objects are placed next to each other in a

row↪→
4. grid - objects are placed orderly in a grid, like a

chessboard↪→
5. left_of - one object placed to the left of another

object↪→
6. in_front_of - one object placed in front of another

object↪→
7. on_top - one object placed on top of another object
8. surround - objects are placed around a central

object in a circular manner↪→
9. wall_vertical_column - objects are placed in a

column from top to bottom vertically on a wall↪→
10. wall_horizontal_row - objects are placed in a row

from left to right vertically on a wall↪→
11. wall_grid - objects are placed in a grid orderly

and vertically on a wall (when in doubt between
grid and wall_grid, choose wall_grid if the
objects are placed on a wall)

↪→
↪→
↪→
12. letter - objects are placed to form a letter of

the alphabet↪→
13. rectangular_perimeter - objects are placed around

the perimeter of a rectangular shape facing
inward

↪→
↪→
If the motif type is letter, concatenate the letter to

the end of the motif type (e.g., letter_A,
letter_B, etc.)

↪→
↪→
Respond with the name of the motif type only.

E.2. Prompts to Generate Motif Program from
Naı̈ve Program

When generating the motif program, our observational
prompts instruct the LLM to make high-level observations
about the following:
• the number and type of objects in the arrangement.
• the relative displacements between objects.
• spatial patterns such as symmetries.
• spatial patterns along the three coordinate axes.

Observation
optimize_highlevel_count: >-

Below is a program about a spatial motif of
"<DESCRIPTION>".↪→

Describe how many object types and how many are there
for each type.↪→

Respond with a json-like text structure with the
object types as keys and the counts as values.↪→

Here is the program:
```python
<PROGRAM>
```

optimize_highlevel_general_pattern: >-
Can you observe any pattern in this motif of objects

about "<DESCRIPTION>"? (Look for common sense
things like repeating layout, symmetry, etc.)

↪→
↪→

Respond with a detailed description of the pattern you
observed in text.↪→

optimize_highlevel_xyz_pattern: >-
Can you observe any pattern in the x, y, z coordinates

of the objects in this motif?↪→
Respond with a detailed description of the pattern you

observed in text.↪→
optimize_highlevel_xyz_displacements: >-
Can you find the relative displacements of each object

to the next object in the x, y, z dimensions?↪→
Base on these displacement values, group the objects

into different subgroups.↪→
The goal is to disentangle the overall motif into

smaller, self-contained spatial patterns.↪→
Assign each object to a subgroup such that the spatial

pattern in the subgroup can easily be expressed by
some programming constructs.

↪→
↪→
Each object should belong to exactly one subgroup.

Generation
optimize_lowlevel: >-

Take a deep breath and follow the steps below
carefully.↪→

Using these observations you made, modify the original
program such that the code structure represents
the spatial pattern.

↪→
↪→
Here are the requirements for this task:
1. Do not create any functions
2. Store all created objects in a list named `objs`
3. The new program should represent the same scene as

in the original program with the same number of
objects.

↪→
↪→
4. The objects do not need to be in the same order as

the original program, instead, opt for a more
structured or natural order.

↪→
↪→
5. Do not list all object coordinates, rotation

angles, or sizes in a list and acess them in a
loop using index.

↪→
↪→

This is not acceptable as the spatial pattern is
lost.↪→

Avoid doing this at all costs.
Use loops, arithmetic operators, if-else

statements, and other programming constructs to
encapsulate the patterns.

↪→
↪→

6. The coordinates and sizes can be slightly different
from the original program, as long as the overall
motif remains the same.

↪→
↪→
Please respond with code only.

Validation
validate_naive_listing: >-

Below is a program that describes a spatial motif of
objects.↪→

Please analyze the program for the following
criterion:↪→

The program should define and manipulate the objects
and their properties without using lists of
specific object attributes for individual objects.

↪→
↪→
It is okay to store common values in variables and

reuse them (e.g., dimensions, common properties).↪→
However, the program should use programming constructs

and arithmetic operations (like loops or
calculations) to define and manipulate the
positional and orientational properties of
objects, rather than explicitly listing them.

↪→
↪→
↪→
↪→
For example, if there are four objects, the program

should not have a list of four (x, y, z)
coordinates or four rotation angles for each
object.

↪→
↪→
↪→
Exclude the `objs` list from the analysis.
Answer in a json format:
{'valid': 'yes' or 'no', 'variable_names': a list of

the names of the variables that violated the
criterion}

↪→
↪→
Briefly explain your reasoning in two to three

sentences after the json-like text structure.↪→
Here is the program:
```python
<PROGRAM>

```

Feedback
optimize_lowlevel_feedback_syntax: >-
I could not run the program you provided.
<FEEDBACK>
Please try again.

optimize_lowlevel_feedback_naive_listing: >-
Your program creates an motif that accurately

recreates the one in the original program.↪→
However, you listed some attributes of all objects in

a list and accesses them in a loop.↪→
<FEEDBACK>
Please remove such statements and use loops,

arithmetic operators, if-else statements to
capture the object attribute patterns

↪→
↪→

optimize_lowlevel_feedback_num_objs: >-
The number of objects in the original program does not

match the number of objects in your program.↪→
<FEEDBACK>
Please try again.

optimize_lowlevel_feedback_centroids: >-
Objects in the original program are not accurately

placed in your program.↪→
<FEEDBACK>
Please try again.

optimize_lowlevel_feedback_bounding_boxes: >-
Objects in the original program are not accurately

created in your program.↪→
<FEEDBACK>
The objects in your program either have incorrect

dimensions or are not oriented correctly.↪→
Please try again.

E.3. Prompts to Generate Meta-program from Mo-
tif Program

When generating the meta-program, our observational
prompts instruct the LLM to make high-level observations
about the following:
• commonalities between the motif-programs.
• differences between the motif-programs.

To ensure the generated meta-program is robust and re-
useable, we use reasoning prompts to instruct the LLM to
consider:
• reasons why the motif-programs all belong to the same

motif
• what arguments should be extracted
• what structure should the meta-program function have

Observation
generalize_high_level_commonalities: >-

Take a deep breath and follow the steps below
carefully.↪→

Here are "<NUM_PROGRAMS>" programs that describe the
same type of spatial motif: "<MOTIF_TYPE>".↪→

Each program may have different objects and different
coordinates, but they all fall under the same type
of spatial motif.

↪→
↪→
Here are the programs and the spatial motifs they

create:↪→
<ALL_PROGRAMS>
For each program, analyze and observe its structure

and how the structure coorelates with the spatial
motif it creates.

↪→
↪→
Pay extra attention to how the objects are placed

relative to each other.↪→
Can you identify the commonalities among these

programs?↪→
If there is only one program, hypothesize what the

commonalities could be if there were multiple
programs of the same type.

↪→
↪→

For the alphabet_letter motif type, only consider the
commonalities among the programs that form the
same letter.

↪→
↪→
Respond with a detailed description of the pattern you

observed in text.↪→
generalize_high_level_differences: >-
What are the differences among these programs?
Specifically, how are the objects placed differently

in each program?↪→
For each program, observe and describe the differences

in the program structure that lead to the
different spatial motifs.

↪→
↪→
If there is only one program, hypothesize how the

program could be written differently to create a
different spatial motif of the same type.

↪→
↪→
Your hypothesized programs should not deviate from the

concrete, non-hypothetical programs you analyzed,
and should focus on the number of objects, their
positions, rotations, and sizes as the main axes
of variation.

↪→
↪→
↪→
↪→
The hypothesized programs should be close to the

original program in terms of the spatial motif
they create (e.g., a stack of 3 objects instead of
4, or a row of 4 objects instead of 3, etc.)

↪→
↪→
↪→
Respond with a detailed description of the differences

of each program in text.↪→
Refer to the programs by their order in the previous

prompt.↪→

Reasoning
generalize_high_level_motif_reason: >-
Despite these differences, these programs all fall

under the same type of spatial motif:
"<MOTIF_TYPE>".

↪→
↪→
Here is a list of all available motif types:
1. stack - multiple objects of the same type are

placed orderly on top of each other↪→
2. pile - objects are placed on top of each other but

not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)

↪→
↪→
↪→
3. row - objects are placed next to each other in a

row↪→
4. grid - objects are placed orderly in a grid, like a

chessboard↪→
5. left_of - one object placed to the left of another

object↪→
6. in_front_of - one object placed in front of another

object↪→
7. on_top - one object placed on top of another object
8. surround - objects are placed around a central

object in a circular manner↪→
9. wall_vertical_column - objects are placed in a

column from top to bottom vertically on a wall↪→
10. wall_horizontal_row - objects are placed in a row

from left to right vertically on a wall↪→
11. wall_grid - objects are placed in a grid orderly

and vertically on a wall (when in doubt between
grid and wall_grid, choose wall_grid if the
objects are placed on a wall)

↪→
↪→
↪→
12. letter - objects are placed to form a letter of

the alphabet↪→
13. rectangular_perimeter - objects are placed around

the perimeter of a rectangular shape facing
inward

↪→
↪→
Based on your observations, what are the reasons that

these programs fall under the same type of spatial
motif?

↪→
↪→
Also, identify the closest incorrect motif type and

explain why it is not the correct motif type.↪→
Respond with a detailed description of the reasons in

text.↪→
generalize_low_level_arguments: >-
With this conversation in mind, you are now tasked to

write a python function (a meta-program) that can
be used to create various spatial motifs of
"<MOTIF_TYPE>".

↪→
↪→
↪→
A user should be able to call this meta-program with

different arguments to create different spatial
motifs of this type.

↪→
↪→

Using the provided programs as examples, the
meta-program should be able to create any spatial
motif of this type with slight variations in the
number of objects and their attributes.

↪→
↪→
↪→
Apart from the objects in the examples, the

meta-program should be able to create new spatial
motifs of different object types and attributes.

↪→
↪→
Use your analysis on the commonalities and differences

among the example programs to guide you in writing
the meta-program.

↪→
↪→
Keep in mind that the final meta-program should be

able to recreate the given example spatial motifs
as closely as possible.

↪→
↪→
Avoid taking plain lists of object attributes, such as

coordinates, sizes, and rotations, as arguments,
as this defeats the purpose of using a
meta-program to capture fundamental spatial
patterns.

↪→
↪→
↪→
↪→
I will guide you through the process of writing the

function step by step.↪→
First, what are the arguments that the meta-program

should take to create a spatial motif of this
type?

↪→
↪→
Respond with a detailed description of the arguments

in text.↪→
generalize_low_level_structure: >-
You have identified the arguments needed for the

meta-program.↪→
Now, think about the structure of the meta-program.
How should the meta-program be structured to

generalize the spatial motif of "<MOTIF_TYPE>"?↪→
Aim to encapsulate the commonalities and differences

among the example programs in the structure of the
meta-program.

↪→
↪→
Think about how the arguments should be used in the

meta-program to create the spatial motif.↪→
What programming constructs should be used to

encapsulate the commonalities and differences
among the example programs?

↪→
↪→
Respond with a detailed description of the structure

of the meta-program in text.↪→

Generation
generalize_low_level: >-

Take a deep breath and follow the steps below
carefully.↪→

You have identified the arguments and the structure of
the meta-program.↪→

Now, write the meta-program that can create various
spatial motifs of "<MOTIF_TYPE>".↪→

Here is a meta-program of the same motif type you
created in the past:↪→

```python
<PAST_META_PROGRAM>
```
You can use this as a reference to write the new

meta-program, but you can also write it from
scratch.

↪→
↪→
Refer to the arguments you identified and the

structure you described to write the meta-program.↪→
Remember that the meta-program should be able to

recreate the spatial motifs of the example
programs as closely as possible.

↪→
↪→
Avoid taking plain lists of object attributes, such as

coordinates, sizes, and rotations, as arguments,
as this defeats the purpose of using a
meta-program to capture fundamental spatial
patterns.

↪→
↪→
↪→
↪→
Include a docstring at the beginning of the

meta-program to describe the purpose of the
function and the arguments it takes.

↪→
↪→
Use comments to explain your code step by step.
Please respond with code only.

Validation
generalize_low_level_batch_recreate: >-

Using the meta-program you wrote, what are the
function calls needed to recreate each of the
example programs you analyzed previously?

↪→
↪→

Write one function call for each example program, that
recreates the spatial motif of the program as
closely as possible.

↪→
↪→
Ignore the programs you hypothesized and only write

function calls for the example programs I
provided.

↪→
↪→
Response with a json-like text structure with the

example program order integers as keys and the
function calls as values.

↪→
↪→
For example, {"1": "function_call(program1_args)",

"2": "function_call(program2_args)", ...}↪→

Feedback
generalize_low_level_feedback: >-
The meta-program you wrote could not recreate the

spatial motif of the example programs as closely
as possible.

↪→
↪→
Here are the feedback(s) for the example program(s)

that were not recreated accurately:↪→
<FEEDBACK>
The issue(s) may be related to the meta-program

structure or the arguments used in the function
calls.

↪→
↪→
Please analyze the feedback and modify the

meta-program if necessary.↪→
Remember that the meta-program should be able to

recreate the spatial motifs of the example
programs as closely as possible.

↪→
↪→
Also, remember to edit the docstring and comments in

the meta-program to reflect the changes you made.↪→
Then, respond with the code of the modified

meta-program only.↪→
If you think the meta-program is correct, and the

function calls are incorrect, then you can respond
with the same meta-program code.

↪→
↪→
I will ask you to provide the function calls again

after this where you can correct the function
calls.

↪→
↪→

generalize_refine_comments: >-
You have successfully written the meta-program to

generalize the spatial motif of "<MOTIF_TYPE>".↪→
The latest function calls you provided are able to

recreate the spatial motifs of the example
programs.

↪→
↪→
Please update the docstring and comments in the

meta-program to provide as much information as
possible about the expected arguments.

↪→
↪→
If the program contains well-defined parts that can be

explained, include comments to describe these
parts - how they contribute to the spatial motif
and how they differ from other parts.

↪→
↪→
↪→
At inference time, the meta-program will be the sole

source of information for recreating this spatial
motif.

↪→
↪→
Therefore, these comments will be crucial for

understanding how the meta-program should be used.↪→
Include at least one example function call in the

comments to show how the meta-program should be
called.

↪→
↪→
Please respond with code only.

E.4. Inference Prompts
inference: >-
Here is a meta-program that generalizes a spatial

arrangement of type "<MOTIF_TYPE>":↪→
```python
<META_PROGRAM>
```
And here is a description of a spatial motif of the

same type:↪→
<DESCRIPTION>
Your task is to call the meta-program with the

necessary arguments to recreate the spatial motif
described in the description as closely as
possible.

↪→
↪→
↪→
Read the docstring and comments in the meta-program to

understand how to use it.↪→

Refer to the example function call in the meta-program
documentation to understand how the meta-program
should be called, if available.

↪→
↪→
Use common sense to infer the arguments for ambiguous

arguments, such as object dimensions, positions,
and rotations.

↪→
↪→
When in doubt, refer back to the example function call

in the meta-program documentation.↪→
Ensure the arguments make the new spatial motif

physically possible without intersecting or
floating objects and make the objects contact
tightly, if applicable.

↪→
↪→
↪→
I will run a postprocessing step to refine the spatial

motif after you provide the function call to me.↪→
Remember that x, y, z dimensions are in meters and

rotation angles are in degrees.↪→
+x is to the right, +y is up, and +z is front (towards

the viewer).↪→
Most object rotations hence are around the y-axis, as

it is the vertical axis.↪→
Assume the objects are large so make sure they are

spaced out enough to not intersect.↪→
When placing objects, consider how human would

organize them in real life.↪→
For example, large objects are usually placed at the

bottom and smaller objects on top.↪→
Please respond with code - the function call with the

inferred arguments only.↪→
inference_feedback: >-
I could not run the meta-program using the function

call you provided.↪→
<FEEDBACK>
Please try again.

retrieval_mesh_rotations: >-

I am retrieving meshes of objects from a
human-authored object dataset to instantiate a
spatial motif of "<DESCRIPTION>".

↪→
↪→
The labels of the objects are "<OBJECT_LABELS>".
How likely would be the retrieved mesh in the correct

orientation?↪→
Use common sense knowledge to reason about this.
Consider whether the objects are commonly oriented in

both upright and sideways positions in real life.↪→
If there are multiple common orientations, then the

retrieved mesh is likely to be in the incorrect
orientation.

↪→
↪→
Respond in a json-like text structure with the object

labels as keys and two probabilities ("correct",
"incorrect") as values l

↪→
↪→
```json
{"obj1": {"correct": X, "incorrect": 1-X}, "obj2":

...}↪→
```
where X is between 0 and 1.
The two probabilities "correct", "incorrect" indicate

how likely the retrieved mesh would be in the
correct orientation for the motif.

↪→
↪→
For objects that are hanged on a wall, always consider

the mesh would be in the incorrect orientation.↪→
Include a brief two to three sentences explanation for

each object after the json-like text structure.↪→
spatial_optimization_touch: >-
I have instantiated a spatial motif of "<DESCRIPTION>"

using meshes retrieved from a human-authored
object dataset.

↪→
↪→
How common is it for the individual objects to be

placed in tight contact with each other in this
motif?

↪→
↪→
Consider whether this motif describes a decorative

arrangement or a functional arrangement.↪→
A decorative arrangement is one that is intentionally

designed to be arranged in a specific way for
aesthetic purposes.

↪→
↪→
If the motif is a decorative arrangement, then

touching is less common.↪→
Otherwise, use common sense to reason about whether

the objects are typically placed in tight contact
with each other in real life.

↪→
↪→

Answer using percentage to indicate how common each
version is.↪→

Answer in a json-like text structure with two
probabilities like below:↪→

```json
{"touch": X, "no_touch": 1-X}
```
where X, between 0 and 1, is the probability of the

version fitting the common sense definition.↪→
Briefly explain your reasoning in two to three

sentences after the json-like text structure.↪→

wnsynsetkeys: >-

Here is a list of wordnet synset keys.
<WNSYNSETKEYS>
What is the best key for the following object labels?
<OBJECT_LABELS>
Response with a json-like list of synset keys in the

same order as the object labels like below:↪→
```json
{"wnsynsetkeys": ["key1", "key2", "key3"]}
```
Use "none" if none of the keys are suitable for an

object.↪→

invalid_response: >-
<FEEDBACK>
Please try again.

E.5. Ablation Prompts

Simple prompts for generating a meta-program directly
from a description of a spatial motif (without example ar-
rangement), directly from a set of motif programs (without
any reasoning), and through in-context learning.

ablation_direct: >-
Using the DSL, write a program about a spatial motif

of "<DESCRIPTION>".↪→
Please respond with code only.
Do not define any function.
Your code should be a list of statements that can be

executed sequentially and directly without any
modifications or extra function calls.

↪→
↪→
Please respond with code only.

ablation_generalize: >-
Here are different programs that describe the same

type of spatial motif: "<MOTIF_TYPE>".↪→
Each program may have different objects and different

coordinates, but they all fall under the same type
of spatial motif.

↪→
↪→
Here are the programs and the spatial motifs they

create:↪→
<ALL_PROGRAMS>
Now, write a meta-program that can generalize the

spatial motif of this type using the provided
programs as examples.

↪→
↪→
The meta-program should be able to create any spatial

motif of this type with slight variations in the
number of objects and their attributes.

↪→
↪→
Identify the arguments that the meta-program should

take and the structure of the meta-program to
generalize the spatial motif.

↪→
↪→
Put the arguemnts in the function signature and write

the meta-program as a callable function.↪→
The function should return the list of objects created

in the spatial motif.↪→
Here is a meta-program of the same motif type you

created in the past:↪→
```python
<PAST_META_PROGRAM>
```
You can use this as a reference to write the new

meta-program, but you can also write it from
scratch.

↪→
↪→
Include a docstring at the beginning of the

meta-program to describe the purpose of the
function and the arguments it takes.

↪→
↪→

Use comments to explain your code step by step.
Please respond with code only.

ablation_incontext: >-
Using the DSL, write a program about a spatial motif

of "<DESCRIPTION>".↪→
Here are programs that describe the same type of

spatial motif: "<MOTIF_TYPE>".↪→
Use these programs as examples to guide you in writing

the program:↪→
<ALL_PROGRAMS>
Please respond with code only.

F. Example Session
We show an example session generating meta-program
given arrangement corresponding to “a stack of seven
plates”. We provide both the prompts to the LLM and the
responses from the LLM for different phases of learning to
generate the meta-program. Note that the session is fully
automatic and does not require any user intervention.

F.1. Naı̈ve Program Extraction

Initial naı̈ve program extracted directly from the example
arrangement (does not require a LLM).

Description: a stack of seven plates
Naive program extracted from input arrangment
objs = []
obj_1_half_size = [0.08909, 0.0143, 0.08853]
obj_1_centroid = [0.0, 0.0, 0.0]
obj_1 = create('plate', obj_1_half_size)
move(obj_1, obj_1_centroid[0], obj_1_centroid[1],

obj_1_centroid[2])↪→
objs.append(obj_1)
obj_2_half_size = [0.08909, 0.0143, 0.08853]
obj_2_centroid = [0.0, -0.00757, 0.0]
obj_2 = create('plate', obj_2_half_size)
move(obj_2, obj_2_centroid[0], obj_2_centroid[1],

obj_2_centroid[2])↪→
objs.append(obj_2)
obj_3_half_size = [0.08909, 0.0143, 0.08853]
obj_3_centroid = [0.0, -0.01514, 0.0]
obj_3 = create('plate', obj_3_half_size)
move(obj_3, obj_3_centroid[0], obj_3_centroid[1],

obj_3_centroid[2])↪→
objs.append(obj_3)
obj_4_half_size = [0.08909, 0.0143, 0.08853]
obj_4_centroid = [0.0, -0.02272, -0.0]
obj_4 = create('plate', obj_4_half_size)
move(obj_4, obj_4_centroid[0], obj_4_centroid[1],

obj_4_centroid[2])↪→
objs.append(obj_4)
obj_5_half_size = [0.08909, 0.0143, 0.08853]
obj_5_centroid = [0.0, -0.03029, -0.0]
obj_5 = create('plate', obj_5_half_size)
move(obj_5, obj_5_centroid[0], obj_5_centroid[1],

obj_5_centroid[2])↪→
objs.append(obj_5)
obj_6_half_size = [0.08909, 0.0143, 0.08853]
obj_6 = create('plate', obj_6_half_size)
move(obj_6, obj_6_centroid[0], obj_6_centroid[1],

obj_6_centroid[2])↪→
objs.append(obj_6)
obj_7_half_size = [0.08909, 0.0143, 0.08853]
obj_7_centroid = [0.0, -0.04544, 0.0]
obj_7 = create('plate', obj_7_half_size)
move(obj_7, obj_7_centroid[0], obj_7_centroid[1],

obj_7_centroid[2])↪→
objs.append(obj_7)

F.2. Motif Program Generation

High level observations of naı̈ve program.

Asking LLM to make high level observations of the naı̈ve
program using prompt optimize highlevel count

Below is a program about a spatial motif of
"<DESCRIPTION>".↪→

Describe how many object types and how many are there
for each type.↪→

Respond with a json-like text structure with the object
types as keys and the counts as values.↪→

Here is the program:
```python
<PROGRAM>
```

Response from LLM (json)

{
"plate": 7

}

Asking LLM to make high level observations of the naı̈ve
program using prompt
optimize highlevel general pattern

Can you observe any pattern in this motif of objects
about "<DESCRIPTION>"? (Look for common sense things
like repeating layout, symmetry, etc.)

↪→
↪→
Respond with a detailed description of the pattern you

observed in text.↪→

Response from LLM (text)

The pattern observed in the "stack of seven plates" can
be described as follows:↪→

1. **Object Consistency**: All seven objects in the
stack are of the same type, i.e., "plate." They all
share identical dimensions, with a half-size of
[0.08909, 0.0143, 0.08853].

↪→
↪→
↪→

2. **Vertical Stacking**: The plates are vertically
stacked along the y-axis. This observation can be
made from the changes in the `y` component of the
centroids of each plate.

↪→
↪→
↪→

3. **Even Spacing**: The centroids of the plates are
evenly spaced along the negative y-axis. Each
subsequent plate is positioned 0.00757 meters below
the previous one. This incremental change in the
y-coordinate confirms a precise stacking
arrangement.

↪→
↪→
↪→
↪→
↪→

4. **Fixed x and z coordinates**: The `x` and `z`
coordinates of the centroids of all the plates
remain constant at 0.0. This indicates the stack is
perfectly aligned along these axes, ensuring that
the stack is upright and not tilted or offset in any
horizontal direction.

↪→
↪→
↪→
↪→
↪→

Given these observations, the motif can be described as
a neat, symmetrical vertical stack of seven uniform
plates, each spaced evenly from one another.

↪→
↪→

Asking LLM to make high level observations of the naı̈ve
program using prompt optimize highlevel xyz pattern

Can you observe any pattern in the x, y, z coordinates
of the objects in this motif?↪→

Respond with a detailed description of the pattern you
observed in text.↪→

Response from LLM (text)

The x, y, and z coordinates of the objects in this motif
exhibit the following patterns:↪→

x-coordinate:

- The x-coordinate for the centroids of all plates is
0.0.↪→

- This consistent value indicates that there is no
horizontal shifting in the x-direction, meaning all
plates are aligned vertically without any horizontal
displacement.

↪→
↪→
↪→

y-coordinate:
- The y-coordinates show a clear pattern with a

consistent decrease of 0.00757 meters for each
subsequent plate.

↪→
↪→
- The initial y-coordinate is 0.0 for the first plate,

and the y-coordinates for the following plates are:↪→
- 0.0 for the 1st plate
- -0.00757 for the 2nd plate
- -0.01514 for the 3rd plate
- -0.02272 for the 4th plate
- -0.03029 for the 5th plate
- -0.03786 for the 6th plate
- -0.04544 for the 7th plate

- This indicates that the plates are evenly spaced along
the vertical axis (negative y-direction) by a
distance of 0.00757 meters.

↪→
↪→

z-coordinate:
- The z-coordinate for the centroids of all plates is

consistently 0.0.↪→
- This indicates there is no depth displacement along

the z-axis, meaning the stack is aligned in the
depth direction as well, with no forward or backward
shifting.

↪→
↪→
↪→

Pattern Summary:
- **Vertical Alignment**: All plates are perfectly

aligned in the vertical axis (y-axis) with an even
spacing.

↪→
↪→
- **No Horizontal Displacement**: There is no change in

the x-coordinate, ensuring horizontal alignment.↪→
- **No Depth Displacement**: There is no change in the

z-coordinate, ensuring depth alignment.↪→

In conclusion, the coordinates exhibit a clear pattern
of a vertically stacked arrangement with precise
spacing and no horizontal or depth displacement,
ensuring a neat and uniform stack of plates.

↪→
↪→
↪→

Asking LLM to make high level observations of the naı̈ve
program using prompt
optimize highlevel xyz displacements

Can you find the relative displacements of each object
to the next object in the x, y, z dimensions?↪→

Base on these displacement values, group the objects
into different subgroups.↪→

The goal is to disentangle the overall motif into
smaller, self-contained spatial patterns.↪→

Assign each object to a subgroup such that the spatial
pattern in the subgroup can easily be expressed by
some programming constructs.

↪→
↪→
Each object should belong to exactly one subgroup.

Response from LLM (text)

Relative Displacements:
The relative displacements of each object to the next

object in the stack are as follows:↪→

- **Displacements**:
- Object 1 to Object 2: (0.0, -0.00757, 0.0)
- Object 2 to Object 3: (0.0, -0.00757, 0.0)
- Object 3 to Object 4: (0.0, -0.00757, 0.0)
- Object 4 to Object 5: (0.0, -0.00757, 0.0)
- Object 5 to Object 6: (0.0, -0.00757, 0.0)
- Object 6 to Object 7: (0.0, -0.00757, 0.0)

Each of these displacements is identical, indicating a
uniform vertical displacement between consecutive
objects.

↪→
↪→

Grouping into Subgroups:
Given the uniform relative displacement pattern, the

entire set of objects can be grouped into one single
subgroup. This is due to the consistent and
repetitive nature of the displacement, which can be
expressed succinctly using a loop construct in a
programming context.

↪→
↪→
↪→
↪→
↪→

Subgroup Assignment:
- **Subgroup 1**: All objects (Object 1 to Object 7)

Expressed Subgroup Pattern:
- The spatial pattern in this subgroup is a uniform

vertical displacement of 0.00757 meters along the
negative y-axis between consecutive objects.

↪→
↪→

Programming Context:
- This can be expressed using a loop to create and move

each object in the subgroup with the uniform
displacement.

↪→
↪→

Determining motif type for storing into program library.
Asking LLM to classify motif type for the description using
prompt classify

Based on your observations, classify the spatial motif
of objects "<DESCRIPTION>" into one of the following
motif types:

↪→
↪→
1. stack - multiple objects of the same type are placed

orderly on top of each other↪→
2. pile - objects are placed on top of each other but

not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)

↪→
↪→
↪→
3. row - objects are placed next to each other in a row
4. grid - objects are placed orderly in a grid, like a

chessboard↪→
5. left_of - one object placed to the left of another

object↪→
6. in_front_of - one object placed in front of another

object↪→
7. on_top - one object placed on top of another object
8. surround - objects are placed around a central object

in a circular manner↪→
9. wall_vertical_column - objects are placed in a column

from top to bottom vertically on a wall↪→
10. wall_horizontal_row - objects are placed in a row

from left to right vertically on a wall↪→
11. wall_grid - objects are placed in a grid orderly and

vertically on a wall (when in doubt between grid and
wall_grid, choose wall_grid if the objects are
placed on a wall)

↪→
↪→
↪→
12. letter - objects are placed to form a letter of the

alphabet↪→
13. rectangular_perimeter - objects are placed around

the perimeter of a rectangular shape facing inward↪→
If the motif type is letter, concatenate the letter to

the end of the motif type (e.g., letter_A, letter_B,
etc.)

↪→
↪→
Respond with the name of the motif type only.

Response from LLM (text)

stack

Motif program generation.
Asking LLM to transform the naı̈ve program into a motif
program based on the observations made by the LLM using
the prompt optimize lowlevel

Take a deep breath and follow the steps below carefully.
Using these observations you made, modify the original

program such that the code structure represents the
spatial pattern.

↪→
↪→
Here are the requirements for this task:

1. Do not create any functions
2. Store all created objects in a list named `objs`
3. The new program should represent the same scene as in

the original program with the same number of
objects.

↪→
↪→
4. The objects do not need to be in the same order as

the original program, instead, opt for a more
structured or natural order.

↪→
↪→
5. Do not list all object coordinates, rotation angles,

or sizes in a list and acess them in a loop using
index.

↪→
↪→
This is not acceptable as the spatial pattern is lost.
Avoid doing this at all costs.
Use loops, arithmetic operators, if-else statements,

and other programming constructs to encapsulate the
patterns.

↪→
↪→

6. The coordinates and sizes can be slightly different
from the original program, as long as the overall
motif remains the same.

↪→
↪→
Please respond with code only.

Response from LLM (python)

objs = []
half_size = [0.08909, 0.0143, 0.08853]
initial_y = 0.0
displacement_y = -0.00757

for i in range(7):
y_position = initial_y + i * displacement_y
obj = create('plate', half_size)
move(obj, 0.0, y_position, 0.0)
objs.append(obj)

Motif program validation.
Asking LLM to validate the motif program using the prompt
validate naive listing.

Below is a program that describes a spatial motif of
objects.↪→

Please analyze the program for the following criterion:
The program should define and manipulate the objects and

their properties without using lists of specific
object attributes for individual objects.

↪→
↪→
It is okay to store common values in variables and reuse

them (e.g., dimensions, common properties).↪→
However, the program should use programming constructs

and arithmetic operations (like loops or
calculations) to define and manipulate the
positional and orientational properties of objects,
rather than explicitly listing them.

↪→
↪→
↪→
↪→
For example, if there are four objects, the program

should not have a list of four (x, y, z) coordinates
or four rotation angles for each object.

↪→
↪→
Exclude the `objs` list from the analysis.
Answer in a json format:
{'valid': 'yes' or 'no', 'variable_names': a list of the

names of the variables that violated the criterion}↪→
Briefly explain your reasoning in two to three sentences

after the json-like text structure.↪→
Here is the program:
```python
<PROGRAM>
```

Response from LLM (json)

{
"valid": "yes",
"variable_names": []

}

All validation checks were passed after iteration 1. The pro-
gram provided by the LLM is the stored in the program li-
brary with the classified motif type of stack.

If the validation did not pass, then the
optimize lowlevel feedback prompts are used to re-
fine the program based on the validation test that didn’t
pass.

F.3. Meta-program Generation

Asking LLM to make observations of commonalities in a set
of motif program with motif type stack using the prompt
generalize high level commonalities

Take a deep breath and follow the steps below carefully.
Here are "<NUM_PROGRAMS>" programs that describe the

same type of spatial motif: "<MOTIF_TYPE>".↪→
Each program may have different objects and different

coordinates, but they all fall under the same type
of spatial motif.

↪→
↪→
Here are the programs and the spatial motifs they

create:↪→
<ALL_PROGRAMS>
For each program, analyze and observe its structure and

how the structure coorelates with the spatial motif
it creates.

↪→
↪→
Pay extra attention to how the objects are placed

relative to each other.↪→
Can you identify the commonalities among these programs?
If there is only one program, hypothesize what the

commonalities could be if there were multiple
programs of the same type.

↪→
↪→
For the alphabet_letter motif type, only consider the

commonalities among the programs that form the same
letter.

↪→
↪→
Respond with a detailed description of the pattern you

observed in text.↪→

Response from LLM (text)

Based on the analysis of Program 1, which describes a
"stack" spatial motif, we can identify several
commonalities that characterize this type of spatial
arrangement. Here are the observed commonalities and
patterns:

↪→
↪→
↪→
↪→

Commonalities of the Stack Motif:

1. **Object Type Consistency**:
- All objects in the motif are of the same type. In

this case, all objects are identified as 'plate'.
This consistency ensures uniformity in the
appearance and arrangement of the stack.

↪→
↪→
↪→

2. **Uniform Object Dimensions**:
- The objects in the stack all have the same

dimensions, represented by the `half_size`
parameter. This uniformity in size contributes to
the regular and orderly appearance of the stack.

↪→
↪→
↪→

3. **Vertical Alignment**:
- The objects are aligned vertically along the

y-axis. This is characteristic of a stack, where
objects are placed directly on top of one another
in a straight line.

↪→
↪→
↪→

4. **Even Spacing**:
- There is a consistent vertical displacement between

consecutive objects in the stack. In Program 1,
the displacement is uniform with a negative
y-coordinate increment of -0.00757 meters. This
regular spacing ensures that the stack maintains
a tidy and organized appearance.

↪→
↪→
↪→
↪→
↪→

5. **Fixed Horizontal and Depth Positions**:

- The x and z coordinates of the objects remain
constant. In Program 1, these coordinates are
both 0.0 for all objects, indicating that there
is no horizontal or depth displacement. This
fixed positioning along the x and z axes
maintains the straight vertical alignment
characteristic of a stack.

↪→
↪→
↪→
↪→
↪→
↪→

Hypothesized Commonalities for Multiple Programs:
If there were multiple programs describing the "stack"

motif, we might observe similar commonalities:↪→

1. **Object Type**:
- Multiple programs could feature different types of

objects (e.g., books, boxes), but within each
program, the objects would be consistently of the
same type.

↪→
↪→
↪→

2. **Uniform Dimensions**:
- Even if different programs use different objects,

the dimensions of the objects within each program
would remain uniform.

↪→
↪→

3. **Vertical Spacing**:
- The vertical displacement between objects might

vary between programs, but within each program,
the displacement would be consistent and regular.

↪→
↪→

4. **Vertical Alignment**:
- Each program would align the objects vertically

along the y-axis, maintaining this key
characteristic of a stack.

↪→
↪→

5. **Fixed x and z Coordinates**:
- While different programs might place the stack at

different positions in the world, within each
program, the x and z coordinates would be fixed
for all stacked objects to enforce the vertical
alignment.

↪→
↪→
↪→
↪→

Conclusion:
The commonalities observed in the "stack" motif

emphasize uniformity in object type and size,
regular vertical spacing, and maintaining a
consistent vertical alignment without horizontal or
depth displacement. These patterns ensure that the
spatial arrangement of objects reflects a neat and
orderly stack.

↪→
↪→
↪→
↪→
↪→
↪→

Asking LLM to make observations of differences in a set of
motif program with motif type stack using the prompt
generalize high level differences

What are the differences among these programs?
Specifically, how are the objects placed differently in

each program?↪→
For each program, observe and describe the differences

in the program structure that lead to the different
spatial motifs.

↪→
↪→
If there is only one program, hypothesize how the

program could be written differently to create a
different spatial motif of the same type.

↪→
↪→
Your hypothesized programs should not deviate from the

concrete, non-hypothetical programs you analyzed,
and should focus on the number of objects, their
positions, rotations, and sizes as the main axes of
variation.

↪→
↪→
↪→
↪→
The hypothesized programs should be close to the

original program in terms of the spatial motif they
create (e.g., a stack of 3 objects instead of 4, or
a row of 4 objects instead of 3, etc.)

↪→
↪→
↪→
Respond with a detailed description of the differences

of each program in text.↪→
Refer to the programs by their order in the previous

prompt.↪→

Response from LLM (text)

Since we have only one concrete program to analyze,
let's hypothesize how it could be written
differently to create different variations of the
same spatial motif, "stack." We will focus on
varying the number of objects, their positions, and
possibly other factors such as rotations (though
rotations might be less relevant for the stack
motif).

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Hypothesized Variations:

1. **Changing the Number of Objects**:
- Instead of a stack of seven plates, we can create a

stack with a different number of plates. For
instance:

↪→
↪→

```python
objs = []
half_size = [0.08909, 0.0143, 0.08853]
initial_y = 0.0
displacement_y = -0.00757

for i in range(5): # Stack of 5 plates instead of 7
y_position = initial_y + i * displacement_y
obj = create('plate', half_size)
move(obj, 0.0, y_position, 0.0)
objs.append(obj)

```
- **Difference**: The main difference is the

reduction in the number of objects from 7 to 5,
leading to a shorter stack.

↪→
↪→

2. **Changing the Vertical Displacement**:
- By modifying the vertical displacement, we can

create a stack with different spacing between
objects:

↪→
↪→

```python
objs = []
half_size = [0.08909, 0.0143, 0.08853]
initial_y = 0.0
displacement_y = -0.01 # Increased spacing between

plates↪→

for i in range(7):
y_position = initial_y + i * displacement_y
obj = create('plate', half_size)
move(obj, 0.0, y_position, 0.0)
objs.append(obj)

```
- **Difference**: The increased vertical displacement

creates a stack with more space between each
plate compared to the original program.

↪→
↪→

3. **Introducing Randomness**:
- Adding a slight randomness to the displacement

could simulate a less orderly but still
essentially vertical stack:

↪→
↪→

```python
import random

objs = []
half_size = [0.08909, 0.0143, 0.08853]
initial_y = 0.0
displacement_y = -0.00757

for i in range(7):
random_offset = random.uniform(-0.001, 0.001)
y_position = initial_y + i * displacement_y +

random_offset↪→
obj = create('plate', half_size)
move(obj, 0.0, y_position, 0.0)
objs.append(obj)

```
- **Difference**: Adding a slight random offset to

the y-position for each plate introduces minor
variations, making it look less perfect while
still maintaining the overall stack structure.

↪→
↪→
↪→

4. **Using Different Object Sizes**:
- Introducing variety in object sizes while

maintaining the stack structure:↪→

```python
objs = []
initial_y = 0.0
displacement_y = -0.00757

for i in range(7):
half_size = [0.08909, 0.0143 + i * 0.002,

0.08853] # Incremental increase in size↪→
y_position = initial_y + i * displacement_y
obj = create('plate', half_size)
move(obj, 0.0, y_position, 0.0)
objs.append(obj)

```
- **Difference**: Varying the size slightly with each

subsequent object while maintaining the stack
adds a gradient or stepped effect to the stack
without deviating from the vertical alignment.

↪→
↪→
↪→

Summary of Differences:
- **Number of Objects**: Varying the quantity alters the

height and the visual appearance of the stack.↪→
- **Vertical Displacement**: Adjusting the spacing

between objects changes the density/compression of
the stack.

↪→
↪→
- **Randomness**: Introducing slight variations in

positioning to make the stack appear less
mechanically perfect.

↪→
↪→
- **Object Sizes**: Varying object sizes can add a

dynamic look while retaining the core stack motif.↪→

Each of these variations adheres to the overarching
"stack" motif but introduces subtle differences in
how the objects are placed relative to each other.
These variations maintain the essence of a vertical
arrangement while exploring different aspects of
spatial positioning and object properties.

↪→
↪→
↪→
↪→
↪→

Meta-program reasoning.
Asking LLM to explain why all motif program be-
long to the motif type stack using the prompt
generalize high level motif reason

Despite these differences, these programs all fall under
the same type of spatial motif: "<MOTIF_TYPE>".↪→

Here is a list of all available motif types:
1. stack - multiple objects of the same type are placed

orderly on top of each other↪→
2. pile - objects are placed on top of each other but

not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)

↪→
↪→
↪→
3. row - objects are placed next to each other in a row
4. grid - objects are placed orderly in a grid, like a

chessboard↪→
5. left_of - one object placed to the left of another

object↪→
6. in_front_of - one object placed in front of another

object↪→
7. on_top - one object placed on top of another object
8. surround - objects are placed around a central object

in a circular manner↪→
9. wall_vertical_column - objects are placed in a column

from top to bottom vertically on a wall↪→
10. wall_horizontal_row - objects are placed in a row

from left to right vertically on a wall↪→
11. wall_grid - objects are placed in a grid orderly and

vertically on a wall (when in doubt between grid and
wall_grid, choose wall_grid if the objects are
placed on a wall)

↪→
↪→
↪→
12. letter - objects are placed to form a letter of the

alphabet↪→
13. rectangular_perimeter - objects are placed around

the perimeter of a rectangular shape facing inward↪→

Based on your observations, what are the reasons that
these programs fall under the same type of spatial
motif?

↪→
↪→
Also, identify the closest incorrect motif type and

explain why it is not the correct motif type.↪→
Respond with a detailed description of the reasons in

text.↪→

Response from LLM (text)

Reasons These Programs Fall Under the "Stack" Motif:

1. **Object Consistency**:
- All objects in each program are of the same type.

For example, in the provided program, all objects
are 'plate'. This consistency ensures that the
overall structure is uniform.

↪→
↪→
↪→

2. **Vertical Alignment**:
- Objects are placed in a vertical line with

consistent alignment along the y-axis. Each
object is positioned directly above or below the
previous one, creating an orderly vertical
configuration.

↪→
↪→
↪→
↪→

3. **Uniform Spacing**:
- There is a consistent vertical displacement between

consecutive objects. This regular spacing further
reinforces the orderly arrangement typical of a
stack.

↪→
↪→
↪→

4. **Fixed x and z Coordinates**:
- The x and z coordinates of all objects remain

constant, ensuring that there is no horizontal or
depth displacement. This fixed positioning along
the x and z axes maintains the strict vertical
alignment required for a stack.

↪→
↪→
↪→
↪→

5. **Orderliness**:
- The objects are placed in an orderly manner,

directly on top of each other. There is no
randomness or displacement that would suggest
disorganized placement.

↪→
↪→
↪→

Closest Incorrect Motif Type:

The closest incorrect motif type is **"pile"**.

Why "Pile" is Not Correct:

1. **Disorganized Placement**:
- The "pile" motif is characterized by objects placed

on top of each other but not in an orderly
manner. This typically implies some degree of
randomness or irregular displacement among the
objects.

↪→
↪→
↪→
↪→
- In the analyzed and hypothesized programs, the

placement of objects is precise, with no
randomness introduced that would suggest a
disorganized pattern. Even when slight randomness
is added in one of the hypothesized variations,
the overall structure remains far too regular and
ordered to be considered a pile.

↪→
↪→
↪→
↪→
↪→
↪→

2. **Lack of Explicit Disorder**:
- Descriptions of the motif type "pile" often

explicitly include the word "pile," indicating a
conscious choice to describe a disorganized
arrangement.

↪→
↪→
↪→
- The provided programs have a clear, structured

approach to object placement, consistently using
precise coordinates and displacements to maintain
order, which does not align with the definition
of a "pile."

↪→
↪→
↪→
↪→

Summary:

These programs fall under the "stack" motif because they
involve multiple objects of the same type placed in
an orderly vertical arrangement with consistent
spacing and alignment. The closest incorrect motif
type, "pile," is not appropriate because it implies
disorganized placement, which contradicts the
precise and orderly nature of the stack motif
observed in the programs. The consistency in object
type, uniform spacing, vertical alignment, and lack
of random disorder are key reasons for classifying
these programs as "stack" rather than any other
motif type.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Asking LLM to reason about how to gener-
ate a meta-program for the motif type stack by
first identifying the arguments using the prompt
generalize low level arguments

With this conversation in mind, you are now tasked to
write a python function (a meta-program) that can be
used to create various spatial motifs of
"<MOTIF_TYPE>".

↪→
↪→
↪→
A user should be able to call this meta-program with

different arguments to create different spatial
motifs of this type.

↪→
↪→
Using the provided programs as examples, the

meta-program should be able to create any spatial
motif of this type with slight variations in the
number of objects and their attributes.

↪→
↪→
↪→
Apart from the objects in the examples, the meta-program

should be able to create new spatial motifs of
different object types and attributes.

↪→
↪→
Use your analysis on the commonalities and differences

among the example programs to guide you in writing
the meta-program.

↪→
↪→
Keep in mind that the final meta-program should be able

to recreate the given example spatial motifs as
closely as possible.

↪→
↪→
Avoid taking plain lists of object attributes, such as

coordinates, sizes, and rotations, as arguments, as
this defeats the purpose of using a meta-program to
capture fundamental spatial patterns.

↪→
↪→
↪→
I will guide you through the process of writing the

function step by step.↪→
First, what are the arguments that the meta-program

should take to create a spatial motif of this type?↪→
Respond with a detailed description of the arguments in

text.↪→

Response from LLM (text)

To create a versatile meta-program that can generate
various spatial motifs of the "stack" type, we need
to carefully consider the arguments that the
function should accept. These arguments should allow
for flexibility in creating different stacks while
adhering to the core patterns observed in the
provided examples. Here are the key arguments:

↪→
↪→
↪→
↪→
↪→
↪→

Arguments for the Meta-Program:

1. **Object Type (`label`)**:
- The type of object to be created, which will

determine the label for each object in the stack
(e.g., 'plate', 'box', etc.).

↪→
↪→

2. **Number of Objects (`num_objects`)**:
- The total number of objects to be included in the

stack. This allows flexibility in defining the
height or length of the stack by varying the
number of constituent objects.

↪→
↪→
↪→

3. **Initial Position (`initial_position`)**:
- A list or tuple representing the initial world

coordinates (x, y, z) for the bottom or starting
object in the stack.

↪→
↪→

4. **Vertical Displacement (`displacement_y`)**:
- The consistent vertical distance between

consecutive objects in the stack. This will
determine the regular spacing between the objects
along the y-axis.

↪→
↪→
↪→

5. **Object Size (`half_size`)**:
- The dimensions of each object in the stack,

represented as a list of three floats
[half_width, half_height, half_depth]. This
ensures that all objects in the stack have
uniform sizes.

↪→
↪→
↪→
↪→

6. **Random Offset (`random_offset`)** (optional):
- An optional argument specifying the range of random

variation in the vertical displacement for each
object. This can add slight randomness to the
positioning, creating a less mechanically perfect
stack if desired.

↪→
↪→
↪→
↪→

Additional Considerations:
- **Rotation**: While rotations might be less relevant

for a perfectly vertical stack, we could include an
optional argument for rotating objects around one or
more axes, though this will be kept simple and
optional.

↪→
↪→
↪→
↪→
- **Axis of Stack**: For future extensibility, we might

consider allowing the stack to be along different
axes, though for now, we focus on the y-axis for
simplicity.

↪→
↪→
↪→

Summary of Arguments:
Here is a refined list:
1. `label (str)`: Type of object to create (e.g.,

'plate').↪→
2. `num_objects (int)`: Number of objects in the stack.
3. `initial_position (list[float])`: Initial position

[x, y, z] of the first object.↪→
4. `displacement_y (float)`: Vertical displacement

between objects.↪→
5. `half_size (list[float])`: Dimensions of each object

as [half_width, half_height, half_depth].↪→
6. `random_offset (float, optional)`: Range for random

variation in vertical displacement.↪→

The next step will be to proceed to writing the
meta-program using these arguments to generate the
desired spatial motifs.

↪→
↪→

Asking LLM to reason about how to generate a
meta-program for the motif type stack by first
identifying the function structure using the prompt
generalize low level structure

You have identified the arguments needed for the
meta-program.↪→

Now, think about the structure of the meta-program.
How should the meta-program be structured to generalize

the spatial motif of "<MOTIF_TYPE>"?↪→
Aim to encapsulate the commonalities and differences

among the example programs in the structure of the
meta-program.

↪→
↪→
Think about how the arguments should be used in the

meta-program to create the spatial motif.↪→
What programming constructs should be used to

encapsulate the commonalities and differences among
the example programs?

↪→
↪→
Respond with a detailed description of the structure of

the meta-program in text.↪→

Response from LLM (text)

Structure of the Meta-Program:

To generalize the spatial motif of "stack," the
meta-program needs to encapsulate the commonalities
and differences observed in the example programs.
This involves using the identified arguments
effectively and employing appropriate programming
constructs to create a stack of objects. Here's a
detailed description of the structure of the
meta-program:

↪→
↪→
↪→
↪→
↪→
↪→
↪→

1. Function Definition:
The function should be defined with the arguments

identified earlier, including the main ones (label,
num_objects, initial_position, displacement_y,
half_size) and optional ones (random_offset).

↪→
↪→
↪→

2. List Initialization:
Initialize an empty list `objs` to store the created

objects, ensuring that the created objects can be
accessed and manipulated as needed.

↪→
↪→

3. Loop to Create Objects:
Use a loop structure to iterate through the number of

objects (`num_objects`). This loop will handle the
creation and placement of each object in the stack.

↪→
↪→

4. Object Creation:
Within the loop, create the object using the

`create(label, half_size)` function. Each object
will have the same type and dimensions as specified
by the arguments.

↪→
↪→
↪→

5. Position Calculation:
Calculate the position for each object. This involves

using the initial position (`initial_position`) and
applying the vertical displacement incrementally.

↪→
↪→

- **Base Position**: Start with the initial position for
the first object.↪→

- **Incremental Displacement**: For each subsequent
object, add the vertical displacement
(`displacement_y`) to the y-coordinate of the
previous object's position.

↪→
↪→
↪→
- **Optional Random Offset**: Apply a random offset to

the vertical displacement if the `random_offset`
argument is provided, simulating a less perfect
stack.

↪→
↪→
↪→

6. Moving Objects:
Use the `move()` function to place each object at the

calculated position. Ensure that the x and z
coordinates remain constant for the stack along the
y-axis.

↪→
↪→
↪→

7. Append to List:
Append each created and moved object to the `objs` list.

8. Return the List:
After the loop completes, return the `objs` list

containing all the objects in the stack.↪→

Programming Constructs:
- **Loop (for loop)**: To iterate through the number of

objects.↪→
- **Arithmetic Operations**: For calculating the

positions.↪→
- **Conditional Handling**: To apply optional random

offsets.↪→
- **List Operations**: For storing and returning the

objects.↪→

Pseudo-Code:
Below is a pseudo-code representation to help visualize

the structure:↪→

```python
def create_stack(label, num_objects, initial_position,

displacement_y, half_size, random_offset=None):↪→
objs = []
initial_x, initial_y, initial_z = initial_position



for i in range(num_objects):
# Calculate vertical position with optional

random offset↪→
y_position = initial_y + i * displacement_y
if random_offset:

y_position += random.uniform(-random_offset,
random_offset)↪→

# Create and move the object
obj = create(label, half_size)
move(obj, initial_x, y_position, initial_z)

# Append to the list
objs.append(obj)

return objs
```

Summary:
The meta-program is structured to use the provided

arguments to create a stack of objects. It leverages
a loop for object creation and placement, arithmetic
operations for position calculations, optional
randomness for variability, and list operations to
manage the created objects. This structure ensures
the generality and flexibility needed to recreate
the given example spatial motifs and generate new
variations within the "stack" motif.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Meta-program generation.
Asking LLM to generate a meta-program for the motif type
stack based on the reasoning it just did using the prompt
generalize low level. The LLM is asked to also use doc-
string and include comments.

Take a deep breath and follow the steps below carefully.
You have identified the arguments and the structure of

the meta-program.↪→
Now, write the meta-program that can create various

spatial motifs of "<MOTIF_TYPE>".↪→
Here is a meta-program of the same motif type you

created in the past:↪→
```python
<PAST_META_PROGRAM>
```
You can use this as a reference to write the new

meta-program, but you can also write it from
scratch.

↪→
↪→
Refer to the arguments you identified and the structure

you described to write the meta-program.↪→
Remember that the meta-program should be able to

recreate the spatial motifs of the example programs
as closely as possible.

↪→
↪→
Avoid taking plain lists of object attributes, such as

coordinates, sizes, and rotations, as arguments, as
this defeats the purpose of using a meta-program to
capture fundamental spatial patterns.

↪→
↪→
↪→
Include a docstring at the beginning of the meta-program

to describe the purpose of the function and the
arguments it takes.

↪→
↪→
Use comments to explain your code step by step.
Please respond with code only.

Response from LLM (python)

import random

def create_stack(label, num_objects, initial_position,
displacement_y, half_size, random_offset=None):↪→
"""
Create a stack of objects with the specified

parameters.↪→

Args:
label (str): Type of object to create (e.g.,

'plate').↪→

num_objects (int): Number of objects in the stack.
initial_position (list[float]): Initial position [x,

y, z] of the first object.↪→
displacement_y (float): Vertical displacement

between objects.↪→
half_size (list[float]): Dimensions of each object

as [half_width, half_height, half_depth].↪→
random_offset (float, optional): Range for random

variation in vertical displacement.↪→

Returns:
list: A list of created objects.
"""
objs = []
initial_x, initial_y, initial_z = initial_position

for i in range(num_objects):
Calculate vertical position with optional

random offset↪→
y_position = initial_y + i * displacement_y
if random_offset is not None:

y_position += random.uniform(-random_offset,
random_offset)↪→

Create and move the object
obj = create(label, half_size)
move(obj, initial_x, y_position, initial_z)

Append the object to the list
objs.append(obj)

return objs

Meta-program validation.
Asking LLM to create function calls to the meta-program
it just created for each of the motif programs, using the
prompt generalize low level batch recreate.

Using the meta-program you wrote, what are the function
calls needed to recreate each of the example
programs you analyzed previously?

↪→
↪→
Write one function call for each example program, that

recreates the spatial motif of the program as
closely as possible.

↪→
↪→
Ignore the programs you hypothesized and only write

function calls for the example programs I provided.↪→
Response with a json-like text structure with the

example program order integers as keys and the
function calls as values.

↪→
↪→
For example, {"1": "function_call(program1_args)", "2":

"function_call(program2_args)", ...}↪→

Response from LLM (json)

{
"1": "create_stack('plate', 7, [0.0, 0.0, 0.0],

-0.00757, [0.08909, 0.0143, 0.08853])"↪→
}

All validation checks were passed after iteration 1. If the
validation did not pass, the LLM is asked to try to correct
for any errors using the generalize low level feedback

prompt.
Meta-program documentation. Asking LLM to re-
fine the comments in the meta-program using the prompt
generalize refine comments

You have successfully written the meta-program to
generalize the spatial motif of "<MOTIF_TYPE>".↪→

The latest function calls you provided are able to
recreate the spatial motifs of the example programs.↪→

Please update the docstring and comments in the
meta-program to provide as much information as
possible about the expected arguments.

↪→
↪→

If the program contains well-defined parts that can be
explained, include comments to describe these parts
- how they contribute to the spatial motif and how
they differ from other parts.

↪→
↪→
↪→
At inference time, the meta-program will be the sole

source of information for recreating this spatial
motif.

↪→
↪→
Therefore, these comments will be crucial for

understanding how the meta-program should be used.↪→
Include at least one example function call in the

comments to show how the meta-program should be
called.

↪→
↪→
Please respond with code only.

Response from LLM (python)

import random

def create_stack(label, num_objects, initial_position,
displacement_y, half_size, random_offset=None):↪→
"""
Create a stack of objects with the specified

parameters.↪→

Args:
label (str): Type of object to create (e.g.,

'plate').↪→
num_objects (int): Number of objects in the stack.
initial_position (list[float]): Initial position [x,

y, z] of the first object.↪→
displacement_y (float): Vertical displacement

between objects.↪→
half_size (list[float]): Dimensions of each object

as [half_width, half_height, half_depth].↪→
random_offset (float, optional): Range for random

variation in vertical displacement. Default is
None.

↪→
↪→

Returns:
list: A list of created objects.

Example Call:
objs = create_stack('plate', 7, [0.0, 0.0, 0.0],

-0.00757, [0.08909, 0.0143, 0.08853])↪→

This example recreates a stack of seven plates with
the given initial position, displacement, and
dimensions.

↪→
↪→
"""

Initialize an empty list to store the created
objects↪→

objs = []

Extract initial position components for
readability↪→

initial_x, initial_y, initial_z = initial_position

Iterate over the number of objects to be created
in the stack↪→

for i in range(num_objects):
Calculate vertical position with optional

random offset↪→
y_position = initial_y + i * displacement_y
if random_offset is not None:

y_position += random.uniform(-random_offset,
random_offset)↪→

Create the object with the specified label and
dimensions↪→

obj = create(label, half_size)

Move the object to its calculated position
move(obj, initial_x, y_position, initial_z)

Append the created and moved object to the
list↪→

objs.append(obj)

Return the list of created objects
return objs

The meta-program provided by the LLM is then stored in
the meta-program library with the motif type of stack.

References
[1] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade

Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal
Shankar, Hongseok Namkoong, John Miller, Hannaneh Ha-
jishirzi, Ali Farhadi, and Ludwig Schmidt. OpenCLIP, 2021.
1

	. Implementation Details
	. Baseline Details
	. Mesh Retrieval Approach

	. Evaluation Details
	. Manual Verification Guidelines
	. Perceptual Study Instructions

	. Additional Qualitative Results
	. Example Programs
	. LLM Prompts
	. General Prompts
	. Prompts to Generate Motif Program from Naïve Program
	. Prompts to Generate Meta-program from Motif Program
	. Inference Prompts
	. Ablation Prompts

	. Example Session
	. Naïve Program Extraction
	. Motif Program Generation
	. Meta-program Generation

