SceneMotifCoder: Example-driven Visual Program Learning
for Generating 3D Object Arrangements

Supplementary Material

We provide additional implementation details for the
baseline approaches (Appendix A.1) and demonstration of
how we can use OpenCLIP [1] for more fine-grained re-
trieval of matching objects (Appendix A.2). We also pro-
vide evaluation details (Appendix B), additional examples
of generated 3D arrangements (Appendix C), and gener-
ated programs (Appendix D). Finally, we include the LLM
prompts we used (Appendix E) and an example LLM ses-
sion (Appendix F).

A. Implementation Details
A.1. Baseline Details

For MVDream, we use the default configuration without
soft shading and lower the second stage resolution to 128
for computational efficiency. Since GraphDreamer’s pub-
lic implementation only takes scene graphs as input and the
prompts used in the paper are not available, we implement
a text-to-scene-graph module using GPT-4 and follow the
general strategy from the paper. We also use the hyperpa-
rameter settings in GraphDreamer’s demo scripts for all ob-
jects, except that we set center dispersion to 0.2 to allow
the SDF for each object to be initialized at a reasonable dis-
tance from other objects. Similar to MVDream, we lower
GraphDreamer’s 2nd stage resolution to 128 with batch size
1 to minimize VRAM usage. Generating all 202 arrange-
ments took a combined 152 GPU hours on three Nvidia
L40S GPUs for MVDream, and 263 hours on four L40S
and two A40 GPUs for GraphDreamer. GraphDreamer of-
ten crashes due to out-of-memory errors for object arrange-
ments that consist of more than three objects or contain
larger objects. For these arrangements, we re-run on two
A100 GPUs with 80GB VRAM, which took another 181
GPU hours. However, twelve input descriptions still crash
due to out-of-memory errors.

A.2. Mesh Retrieval Approach

Our work retrieves meshes to instantiate object arrange-
ments based on object category and bounding box dimen-
sions. We tried incorporating OpenCLIP [1] to enable ob-
ject appearance-based retrieval. However, since our eval-
uation is focused on the generated object layouts, our test
descriptions reflect that and do not specify appearance at-
tributes such as colour. As a result, the retrieved meshes
do not differ significantly from the simpler approach when
evaluated against the input text description. Therefore, we
opted for the simpler approach in our final system. We note

Category-based
Retrieval

OpenCLIP-based

Input Retrieval

A cup on top of

a plate
v
— p
A yellow cup o \ /‘
on top of (. v“ >
a blue plate w
=

Figure 1. Results using category-based and OpenCLIP-based
retrieval. First row: Input description does not specify object ap-
pearance. Both results are correct. This is the case for our test
set descriptions. Second row: OpenCLIP-based retrieval is useful
when the input description contains appearance attributes.

that in real life usage, users may have specific preferences
to the appearances of the generated arrangements, making
the feature-based retrieval module a worthwhile extension
to our work. See Figure | for a demonstrative example.

B. Evaluation Details
B.1. Manual Verification Guidelines

We provide the guidelines the annotator received below.

Looking at two views of each generation result,
judge the generation quality based on the follow-
ing three criteria. Give a binary judgment (Y/N)
for each.

* # Objs - Correct number of objects as specified
in the text description. Can you reasonably say
there are X instances of the object?

* Layout - Correct layout in terms of the relative
positions between objects as specified in the
text description. Ignoring the appearances and
labels of the objects, are the objects arranged
correctly? If you were to classify the result into
one of the motif types, will it fall into the same
type as the description?

* Plaus - Physical Plausibility. Is the generation
result physically plausible? Can the result ex-
ists in real life?

B.2. Perceptual Study Instructions

We provide the instructions the study participants received
below.

This study asks you to judge the quality of 3D
object arrangements in terms of

» Text Alignment - does the object arrangement
fit the text description? E.g., for “a stack of
three books”, an arrangement with two books
stacked on top of each other does not fit the de-
scription.

* Realism - is the object arrangement realistic?
You should disregard the fine-grained style and
textured appearance of the objects. E.g., a chair
that changes shape across view points and a
teddy bear with five legs are unrealistic.

Judge the arrangements solely on these two as-
pects. In each question you will see a text descrip-
tion followed by two object arrangements Left
and Right, with a short video showing you differ-
ent views of the arrangements. Select the better
arrangement according to the two aspects above.
Each question should take 5-10 sec. There are 60
questions in total.

C. Additional Qualitative Results

In Fig. 2 we see how a meta-program can be called with
varying text descriptions to produce quite distinct, yet re-
alistic arrangements. This is a concrete example of the re-
usability and generality of our framework.

Figure 3 provides additional qualitative comparisons of
generated object arrangements with prior work. Figure 4
provides additional examples of arrangements generated us-
ing SceneMotifCoder. The results showcase a variety of
motif types, exhibiting different spatial arrangements.

In addition, Fig. 5 shows how SceneMotifCoder’s gen-
erated arrangements can be used as part of generating new
compositional arrangements. By treating previously gen-
erated arrangements as retrieval assets, SMC can invoke
learned meta-programs to retrieve them and compose new
arrangements with extra layers of complexity. The results
show that SMC can generate new arrangements that are
significantly more complex than the original ones within a
few iterations, demonstrating SMC’s potential at generating
complex and diverse arrangements.

D. Example Programs

In Tables 1 and 2, we provide example meta-programs gen-
erated by SceneMotifCoder, and compare them to two sim-
pler prompting strategies:

def create_surround_motif(central_object_attrs, num_surround_objs, radius, Suitable
surround_obj_attrs, rotation_offsets, height_adjust=0): Arguments

Creates a spatial motif with a central object surrounded circularly by other objects.
Args: Documentation
central_object_attrs (dict): Attributes for the central object, including

objs =[]

Create and position the central object

central_obj = create(central_obj_attrs['label’], central_obj_attrs['half_size'])
move(central_obj, *central_obj_attrs['centroid'])

objs.append(central_obj)

DSL Usage

Calculate positions and create surrounding objects

foriin range(num_surround_objs): Motif Structure
angle_deg =360 / num_surround_objs * i Arithmetic
angle_rad = np.radians(angle_deg) 3 Party Library

Calculate x and z using the given radius and angle

x = central_object_attrs['centroid'][0] + radius * np.cos(angle_rad)
y = central_object_attrs['centroid'][1] + height_adjustment
z=central_object_attrs['centroid'][2] + radius * np.sin(angle_rad)

Relative
Relations

Create and position surrounding objects
surround_obj = create(surround_obj_attrs['label’],

surround_obj_attrs['half_size'])
move(surround_obj, x, y, z)

Calculate rotation to face the center, adjust by rotation offset
if isinstance(rotation_offsets, dict).
rotate(surrounding_obj, 'y', rotation_offsets.get(i, 0) - angle_deg)
else: # Assuming list type
rotate(surrounding_obj, 'y', rotation_offsets[i] - angle_deg)
objs.append(surrounding_obj)
return objs

Conditional

4

Sixteen rocks surrounding

Five chairs Three plates Six small plants

surrounding a cake a potred plant

irrounding a table surrounding a large plant

=

e

. B8 F “eee®

Figure 2. Meta-program for surround motif learned from the
text and arrangement pair in blue box. The arrangements at the
bottom are generated from the meta-program given the input text
above each arrangement. Note the significant variations in object
counts and types, all captured by human-interpretable and editable
calls to the same meta-program.

* direct-from-description: the LLM is prompted directly
for a program from a description of a spatial motif, with-
out information from example arrangements.

* direct-from-motif-program: the LLM is prompted to gen-
erate a meta-program given a set of motif programs, with-
out any observation and reasoning steps.

The two direct-from-description programs create naive lists

of repetitive statements with hard-coded values. They can-

not adapt to changes in the input description and can-
not be reused to generate other arrangements. While the
direct-from-motif-program programs are more flexible, they
make strong assumptions on the object poses in their pro-
gram structures. These assumptions result in programs that
lack generality, compared to the SceneMotifCoder meta-
programs which are compact, human-readable, and admit
many variations through setting of appropriate arguments in
the function signature. Analyzing the programs shows that
58% of the direct-from-motif-program programs, compared
to only 5% of meta-programs from SMC, have this issue.
These comparisons of concrete code examples help to
demonstrate the value of the SceneMotifCoder visual pro-
gram synthesis framework.

SMC (ours)

Example Input MVDream GraphDreamer LayoutPrompter
X X
Implausible Floating
plant

shape

% A potted plant on
SN—— top of a book .

A cup on a saucer

X N
Floating = B
[up -
)
~F
X ‘Wrong objects i

‘%l‘. A row of two
>3

‘nib potted plants
X Not a letter P

A row of three tables S
: X ausible shape
2 .' o888, ... X Implausible shape
=e® shape
- i % :} | . U:
: L4
&

X Not a stack

1<

A stack of

two Cups

)

A stack of seven plates

| 4
|
|
L
® made of plates
A letter P made of cups
X X Only two jugs
Extra =
surface
SRR
— A

%
] A row of
‘nii three jugs
X Floating books

A row of three tables
X Only three books X Janus problem
v < g v =

A stack of _—

~—
—
v four books

A stack of seven plates
X Not a grid X Not a grid

X

=3 A rectangle grid
of four potted plants

w
%
&
ot

A grid of six cups
X X Janus problem X
Extra
Floating
coffee
maker

. surface SR
A cup in front
of a coffee maker =
X Intersecting chairs

A footrest in front
X Extra surface -

of an armchair

m Three chairs circularly
surrounding a table

Five chairs surrounding

a circular table
Figure 3. Additional qualitative comparisons of generated 3D object arrangements. Each blue box on the left is the text and arrange-
ment pair used for learning a meta-program capturing the arrangement motif. The SceneMotifCoder arrangements better respect the input

text in terms of number and type of objects present, and exhibit more plausible spatial configurations and object appearance.

"2

i

A horizontal row A horizontal row of

three wall clocks

w of two wall arts

A horizontal row of

two wall paintings

A row of
L2
" three baskets
s
A row of

three tables

A mobile in front

A row of
four bottles

A teacup in front

- A grid of eight sodas A grid of nine chairs of a clock of a laptop
] — A
A grid of B A footrest o 7 D
six cups in front of a chair . g
A teapot on top A cup on top of A lamp left of A vacuum cleaner
- of a cafeteria tray a bowl w ‘ a clock left of a bucket
\/ \ e \-) J \L‘
A cup A fork left ‘
on a saucer of a knife
A stack of A stack of A letter A A letter A
three trays ten plates | 2 made of candles made of plates
- s
——) T v
N——— N = v v —_
~— ¢
‘:\“\y/f > v e
A stack of w A letter A
seven plates made of cups v v = g =
Three spoons Four chairs circularly A rectangular rug A rectangular table with

with four armchairs

circularly surrounding surrounding a table eight dining chairs

a bowl

-

A rectangular table

Five chairs

Figure 4. Additional examples of generated object arrangements. Our SceneMotifCoder framework generalizes the motifs exhibited
by the text and arrangement example to produce diverse arrangements with differing object categories, counts, and spatial configurations.

surrounding a table with six dining chairs

A stack of books on top of a rectangular A stack of cups on top of a stack

table with four chairs around it

A letter A made of
stacks of plates

A row of three

stacks of plates of plates left of a coffee machine

Figure 5. Arrangements using compositional meta-programs. SceneMotifCoder’s generated object arrangements can be used in gener-
ating new arrangements by treating them as retrieval assets. The generated arrangements exhibit compounded layers of complexity within
a few iterations. Such compositions enable generation of more complex arrangements, opening the door to a wide range of possibilities.

direct-from-description

objs.appen
— (create("cushionl",

— [0.3, 0.1, O.
objs.append

31))

— (create ("cushion2",
— [0.3, 0.1, 0.31))
objs.appendj

<~ (create("cushion3",
— [0.3, 0.1, 0.31))
objs.appendj

s (create ("cushiond™,
— [0.3, 0.1, 0.31))

— t first

move (objs[0], 0, 0.1, 0)

the

“—> on
move (obj

top of

s[1],

the

top of
move (objs[3],

direct-from-motif-program

def create_pile(label_prefix,
num_objects,
base_position,

half_size,
y_gap,

rotation_angle) :

mon

Creates a spatial motif of type

—

'pile' with the given properties.

Args:
- label prefix (str): prefix for the

—

label of each object in the pile.

- num_objects (int): number of
objects to create in the pile.

—

— half size (list[float]):

—
—

—

—
—

- y_gap (float):

list of

three floats representing half

the

size (x, y, z) of each

object.
- base_position (tuple[float]):

starting (x, y,

the

z) position for
base of the pile.
additional gap

— between each object in the pile
on the y-axis.

—

- rotation_angle (float):

angle to

— rotate alternating objects, to
— add naturalism.

Returns:

- list: list containing each created
— and positioned object.

wnn

objs = []

base_x, base_y, base_z =

— base_position

for

i in range (num

new_

—

obj
<
<

objects) :

v o

y base_y + 1 *
(half_size[l] * 2 + y_gap)

create (f" {label prefix/ {i+1/
half_size)

new_y, base_z)

if i

else

objs

% 2 == 0:
rotate (obj,
— rotation_angle)
rotate (obj,
— -—rotation_angle)

1z,

vz,

.append (obj)

return objs

Meta-program from SceneMotifCoder

import random

def create_pile_motif (object_type,

—
—

num_objects,
base_position, size_variations,
position_offsets, rotations=[],

woon

seed=None) :
Creates a spatial motif of type with
— configurable positions,
— rotations.

'pile’
sizes, and

Args:

- object_type (str or list[str]): The type
«— label(s) for the objects in the pile.
— num_objects (int): The number of objects
«— to include in the pile.

- base_position (list of float):
— starting position [x, y,
— first object in the pile.
— size variations (list of 1list of float):
«— The dimensions [width, height, depth]
— for each object.

- position _offsets (list of list of float):
«— Position offsets [x, y, z] relative to
< the base for each object.
- rotations (list of tuples):
— apply, each as (axis, angle, index).

- seed (int, optional): Seed for the random
— number generator for reproducibility.

The
z] for the

Rotations to

Returns:
- list: A list of objects representing the
— created pile.
wum
if seed is not None:
random. seed (seed)

Iterate ov ea -
for i in range (num_objects):

I > of

object to be c

ect type if a

—

obj_typé = object_type[i] if

else

<~ 1sinstance (object_type,
— object_type

list)

obj_half_size = size_variations([i]
pos_offset = position_offsets[i]

position = [base_position[0] +
< pos_offset[0], base_position[l] +
— pos_offset[1l], base_position[2] +

— pos_offset[2]]

Create the object

reate (obj_type, obj_half size)
*position)

obj = ¢

move (obj,

—r C 11 L
rotate (obj, rotation[O],
— rotation[1])

he obje

objs.append (obj)

return objs

Table 1. Different programs for generating “a pile of four seat cushions”. The direct-from-description program is not reusable for generating
new arrangements with different number of objects and types. The direct-from-motif-program program is reusable, but it makes a strong
assumption on how to orient the objects (only alternating rotations around the z axis). In contrast, SceneMotifCoder’s program is less
restrictive and takes into account for more potential object poses, which is especially important for the pi1e motif type.

direct-from-description

—
objs
table = create("table", [1.5, 0.1, 1])

objs.append (table)

— (o, 0o,
move (table,

[create(f"chair_{i}", [0.3,

chairs
«— 0.3, 0.3]) for i in range(8)]
objs.extend (chairs)

positions
(1.¢

i, (x, y, z) in
enumerate (positions) :
move (chairs(i], x, y, z)
if i in [0, 1]: # right or left
— chair
rotate (chairs[i],
elif i in [2, 3]:
rotate (chairs[il,
elif i in [4, 7]: # corr

rotate(chairs[i], 'v', 45)
elif i in [5, 6]: # corner cl
— (lef

rotate(chairs(i], 'y', -45)

Table 2. Different programs for generating “a rectangular table with eight

direct-from-motif-program

def create_rectangular_perimeter_motif (

< center_obj_label, center_obj_half_size,
< perimeter_obj_label, perimeter_obj_half_size,
<> num_perimeter_objs, center_position):
Create a a central object
eter

center_obj = create (center_obj_label,

<3 center_obj_half_size)

move (center_obj, center_position[0],

<> center_position[l], center_position[2])
objs.append (center_obj)

center_x, center_y, center_z —

< center_position
cx, cy, cz = center_obj_half_size
px, Py, pz = perimeter_obj_half_ size

perimeter_positions = []

spacing_x cx + px + 0.

< spac
spacing_z cz + pz + 0. # Addit a

for i in range (num_perimeter_objs):

if i % 2 == 0: # Left a
sign = -1 if (i // 2)

2 0 else 1

X = center_x + sign » (spacing_x +

< px)

z = center_z + (i // 4) * spacing_z
else: # Fro k sides

sign -1 if ((1 - 1) // 2) %5 2

— else

X = center_x + ((1 - 1) // 4) =

<» spacing_x
z = center_z + sign * (spacing_z +
— pz)

perimeter_positions.append ((x,
— z))

center_y,

for pos in perimeter_positions:
perimeter_obj =
<« create(perimeter_obj_label,
<> perimeter_obj_half_size)
move (perimeter_obj, pos[0], pos[l],
— pos(2])
objs.append (perimeter_obj)

return objs

Meta-program from SceneMotifCoder

def create_rectangular_perimeter_motif (
central_label, central_half_size, central_position,
surrounding_label, surrounding_half_size,
count_long_sides, count_short_sides,
long_side_offset, short_side_offset,
rotation_long_sides, rotation_short_sides,
y_offset):

sions of the

the central object

ype of surrounding objects

- count_short_.

shorter end

R

central_obj = create(central_label, central half_size)
move (central_obj, +central_position)

objs.append (central_obj)

for i in range (count_long_sides // 2)

for sign in [-1, 1]: # Use -1 and o cover both sides
surrounding_obj = create (surrounding_label,

< surrounding_half_size)

Compu

central_position[0] + sign + long_side_offset

x_pos =
z_pos = central_position[2] + (i - count_long_sides // 4) =
< long_side_offset([1]

move (surrounding_obj, x_pos, y_offset, z_pos)

rotate (surrounding_obj, 'y', sign s rotation_long_sides)

objs.append (surrounding_obj)

for i in range (count_short_sides // 2):
for sign in [-1, 1]: # Use d 1 to cover both sides
surrounding_obj = create (surrounding_label,
< surrounding_half_size)

] + (i - count_short_sides // 4) x

x_pos = central_position[
< short_side_offset[0]
z_pos = central_position([2]
move (surrounding_obj, x_pos,
if sign :

rotate (surrounding_obj, 'v',
objs.append (surrounding_obj)

+ sign * short_side_offset[1]
y_offset, z_pos)
rotation_short_sides)

return objs

chairs around it”. The direct-from-description program is not

reusable for generating new arrangements with different number of objects and types. The direct-from-motif-program program is reusable,
but it assumes equal spacing between objects (hard-coded as 0.1) and evenly-distributed objects around the center object, limiting what it
can generate. In contrast, SceneMotifCoder’s program is less restrictive and allows for a wide range of customization.

E. LLM Prompts

We provide the LLM prompts used for various phases
in our SceneMotifCoder framework. We provide general
prompts in Appendix E.l, prompts for generating motif
programs from naive programs in Appendix E.2, prompts
for generating meta-programs from sets of motif-programs
in Appendix E.3, inference prompts in Appendix E.4, and
prompts for our ablation study in Appendix E.5. For
the motif-program and meta-program generation, we have
prompts that ask the LLM to make high-level observations
about the input, to generate the motif or meta-program, val-
idate the generated program, and feedback prompts to ask
the LLM to iterate if the validation fails. For the meta-
program generation, we also have reasoning prompts that
ask the LLM to reason about the arguments and structure of
the function to be generated.

E.1. General Prompts

We have two general prompts:

¢ System introduction prompt specifying the DSL used for
our visual programs.

* Classification prompt for identifying the scene motif type
given a description. This classify prompt is used both
during inference and as part of the motif-program gener-
ation to determine the motif type that the generated pro-
gram should be stored under.

system: >-—

)

Il

Teed

U

)

Tl

.
.
classify: >-
—
—

—

el

e el

e

E.2. Prompts to Generate Motif Program from
Naive Program

When generating the motif program, our observational
prompts instruct the LLM to make high-level observations
about the following:

* the number and type of objects in the arrangement.

* the relative displacements between objects.

* spatial patterns such as symmetries.

* spatial patterns along the three coordinate axes.

optimize_highlevel count: >-
—
—

—

optimize_highlevel general pattern: >-

—
—

optimize highlevel xyz pattern: >-

R ith a

— 2rved in text.

ption of

in the x, vy,

of the pat

optimize_highlevel xyz displacements: >-

#

1 you find the
to the next

G

optimize lowlevel: >-

#

#

4

Take a deep breath and follow the
s

(.

rn.

ents for this
“tions

—

number of

program with t

need to be

in the same order as

gram, 1NST

froprepreys

different
all

ghtly
the

] as

Validation

validate_naive_listing: >-

a program that describes a spatial motif of

and man

onal

Feedback
optimize_ lowlevel_ feedback_syntax: >-
run the

ou pro

P e try again.
optimize_lowlevel feedback_naive_listing: >-

such statements

— ar

— capture ject attribute
optimize_lowlevel feedback_num objs: >-
n the

objects in

patter

gram does not

program.

Pl S y again.
optimize_lowlevel feedback_centroids: >-

1 the 1 program are not accurately

ry again.

optimize_lowlevel feedback_bounding boxes: >-

1 the origin gram are not accurately

— in your ram.
<FEED

The in your pr

— ensions or are

try again.

E.3. Prompts to Generate Meta-program from Mo-
tif Program

When generating the meta-program, our observational
prompts instruct the LLM to make high-level observations
about the following:

» commonalities between the motif-programs.

« differences between the motif-programs.

To ensure the generated meta-program is robust and re-
useable, we use reasoning prompts to instruct the LLM to
consider:

* reasons why the motif-programs all belong to the same
motif

* what arguments should be extracted

* what structure should the meta-program function have

ati
generalize_high_level commonalities: >-—
Take follow the

Obse

analyze

tructure

For the alphabet_letter motif type, only consider the
< commonalities among the programs that form the
< same letter.
Respond with a detailed description of the pattern you
< observed in text.

generalize high_level differences: >-
What are the differences among these programs?
Specifically, how are the objects placed differently
< in each program?
For each program, observe and describe the differences
< in the program structure that lead to the
— different spatial motifs.
If there is only one program, hypothesize how the
< program could be written differently to create a
— different spatial motif of the same type.
Your hypothesized programs should not deviate from the
— concrete, non-hypothetical programs you analyzed,
— and should focus on the number of objects, their
— positions, rotations, and sizes as the main axes
— of variation.
The hypothesized programs should be close to the
— original program in terms of the spatial motif
< they create (e.g., a stack of 3 objects instead of
— 4, or a row of 4 objects instead of 3, etc.)
Respond with a detailed description of the differences
— of each program in text.
Refer to the programs by their order in the previous
— prompt.

Reasoning
generalize high level motif reason: >-
Despite these differences, these programs all fall
< under the same type of spatial motif:
— "<MOTIF_TYPE>".
Here is a list of all available motif types:
stack - multiple objects of the same type are
placed orderly on top of each other
pile - objects are placed on top of each other but
not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)
row — objects are placed next to each other in a

row
grid - objects are placed orderly in a grid, like a
chessboard
left_of - one object placed to the left of another
object
in_front_of - one object placed in front of another
object

on_top - one object placed on top of another object
surround - objects are placed around a central
object in a circular manner

wall_vertical_column - objects are placed in a
column from top to bottom vertically on a wall
wall_horizontal row - objects are placed in a row
from left to right vertically on a wall

tereprzpoprporeprene s

11. wall_grid - objects are placed in a grid orderly
— and vertically on a wall (when in doubt between
< grid and wall_grid, choose wall_grid if the

— objects are placed on a wall)

12. letter - objects are placed to form a letter of
— the alphabet

13. rectangular_perimeter - objects are placed around
<« the perimeter of a rectangular shape facing

— inward

Based on your observations, what are the reasons that
— these programs fall under the same type of spatial
— motif?
Also, identify the closest incorrect motif type and
— explain why it is not the correct motif type.
Respond with a detailed description of the reasons in
— text.

generalize low_level arguments: >-
With this conversation in mind, you are now tasked to
— write a python function (a meta-program) that can
— Dbe used to create various spatial motifs of
— "<MOTIF_TYPE>".
A user should be able to call this meta-program with
— different arguments to create different spatial
— motifs of this type.

Using the provided programs as examples, the
— meta-program should be able to create any spatial
— motif of this type with slight variations in the
— number of objects and their attributes.
Apart from the objects in the examples, the
— meta-program should be able to create new spatial
— motifs of different object types and attributes.
Use your analysis on the commonalities and differences
< among the example programs to guide you in writing
— the meta-program.
Keep in mind that the final meta-program should be
— able to recreate the given example spatial motifs
— as closely as possible.
Avoid taking plain lists of object attributes, such as
— coordinates, sizes, and rotations, as arguments,
< as this defeats the purpose of using a
— meta-program to capture fundamental spatial
— patterns.
I will guide you through the process of writing the
— function step by step.
First, what are the arguments that the meta-program
— should take to create a spatial motif of this
— type?
Respond with a detailed description of the arguments
— in text.

generalize_low_level structure: >-
You have identified the arguments needed for the
— meta-program.
Now, think about the structure of the meta-program.
How should the meta-program be structured to
< generalize the spatial motif of "<MOTIF_TYPE>"?
Aim to encapsulate the commonalities and differences
— among the example programs in the structure of the
— meta-program.
Think about how the arguments should be used in the
— meta-program to create the spatial motif.
What programming constructs should be used to
< encapsulate the commonalities and differences
— among the example programs?
Respond with a detailed description of the structure
— of the meta-program in text.

Generation
generalize_low_level: >-
Take a deep breath and follow the steps below
— carefully.
You have identified the arguments and the structure of
— the meta-program.
Now, write the meta-program that can create various
«— spatial motifs of "<MOTIF_TYPE>".
Here is a meta-program of the same motif type you
< created in the past:
T python
<PAST_META_PROGRAM>
You can use this as a reference to write the new
< meta-program, but you can also write it from
— scratch.
Refer to the arguments you identified and the
— structure you described to write the meta-program.
Remember that the meta-program should be able to
< recreate the spatial motifs of the example
— programs as closely as possible.
Avoid taking plain lists of object attributes, such as
— coordinates, sizes, and rotations, as arguments,
< as this defeats the purpose of using a
— meta-program to capture fundamental spatial
— patterns.
Include a docstring at the beginning of the
— meta-program to describe the purpose of the
< function and the arguments it takes.
Use comments to explain your code step by step.
Please respond with code only.
— — [— e ———
Validation
generalize_ low_level batch recreate: >-
Using the meta-program you wrote, what are the
— function calls needed to recreate each of the
— example programs you analyzed previously?

Write one function call for each example program, that
— recreates the spatial motif of the program as

— closely as possible.

Ignore the programs you hypothesized and only write

— function calls for the example programs I

— provided.

Response with a json-like text structure with the

— example program order integers as keys and the

— function calls as values.

For example, {"1": "function_call (programl_args)",
< "2": "function_call (program2_args)", ...}

,,,

Feedback

generalize_low_level feedback: >-
The meta-program you wrote could not recreate the
<« spatial motif of the example programs as closely
— as possible.
Here are the feedback(s) for the example program(s)
— that were not recreated accurately:
<FEEDBACK>
The issue(s) may be related to the meta-program
— structure or the arguments used in the function
— calls.
Please analyze the feedback and modify the
< meta-program if necessary.
Remember that the meta-program should be able to
— recreate the spatial motifs of the example
— programs as closely as possible.
Also, remember to edit the docstring and comments in
< the meta-program to reflect the changes you made.
Then, respond with the code of the modified
— meta-program only.
If you think the meta-program is correct, and the
— function calls are incorrect, then you can respond
< with the same meta-program code.
I will ask you to provide the function calls again
— after this where you can correct the function
— calls.
generalize_refine comments: >-
You have successfully written the meta-program to
«— generalize the spatial motif of "<MOTIF_TYPE>".
The latest function calls you provided are able to
< recreate the spatial motifs of the example
< programs.
Please update the docstring and comments in the
— meta-program to provide as much information as
< possible about the expected arguments.
If the program contains well-defined parts that can be
— explained, include comments to describe these
«— parts - how they contribute to the spatial motif
— and how they differ from other parts.
At inference time, the meta-program will be the sole
— source of information for recreating this spatial
— motif.
Therefore, these comments will be crucial for
< understanding how the meta-program should be used.
Include at least one example function call in the
— comments to show how the meta-program should be
— called.
Please respond with code only.

E.4. Inference Prompts

inference: >-
Here is a meta-program that generalizes a spatial
— arrangement of type "<MOTIF_TYPE>":
T Tpython
<META_PROGRAM>
And here is a description of a spatial motif of the
<~ same type:
<DESCRIPTION>
Your task is to call the meta-program with the
— necessary arguments to recreate the spatial motif
< described in the description as closely as
— possible.
Read the docstring and comments in the meta-program to
— understand how to use it.

Refer to the example function call in the meta-program
«— documentation to understand how the meta-program
— should be called, if available.
Use common sense to infer the arguments for ambiguous
< arguments, such as object dimensions, positions,
— and rotations.
When in doubt, refer back to the example function call
— in the meta-program documentation.
Ensure the arguments make the new spatial motif
— physically possible without intersecting or
— floating objects and make the objects contact
— tightly, if applicable.
I will run a postprocessing step to refine the spatial
— motif after you provide the function call to me.
Remember that x, y, z dimensions are in meters and
<« rotation angles are in degrees.
+x is to the right, +y is up, and +z is front (towards
— the viewer).
Most object rotations hence are around the y-axis, as
< it is the vertical axis.
Assume the objects are large so make sure they are
— spaced out enough to not intersect.
When placing objects, consider how human would
< organize them in real life.
For example, large objects are usually placed at the
— Dbottom and smaller objects on top.
Please respond with code - the function call with the
«— inferred arguments only.

inference_feedback: >-
I could not run the meta-program using the function
«— call you provided.
<FEEDBACK>
Please try again.

retrieval_mesh_rotations: >-
I am retrieving meshes of objects from a
— human-authored object dataset to instantiate a
— spatial motif of "<DESCRIPTION>".
The labels of the objects are "<OBJECT_LABELS>".
How likely would be the retrieved mesh in the correct
< orientation?
Use common sense knowledge to reason about this.
Consider whether the objects are commonly oriented in
— Dboth upright and sideways positions in real life.
If there are multiple common orientations, then the
— retrieved mesh is likely to be in the incorrect
— orientation.
Respond in a json-like text structure with the object

— labels as keys and two probabilities ("correct"
«— "incorrect") as values 1

" json

{"objl": {"correct": X, "incorrect": 1-X}, "obj2":
— e.}

where X is between 0 and 1.

The two probabilities "correct", "incorrect" indicate

— how likely the retrieved mesh would be in the

— correct orientation for the motif.

For objects that are hanged on a wall, always consider

< the mesh would be in the incorrect orientation.

Include a brief two to three sentences explanation for

— each object after the json-like text structure.
spatial_optimization_touch: >-

I have instantiated a spatial motif of "<DESCRIPTION>"

— using meshes retrieved from a human-authored

< object dataset.

How common is it for the individual objects to be

— placed in tight contact with each other in this

— motif?

Consider whether this motif describes a decorative

— arrangement or a functional arrangement.

A decorative arrangement is one that is intentionally

— designed to be arranged in a specific way for

< aesthetic purposes.

If the motif is a decorative arrangement, then

< touching is less common.

Otherwise, use common sense to reason about whether

«— the objects are typically placed in tight contact

< with each other in real life.

—

wnsynsetkeys: >-

invalid response: >-—

E.5. Ablation Prompts

Simple prompts for generating a meta-program directly
from a description of a spatial motif (without example ar-
rangement), directly from a set of motif programs (without
any reasoning), and through in-context learning.

ablation direct: >-

>

>
ablation_generalize: >-

>

—
—

)

)

D)

)

ablation_incontext: >-

F. Example Session

We show an example session generating meta-program
given arrangement corresponding to “a stack of seven
plates”. We provide both the prompts to the LLM and the
responses from the LLM for different phases of learning to
generate the meta-program. Note that the session is fully
automatic and does not require any user intervention.

F.1. Naive Program Extraction

Initial naive program extracted directly from the example
arrangement (does not require a LLM).

objs = []
obj_1_half_size = [0.08909, 0.0143, 0.08853]
obj_1_centroid = .
obj_1 = create('plate', obj_1_half_ size)

move (obj_1, obj_1l_centroid[0], obj_1_centroid[1],
— obj_1_centroid[2])

objs.append (obj_1)

obj_2_half_size =
obj_2_centroid = .
obj_2 = create('plate', obj_2_half_size)

move (obj_2, obj_2_centroid[0], obj_2_centroid[1],
— obJj_2_ centroid[2])

objs.append (obj_2)

obj_3_half_size = [0. 9, 0.0143, 0.08853]
obj_3_centroid = [, —-0.01514, 0.0]

obj_3 = create('plate', obj_3_half_size)

move (obj_3, obj_3_centroid[0], obj_3_centroid[l],
— o0obj_3_centroid([2])

objs.append (obj_3)
obj_4_half_size =
obj_4_centroid = [0.(

0, -0.022

0.0]
obj_4 = create('plate', obj_4_half_ size)
move (obj_4, obj_4_centroid([0], obj_4_centroid[1],
— obj_4_centroidl[2])
objs.append (obj_4)
obj_5_half_size = [0.0¢
obj_5_centroid = [0.0, -0. 29,
obj_5 = create('plate', obj_5_half_size)

move (obj_5, obj_5_centroid[0], obj_5_centroid[1],
— obj_5_centroid[2])

objs.append (obj_5)

obj_6_half_size = [0.08909, 0.0143, 0.08853]
obj_6 = create('plate', obj_6_half size)

move (obj_6, obj_6_centroid[0], obj_6_centroid[1],
«— obj_6_centroid[2])

objs.append (obj_6)
obj_7_half_size =)
obj_7_centroid = [0.0, - 44, 0.0]

obj_7 = create('plate', obj_7_half_ size)

move (obj_7, obj_7_centroid[0], obj_7_centroid[1],
< obj_7_centroid[2])

objs.append (obj_7)

72,

F.2. Motif Program Generation

High level observations of naive program.

Asking LLM to make high level observations of the naive
program using prompt optimize_highlevel_count

Below is a program about a spatial motif of

— "<DESCRIPTION>".

Describe how many object types and how many are there
— for each type.

Respond with a json-like text structure with the object
— types as keys and the counts as values.

Here is the program:

" "python

<PROGRAM>

Response from LLM (json)

{
"plate":

Asking LLM to make high level observations of the naive
program using prompt

optimize_highlevel_general_pattern

Can you observe any pattern in this motif of objects

— about "<DESCRIPTION>"? (Look for common sense things
— like repeating layout, symmetry, etc.)

Respond with a detailed description of the pattern you
— observed in text.

Response from LLM (text)

The pattern observed in the "stack of seven plates" can
— Dbe described as follows:

*xObject Consistencyxx: All seven objects in the
stack are of the same type, i.e., "plate." They all
share identical dimensions, with a half-size of
[0.08909, 0.0143, 0.08853].

reer

*xVertical Stackingxx: The plates are vertically
stacked along the y-axis. This observation can be
made from the changes in the "y~ component of the
centroids of each plate.

rere

*xEven Spacingxx: The centroids of the plates are
evenly spaced along the negative y-axis. Each
subsequent plate is positioned 0.00757 meters below
the previous one. This incremental change in the
y—-coordinate confirms a precise stacking
arrangement.

rreee

*xFixed x and z coordinates*x: The “x~ and “z~
coordinates of the centroids of all the plates
remain constant at 0.0. This indicates the stack is
perfectly aligned along these axes, ensuring that
the stack is upright and not tilted or offset in any
horizontal direction.

rerree

Given these observations, the motif can be described as
— a neat, symmetrical vertical stack of seven uniform
— plates, each spaced evenly from one another.

Asking LLM to make high level observations of the naive
program using prompt optimize highlevel_xyz_pattern
Can you observe any pattern in the x, y, z coordinates
— of the objects in this motif?

Respond with a detailed description of the pattern you
— observed in text.

Response from LLM (text)

The x, y, and z coordinates of the objects in this motif
— exhibit the following patterns:

x-coordinate:

— The x-coordinate for the centroids of all plates is

— 0.0.

— This consistent value indicates that there is no

— horizontal shifting in the x-direction, meaning all
— plates are aligned vertically without any horizontal
< displacement.

y-coordinate:
— The y-coordinates show a clear pattern with a
— consistent decrease of 0.00757 meters for each
— subsequent plate.
— The initial y-coordinate is 0.0 for the first plate,
— and the y-coordinates for the following plates are:
- 0.0 for the 1st plate
- -0.00757 for the 2nd plate
- -0.01514 for the 3rd plate
- -0.02272 for the 4th plate
- -0.03029 for the 5th plate
- -0.03786 for the 6th plate
- —0.04544 for the 7th plate
- This indicates that the plates are evenly spaced along
— the vertical axis (negative y-direction) by a
< distance of 0.00757 meters.

z-coordinate:

— The z-coordinate for the centroids of all plates is

— consistently 0.0.

— This indicates there is no depth displacement along

— the z-axis, meaning the stack is aligned in the

< depth direction as well, with no forward or backward
— shifting.

Pattern Summary:

— x*Vertical Alignmentx*: All plates are perfectly

< aligned in the vertical axis (y-axis) with an even
— spacing.

- x%xNo Horizontal Displacementx*: There is no change in
— the x-coordinate, ensuring horizontal alignment.

— x+xNo Depth Displacement*x: There is no change in the
< z-coordinate, ensuring depth alignment.

In conclusion, the coordinates exhibit a clear pattern
— of a vertically stacked arrangement with precise
< spacing and no horizontal or depth displacement,
— ensuring a neat and uniform stack of plates.

Asking LLM to make high level observations of the naive
program using prompt

optimize_highlevel xyz_displacements

Can you find the relative displacements of each object
«— to the next object in the x, y, z dimensions?

Base on these displacement values, group the objects
— into different subgroups.

The goal is to disentangle the overall motif into

— smaller, self-contained spatial patterns.

Assign each object to a subgroup such that the spatial
< pattern in the subgroup can easily be expressed by
< some programming constructs.

Each object should belong to exactly one subgroup.

Response from LLM (text)

Relative Displacements:
The relative displacements of each object to the next
— object in the stack are as follows:

— *xDisplacements*x:

- Object 1 to Object 2: (0.0, -0.00757, 0.0)
- Object 2 to Object 3: (0.0, -0.00757, 0.0)
- Object 3 to Object 4: (0.0, -0.00757, 0.0)
- Object 4 to Object 5: (0.0, -0.00757, 0.0)
- Object 5 to Object 6: (0.0, -0.00757, 0.0)
- Object 6 to Object 7: (0.0, -0.00757, 0.0)

Each of these displacements is identical, indicating a
— uniform vertical displacement between consecutive
— objects.

Grouping into Subgroups:

Given the uniform relative displacement pattern, the
entire set of objects can be grouped into one single
subgroup. This is due to the consistent and
repetitive nature of the displacement, which can be
expressed succinctly using a loop construct in a
programming context.

DROR N

Subgroup Assignment:
— x*xSubgroup l*x: All objects (Object 1 to Object 7)

Expressed Subgroup Pattern:

- The spatial pattern in this subgroup is a uniform
— vertical displacement of 0.00757 meters along the
< negative y-axis between consecutive objects.

Programming Context:

— This can be expressed using a loop to create and move
< each object in the subgroup with the uniform

< displacement.

Determining motif type for storing into program library.
Asking LLM to classify motif type for the description using
prompt classify

Based on your observations, classify the spatial motif
of objects "<DESCRIPTION>" into one of the following
motif types:

stack - multiple objects of the same type are placed
orderly on top of each other

pile - objects are placed on top of each other but
not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)

row - objects are placed next to each other in a row

grid - objects are placed orderly in a grid, like a

chessboard

left_of - one object placed to the left of another
object

in_front_of - one object placed in front of another
object

on_top - one object placed on top of another object
surround - objects are placed around a central object
in a circular manner

wall vertical_column - objects are placed in a column
from top to bottom vertically on a wall
wall_horizontal_row — objects are placed in a row
from left to right vertically on a wall

L A R T AR

11. wall _grid - objects are placed in a grid orderly and
— vertically on a wall (when in doubt between grid and
< wall_grid, choose wall_grid if the objects are

— placed on a wall)

12. letter - objects are placed to form a letter of the
— alphabet

13. rectangular_perimeter - objects are placed around

< the perimeter of a rectangular shape facing inward
If the motif type is letter, concatenate the letter to

the end of the motif type (e.g., letter_A, letter_B,
etc.)
Respond with the name of the motif type only.

i

Response from LLM (text)

stack

Motif program generation.

Asking LLM to transform the naive program into a motif
program based on the observations made by the LLM using
the prompt optimize_lowlevel

Take a deep breath and follow the steps below carefully.
Using these observations you made, modify the original

— program such that the code structure represents the

— spatial pattern.
Here are the requirements for this task:

Do not create any functions

Store all created objects in a list named “objs”

The new program should represent the same scene as in
the original program with the same number of
objects.

The objects do not need to be in the same order as
the original program, instead, opt for a more
structured or natural order.

Do not list all object coordinates, rotation angles,
or sizes in a list and acess them in a loop using
index.

This is not acceptable as the spatial pattern is lost.
Avoid doing this at all costs.

Use loops, arithmetic operators, if-else statements,

— and other programming constructs to encapsulate the
< patterns.

6. The coordinates and sizes can be slightly different
— from the original program, as long as the overall
— motif remains the same.

Please respond with code only.

rrrprerpedr

Response from LLM (python)

objs = []

half_size = [0.
initial_y = 0.0
displacement_y = -0.

o
U

for i in range(7):

y_position = initial_y + i * displacement_y
obj = create('plate', half_size)
move (obj, 0.0, y_position, 0.0)

objs.append (obj)

Motif program validation.
Asking LLM to validate the motif program using the prompt

validate_naive_listing.

Below is a program that describes a spatial motif of

— objects.

Please analyze the program for the following criterion:
The program should define and manipulate the objects and
— their properties without using lists of specific

— object attributes for individual objects.

It is okay to store common values in variables and reuse
<« them (e.g., dimensions, common properties).

However, the program should use programming constructs
— and arithmetic operations (like loops or

— calculations) to define and manipulate the

— positional and orientational properties of objects,
< rather than explicitly listing them.

For example, if there are four objects, the program

— should not have a list of four (x, y, z) coordinates
— or four rotation angles for each object.

Exclude the “objs” list from the analysis.

Answer in a Jjson format:

{'valid': 'yes' or 'no', 'variable_names': a list of the
< names of the variables that violated the criterion}
Briefly explain your reasoning in two to three sentences
— after the json-like text structure.

Here is the program:

T "python
<PROGRAM>
Response from LLM (json)
{
"valid": "yes",

"variable names": []

All validation checks were passed after iteration 1. The pro-
gram provided by the LLM is the stored in the program li-
brary with the classified motif type of stack.

If the validation did not pass, then the
optimize_lowlevel_ feedback prompts are used to re-
fine the program based on the validation test that didn’t
pass.

F.3. Meta-program Generation

Asking LLM to make observations of commonalities in a set
of motif program with motif type stack using the prompt

generalize_high_level_commonalities

Take a deep breath and follow the steps below carefully.
Here are "<NUM_PROGRAMS>" programs that describe the

< same type of spatial motif: "<MOTIF_TYPE>".

Each program may have different objects and different
— coordinates, but they all fall under the same type
— of spatial motif.

Here are the programs and the spatial motifs they

— create:

<ALL_PROGRAMS>

For each program, analyze and observe its structure and
— how the structure coorelates with the spatial motif
— it creates.

Pay extra attention to how the objects are placed

<« relative to each other.

Can you identify the commonalities among these programs?
If there is only one program, hypothesize what the

— commonalities could be if there were multiple

— programs of the same type.

For the alphabet_letter motif type, only consider the
— commonalities among the programs that form the same
— letter.

Respond with a detailed description of the pattern you
— observed in text.

Response from LLM (text)

Based on the analysis of Program 1, which describes a
"stack" spatial motif, we can identify several
commonalities that characterize this type of spatial
arrangement. Here are the observed commonalities and
patterns:

DR

Commonalities of the Stack Motif:

[

**xObject Type Consistencyxx:

— All objects in the motif are of the same type. In
<« this case, all objects are identified as 'plate'.
— This consistency ensures uniformity in the

— appearance and arrangement of the stack.

2. xxUniform Object Dimensionsxx:
— The objects in the stack all have the same
— dimensions, represented by the “half_size~
— parameter. This uniformity in size contributes to
< the regular and orderly appearance of the stack.

3. x*xVertical Alignmentxx:
— The objects are aligned vertically along the
<~ y-axis. This is characteristic of a stack, where
— objects are placed directly on top of one another
«— in a straight line.

4. *xEven Spacingxx:
— There is a consistent vertical displacement between
<~ consecutive objects in the stack. In Program 1,
— the displacement is uniform with a negative
< y-coordinate increment of -0.00757 meters. This
— regular spacing ensures that the stack maintains
<~ a tidy and organized appearance.

5. xxFixed Horizontal and Depth Positions*x:

— The x and z coordinates of the objects remain
constant. In Program 1, these coordinates are
both 0.0 for all objects, indicating that there
is no horizontal or depth displacement. This
fixed positioning along the x and z axes
maintains the straight vertical alignment
characteristic of a stack.

rTrrres

Hypothesized Commonalities for Multiple Programs:
If there were multiple programs describing the "stack"
<« motif, we might observe similar commonalities:

1. »xObject Typex*x:
- Multiple programs could feature different types of
— objects (e.g., books, boxes), but within each
< program, the objects would be consistently of the
— same type.

2. **xUniform Dimensions#x:
- Even if different programs use different objects,
< the dimensions of the objects within each program
«— would remain uniform.

3. *xVertical Spacing*x:
— The vertical displacement between objects might
— vary between programs, but within each program,
— the displacement would be consistent and regular.

4. *xVertical Alignmentxx:
— Each program would align the objects vertically
— along the y-axis, maintaining this key
< characteristic of a stack.

5. x*Fixed x and z Coordinatesxx:
- While different programs might place the stack at
— different positions in the world, within each
<« program, the x and z coordinates would be fixed
— for all stacked objects to enforce the vertical
— alignment.

Conclusion:

The commonalities observed in the "stack" motif
emphasize uniformity in object type and size,
regular vertical spacing, and maintaining a
consistent vertical alignment without horizontal or
depth displacement. These patterns ensure that the
spatial arrangement of objects reflects a neat and
orderly stack.

Tiiedts

Asking LLM to make observations of differences in a set of
motif program with motif type stack using the prompt

generalize_high_level_differences

What are the differences among these programs?
Specifically, how are the objects placed differently in
— each program?

For each program, observe and describe the differences
— in the program structure that lead to the different
— spatial motifs.

If there is only one program, hypothesize how the

— program could be written differently to create a

«— different spatial motif of the same type.

Your hypothesized programs should not deviate from the
— concrete, non-hypothetical programs you analyzed,
< and should focus on the number of objects, their

— positions, rotations, and sizes as the main axes of
— variation.

The hypothesized programs should be close to the

< original program in terms of the spatial motif they
— create (e.g., a stack of 3 objects instead of 4, or
— a row of 4 objects instead of 3, etc.)

Respond with a detailed description of the differences
— of each program in text.

Refer to the programs by their order in the previous

< prompt.

Response from LLM (text)

Sin

Frreeld

=
RS

#

[

ce we have only one concrete program to analyze,
let's hypothesize how it could be written
differently to create different variations of the
same spatial motif, "stack." We will focus on
varying the number of objects, their positions, and
possibly other factors such as rotations (though
rotations might be less relevant for the stack
motif) .

Hypothesized Variations:

*»xChanging the Number of Objectsx*x:

- Instead of a stack of seven plates, we can create a
— stack with a different number of plates. For

— instance:

“*“python

objs = []

half_size = [0.08909, 0.0143, 0.08853]
initial_y = 0.0

displacement_y = -0.00757

for i in range(5): # Stack of 5 plates instead of 7
y_position = initial_y + i % displacement_y
obj = create('plate', half_size)
move (obj, 0.0, y_position, 0.0)
objs.append (obj)
— xxDifference+x: The main difference is the
< reduction in the number of objects from 7 to 5,
— leading to a shorter stack.

x*Changing the Vertical Displacementxx*:

— By modifying the vertical displacement, we can
< create a stack with different spacing between
— Objects:

" Tpython

objs = []

half_size = [0.08909, 0.0143, 0.08853]

initial_y = 0.0

displacement_y = -0.01 # Increased spacing between

— plates

for 1 in range(7):
y_position = initial_y + i * displacement_y
obj = create('plate', half_size)
move (obj, 0.0, y_position, 0.0)
objs.append (obj)
- xxDifferencex*: The increased vertical displacement
«— creates a stack with more space between each
«— plate compared to the original program.

*xIntroducing Randomnessx*x:

— Adding a slight randomness to the displacement
— could simulate a less orderly but still

«— essentially vertical stack:

" “python
import random

objs = []

half_size = [0.08909, 0.0143, 0.08853]
initial_y = 0.0

displacement_y = -0.00757

for 1 in range(7):

random_offset = random.uniform(-0.001, 0.001)
y_position = initial_y + i x displacement_y +
— random_offset

obj = create('plate', half_size)

move (obj, 0.0, y_position, 0.0)

objs.append (obj)
— *xDifferencexx: Adding a slight random offset to
<« the y-position for each plate introduces minor
< variations, making it look less perfect while
— still maintaining the overall stack structure.

4. xxUsing Different Object Sizesxx:
- Introducing variety in object sizes while
<~ maintaining the stack structure:
T python
objs = []
initial_y = 0.0
displacement_y = -0.00757

for i in range(7):
half_size = [0.08909, 0.0143 + i % 0.002,

— 0.08853] # Incremental increase in size
y_position = initial_y + i % displacement_y
obj = create('plate', half_size)

move (obj, 0.0, y_position, 0.0)
objs.append (obj)
— *xDifference*x: Varying the size slightly with each
— subsequent object while maintaining the stack
< adds a gradient or stepped effect to the stack
— without deviating from the vertical alignment.

Summary of Differences:

— x*xNumber of Objectsxx: Varying the quantity alters the
— height and the visual appearance of the stack.

- x*xVertical Displacement=*x: Adjusting the spacing

— between objects changes the density/compression of
— the stack.

- x*Randomness*x: Introducing slight variations in

— positioning to make the stack appear less

— mechanically perfect.

- x*xObject Sizes*x: Varying object sizes can add a

— dynamic look while retaining the core stack motif.

Each of these variations adheres to the overarching
"stack" motif but introduces subtle differences in
how the objects are placed relative to each other.
These variations maintain the essence of a vertical
arrangement while exploring different aspects of
spatial positioning and object properties.

RO

Meta-program reasoning.
Asking LLM to explain why all motif program be-
long to the motif type stack using the prompt

generalize_high_level motif_reason

Despite these differences, these programs all fall under
— the same type of spatial motif: "<MOTIF_TYPE>".

Here is a list of all available motif types:

stack — multiple objects of the same type are placed
orderly on top of each other

pile - objects are placed on top of each other but
not in an orderly manner (when in doubt between
stack and pile, choose pile if the description
contains the word "pile" explicitly)

row - objects are placed next to each other in a row

grid - objects are placed orderly in a grid, like a

chessboard

left_of - one object placed to the left of another
object

in_front_of - one object placed in front of another
object

on_top - one object placed on top of another object
surround - objects are placed around a central object
in a circular manner

wall_vertical_column - objects are placed in a column
from top to bottom vertically on a wall
wall_horizontal_row — objects are placed in a row
from left to right vertically on a wall

f;{."i?"#‘[?‘i.‘”l?f”ijlf\)i?

11. wall_grid - objects are placed in a grid orderly and
— vertically on a wall (when in doubt between grid and
— wall_grid, choose wall_grid if the objects are

— placed on a wall)

12. letter - objects are placed to form a letter of the
— alphabet

13. rectangular_perimeter - objects are placed around

— the perimeter of a rectangular shape facing inward

Based on your observations, what are the reasons that

—
—

these programs fall under the same type of spatial
motif?

Also, identify the closest incorrect motif type and

—

explain why it is not the correct motif type.

Respond with a detailed description of the reasons in

—

text.

Response from LLM (text)

Reasons These Programs Fall Under the "Stack" Motif:

1.

**xObject Consistency#x:

— All objects in each program are of the same type.
<« For example, in the provided program, all objects
— are 'plate'. This consistency ensures that the

<« overall structure is uniform.

x«Vertical Alignmentxx:

— Objects are placed in a vertical line with

— consistent alignment along the y-axis. Each

— object is positioned directly above or below the
<~ previous one, creating an orderly vertical

— configuration.

*xUniform Spacing*x:

— There is a consistent vertical displacement between
— consecutive objects. This regular spacing further
<« reinforces the orderly arrangement typical of a
— stack.

*xFixed x and z Coordinatesxx:

- The x and z coordinates of all objects remain
constant, ensuring that there is no horizontal or
depth displacement. This fixed positioning along
the x and z axes maintains the strict vertical
alignment required for a stack.

)

xxOrderliness«*x:

— The objects are placed in an orderly manner,

«— directly on top of each other. There is no

«— randomness or displacement that would suggest
— disorganized placement.

Closest Incorrect Motif Type:

The closest incorrect motif type is xx"pile"xx.

Why "Pile" is Not Correct:

1.

*xDisorganized Placementx*x:

— The "pile" motif is characterized by objects placed
on top of each other but not in an orderly
manner. This typically implies some degree of
randomness or irregular displacement among the
objects.

- In the analyzed and hypothesized programs, the

<« placement of objects is precise, with no

— randomness introduced that would suggest a

«— disorganized pattern. Even when slight randomness
is added in one of the hypothesized variations,
the overall structure remains far too regular and
ordered to be considered a pile.

il

*xLack of Explicit Disorderxx:

— Descriptions of the motif type "pile" often

— explicitly include the word "pile," indicating a
< conscious choice to describe a disorganized

— arrangement.

— The provided programs have a clear, structured
approach to object placement, consistently using
precise coordinates and displacements to maintain
order, which does not align with the definition
of a "pile."

Tiid

Summary:

These programs fall under the "stack" motif because they
involve multiple objects of the same type placed in
an orderly vertical arrangement with consistent
spacing and alignment. The closest incorrect motif
type, "pile," is not appropriate because it implies
disorganized placement, which contradicts the
precise and orderly nature of the stack motif
observed in the programs. The consistency in object
type, uniform spacing, vertical alignment, and lack
of random disorder are key reasons for classifying
these programs as "stack" rather than any other
motif type.

A

Asking LLM to reason about how to gener-
ate a meta-program for the motif type stack by
first identifying the arguments using the prompt

generalize_low_level_arguments

With this conversation in mind, you are now tasked to
— write a python function (a meta-program) that can be
— used to create various spatial motifs of

— "<MOTIF_TYPE>".

A user should be able to call this meta-program with

— different arguments to create different spatial

— motifs of this type.

Using the provided programs as examples, the

— meta-program should be able to create any spatial
<« motif of this type with slight variations in the

— number of objects and their attributes.

Apart from the objects in the examples, the meta-program
«— should be able to create new spatial motifs of

— different object types and attributes.

Use your analysis on the commonalities and differences
— among the example programs to guide you in writing
— the meta-program.

Keep in mind that the final meta-program should be able
< to recreate the given example spatial motifs as

— closely as possible.

Avoid taking plain lists of object attributes, such as
— coordinates, sizes, and rotations, as arguments, as
— this defeats the purpose of using a meta-program to
«— capture fundamental spatial patterns.

I will guide you through the process of writing the

— function step by step.

First, what are the arguments that the meta-program

«— should take to create a spatial motif of this type?
Respond with a detailed description of the arguments in
— text.

Response from LLM (text)

To create a versatile meta-program that can generate
various spatial motifs of the "stack" type, we need
to carefully consider the arguments that the
function should accept. These arguments should allow
for flexibility in creating different stacks while
adhering to the core patterns observed in the
provided examples. Here are the key arguments:

DRSO

Arguments for the Meta-Program:

1. xxObject Type ("label”) xx*:
— The type of object to be created, which will
— determine the label for each object in the stack
— (e.g., 'plate', 'box', etc.).

2. *xNumber of Objects (“num_objects”™) xx*:
— The total number of objects to be included in the
— stack. This allows flexibility in defining the
«— height or length of the stack by varying the
— number of constituent objects.

3. x*xInitial Position (“initial_position™)*x:
- A list or tuple representing the initial world
<~ coordinates (x, y, z) for the bottom or starting
— object in the stack.

4. x+xVertical Displacement (“displacement_y~) xx*:
— The consistent vertical distance between
— consecutive objects in the stack. This will
«— determine the regular spacing between the objects
«— along the y-axis.

5. xxObject Size ("half_size™)xx:
- The dimensions of each object in the stack,
— represented as a list of three floats
— [half_width, half_height, half_depth]. This
< ensures that all objects in the stack have
— uniform sizes.

6. x*xRandom Offset (“random_offset”™)x* (optional):

— An optional argument specifying the range of random
< variation in the vertical displacement for each
— object. This can add slight randomness to the

«— positioning, creating a less mechanically perfect
— stack if desired.

Additional Considerations:

— *x*xRotationxx: While rotations might be less relevant
for a perfectly vertical stack, we could include an
optional argument for rotating objects around one or
more axes, though this will be kept simple and
optional.

«**xAxis of Stackxx: For future extensibility, we might
consider allowing the stack to be along different
axes, though for now, we focus on the y-axis for
simplicity.

rertreos

Summary of Arguments:
Here is a refined list:

1. “label (str) : Type of object to create (e.g.,

— 'plate') .

2. “num_objects (int) : Number of objects in the stack.
3. "initial_position (list[float]) : Initial position
s [x, y, z] of the first object.

4. “displacement_y (float) : Vertical displacement

< between objects.

5. "half_size (list[float]) : Dimensions of each object
— as [half_width, half_height, half_depth].

6. “random_offset (float, optional) ™ : Range for random
< variation in vertical displacement.

The next step will be to proceed to writing the

— meta-program using these arguments to generate the
— desired spatial motifs.

Asking LLM to reason about how to generate a
meta-program for the motif type stack by first
identifying the function structure using the prompt

generalize_low_level_structure

You have identified the arguments needed for the

— meta-program.

Now, think about the structure of the meta-program.

How should the meta-program be structured to generalize
— the spatial motif of "<MOTIF_TYPE>"?

Aim to encapsulate the commonalities and differences

— among the example programs in the structure of the
— meta-program.

Think about how the arguments should be used in the

— meta-program to create the spatial motif.

What programming constructs should be used to

— encapsulate the commonalities and differences among
— the example programs?

Respond with a detailed description of the structure of
— the meta-program in text.

Response from LLM (text)

Structure of the Meta-Program:

To generalize the spatial motif of "stack," the
meta-program needs to encapsulate the commonalities
and differences observed in the example programs.
This involves using the identified arguments
effectively and employing appropriate programming
constructs to create a stack of objects. Here's a
detailed description of the structure of the
meta-program:

et

1. Function Definition:

The function should be defined with the arguments

— identified earlier, including the main ones (label,
— num_objects, initial position, displacement_y,

— half_size) and optional ones (random_offset).

2. List Initialization:

Initialize an empty list “objs”™ to store the created
— objects, ensuring that the created objects can be
— accessed and manipulated as needed.

3. Loop to Create Objects:

Use a loop structure to iterate through the number of
— objects ("num_objects”). This loop will handle the
— creation and placement of each object in the stack.

4. Object Creation:

Within the loop, create the object using the

— “create(label, half_size)™ function. Each object

<« will have the same type and dimensions as specified
— by the arguments.

5. Position Calculation:

Calculate the position for each object. This involves
«— using the initial position (“initial_position”™) and
< applying the vertical displacement incrementally.

- x%xBase Positionx*: Start with the initial position for
— the first object.

— x*xIncremental Displacementx*: For each subsequent

< object, add the vertical displacement

— (“displacement_y~) to the y-coordinate of the

— previous object's position.

— x%xOptional Random Offsetx*: Apply a random offset to
< the vertical displacement if the “random_offset~

— argument is provided, simulating a less perfect

— stack.

6. Moving Objects:

Use the "move ()~ function to place each object at the
— calculated position. Ensure that the x and z

— coordinates remain constant for the stack along the
— y-axis.

7. Append to List:
Append each created and moved object to the “objs™ list.

8. Return the List:
After the loop completes, return the “objs™ list
< containing all the objects in the stack.

Programming Constructs:

— x*xLoop (for loop)x*: To iterate through the number of
— objects.

— x*xArithmetic Operations*+: For calculating the

— positions.

- *xConditional Handlingx*: To apply optional random

— offsets.

- x*xList Operationsx*: For storing and returning the

— oObjects.

Pseudo-Code:
Below is a pseudo-code representation to help visualize
— the structure:
T "python
def create_stack(label, num_objects, initial position,
«— displacement_y, half_size, random_offset=None):
objs = []
initial_x, initial_y, initial_z = initial_position

for i in range (num_objects) :
Calculate vertical position with optional
— random offset
y_position = initial_y + i x displacement_y
if random_offset:
y_position += random.uniform(-random_offset,
<« random_offset)

Create and move the object
obj = create(label, half_size)

move (obj, initial_x, y_position, initial_z)

Append to the list
objs.append (obj)

return objs

=
BS
+

Summary :

meta-program is structured to use the provided
arguments to create a stack of objects. It leverages
a loop for object creation and placement, arithmetic
operations for position calculations, optional
randomness for variability, and list operations to
manage the created objects. This structure ensures
the generality and flexibility needed to recreate
the given example spatial motifs and generate new
variations within the "stack" motif.

H
jox
0}

el il

Meta-program generation.

Asking LLM to generate a meta-program for the motif type
stack based on the reasoning it just did using the prompt
generalize_low_level. The LLM is asked to also use doc-
string and include comments.

Take a deep breath and follow the steps below carefully.
You have identified the arguments and the structure of
— the meta-program.

Now, write the meta-program that can create various

— spatial motifs of "<MOTIF_TYPE>".

Here is a meta-program of the same motif type you

— created in the past:

" “python

<PAST_META_PROGRAM>

You can use this as a reference to write the new

— meta-program, but you can also write it from

— scratch.

Refer to the arguments you identified and the structure
< you described to write the meta-program.

Remember that the meta-program should be able to

— recreate the spatial motifs of the example programs
— as closely as possible.

Avoid taking plain lists of object attributes, such as
<» coordinates, sizes, and rotations, as arguments, as
— this defeats the purpose of using a meta-program to
— capture fundamental spatial patterns.

Include a docstring at the beginning of the meta-program
«— to describe the purpose of the function and the

< arguments it takes.

Use comments to explain your code step by step.

Please respond with code only.

Response from LLM (python)
import random

def create_stack(label, num_objects, initial_position,
— displacement_y, half_size, random_offset=None) :

mon

Create a stack of objects with the specified
ers

Args:
label (str): Type of object to create (e.g.,
— 'plate')

in the stack.
ial position [x,

1 objects (int): Number of obje
tial _position (list[float]):
— y, z] of the first object.

t (float) : Ve

tical displacement

half size float]): Dimensions of each object
— as [half width, half_height, half_depth].
random_offset (float, optional): Range for random
— variation in vertical displacement.

Returns:
list: A 1

mon

£

oI

created obje

objs = []
initial_x, initial_y, initial_z = initial_position

for i in range (num_objects):

<
y_position = initial_y + i * displacement_y
if random_offset is not None:
y_position += random.uniform(-random_offset,
< random_offset)

obj = create(label, half_size)

move (obj, initial_x, y_position, initial_z)

objs.append (obj)
return objs

Meta-program validation.

Asking LLM to create function calls to the meta-program
it just created for each of the motif programs, using the
prompt generalize_low_level batch_recreate.

Using the meta-program you wrote, what are the function
— calls needed to recreate each of the example

— programs you analyzed previously?

Write one function call for each example program, that

— recreates the spatial motif of the program as

— closely as possible.

Ignore the programs you hypothesized and only write

— function calls for the example programs I provided.
Response with a json-like text structure with the

— example program order integers as keys and the

— function calls as values.

For example, {"1": "function_call (programl_args)", "2":
— "function_call (program2_args)", ...}
Response from LLM (json)
{
"1": "create_stack('plate', 7, [0.0, 0.0, 0.0],
— 0.00757, [0.08909, 0.0143, 0.08853])"

All validation checks were passed after iteration 1. If the
validation did not pass, the LLM is asked to try to correct
for any errors using the generalize low._level_feedback
prompt.

Meta-program documentation. Asking LLM to re-
fine the comments in the meta-program using the prompt
generalize_refine_comments

You have successfully written the meta-program to

<~ generalize the spatial motif of "<MOTIF_TYPE>".

The latest function calls you provided are able to

< recreate the spatial motifs of the example programs.
Please update the docstring and comments in the

— meta-program to provide as much information as
— possible about the expected arguments.

If the program contains well-defined parts that can be
< explained, include comments to describe these parts
— — how they contribute to the spatial motif and how
<~ they differ from other parts.

At inference time, the meta-program will be the sole

«— source of information for recreating this spatial
— motif.

Therefore, these comments will be crucial for

— understanding how the meta-program should be used.
Include at least one example function call in the

— comments to show how the meta-program should be

— called.

Please respond with code only.

Response from LLM (python)
import random

def create_stack(label, num_objects, initial_position,
— displacement_y, half_size, random_offset=None) :
o
Create a stack of objects with the specified
— parameters.

Args:

label (str): Type of object to create (e.g.,

— 'plate’).

num_objects (int): Number of objects in the stack.
initial_position (list[float]): Initial position [x,
— y, z] of the first object.

displacement_y (float): Vertical displacement

— between objects.

half size (list[float]): Dimensions of each object
— as [half_width, half_height, half_depth].
random_offset (float, optional): Range for random
— variation in vertical displacement. Default is
— None.

Returns:
list: A list of created objects.

Example Call:
objs = create_stack('plate', 7, (0.0, 0.0, 0.0],
— -0.00757, [0.08909, 0.0143, 0.08853])

This example recreates a stack of seven plates with
— the given initial position, displacement, and
— dimensions.

wnn

— C = ST CK
for i in range (num_objects)

C e o

—
y_position initial_y + i % displacement_y
if random_offset is not None:
y_position += random.uniform(-random_offset,
— random_offset)

ted po

initial_z)

objs.append (obj)

return obijs

The meta-program provided by the LLM is then stored in
the meta-program library with the motif type of stack.

References

[1] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal
Shankar, Hongseok Namkoong, John Miller, Hannaneh Ha-
jishirzi, Ali Farhadi, and Ludwig Schmidt. OpenCLIP, 2021.
1

	. Implementation Details
	. Baseline Details
	. Mesh Retrieval Approach

	. Evaluation Details
	. Manual Verification Guidelines
	. Perceptual Study Instructions

	. Additional Qualitative Results
	. Example Programs
	. LLM Prompts
	. General Prompts
	. Prompts to Generate Motif Program from Naïve Program
	. Prompts to Generate Meta-program from Motif Program
	. Inference Prompts
	. Ablation Prompts

	. Example Session
	. Naïve Program Extraction
	. Motif Program Generation
	. Meta-program Generation

