
Appendix404

Computing environment405

MNIST benchmark runs were executed on a stand-alone x86 PC using 8 CPU cores, 8 GB RAM,406

and no GPUs, The system installs Windows 10, Jupyter notebook 6.4.3, python 3.8.5, and PyTorch407

1.9.1. We used MNIST data in PyTorch divided by a batch size of 128.408

CIFAR10&100 benchmark runs were executed on an x86 cluster using 8 cores in a single node,409

typically 4-5 GB RAM allocated, and no GPUs, The system installs Linux version 8.5. python410

3.6.9, and PyTorch 1.2.0. We used CIFAR10&100 data in PyTorch divided by a batch size of 256 2.411

Present limitations412

Currently, the neural network representation is not perfectly asynchronous because of Eq. 32 to413

pipeline the coarse-grained dynamics. However, this limitation may make sense considering that414

biological brains also use slow brain waves to lively regulate their operations. The strategy can415

reduce wij update frequency without much affecting online tracking performance.416

Another limitation is that synaptic networks consisting of the axon, synapse, and dendrite are as-417

sumed linear, and nonlinear operations are presently dumped into neurons in conjunction with σ1418

and σ2. For example, batch normalization is a nonlinear operation that may be implemented by419

more naturally adjusting the amplitude and delay distributions of neural signals. Computing the loss420

function (in this research, the cross-entropy loss was used) is another case in which the computation421

is now performed outside operator-discretized networks. Instead of making the synaptic network422

nonlinear in a Cartesian-product state space, it may stay linear in a tensor product state space, which423

is not entirely impossible as stated later.424

Furthermore, this representation expects the data to take an event-driven (e.g., time-stamped) format,425

rather than synchronous streams like video data. In latter cases, some sort of front-end to convert426

frame-synchronous data may help.427

Related topics in AI428

If the input data streams are appropriately arranged, the application of the idea to a variety of tempo-429

ral ANNs beyond tSNNs should be of interest as a follow-on investigation. The operator-discretized430

representation will make sense for encoding information into temporal sequences and processing431

them in time as seen in spike trains in biological neural systems. The fine-grained spike dynamics432

can be nicely decoupled from the coarse-grained behavioral one. We may regard what is happen-433

ing in the fine-grained part as a sort of vector to time conversion, which is somewhat opposite to434

time2vec [A1]. This approach will work better when the fine-grained dynamics is dominated by435

predefined temporal correlations, rather than blindly learned from data.436

The operator representation may be combined with other well-established machine learning tech-437

niques, such as kernel methods [A2], as a means to constitute appropriate basis sets in large spa-438

tiotemporal dimensions. The nonstationary operators can add unique value to such methods by con-439

sistently handling temporal dynamics using amplitude and/or temporal coding. Adjoint operators440

will naturally incorporate backward dynamics for learning. The use of log probability is popular,441

such as in log-likelihood or Viterbi algorithm, to better deal with product events. Relating the log442

of the probability to the Euclidean norm of the signal amplitude as in Eq. 9 for p = 2 is consistent443

with, for example, what has been done in Viterbi algorithm under Gaussian noise [A3].444

Our emulation strategy can become a searchlight to explore future neuromorphic HW. The bidirec-445

tional and elastic nature of our operators may help to natively investigate other physically-oriented446

(e.g., mechanical) models, such as equilibrium propagation [A4]. The faster turnaround of the pro-447

posed emulation methodology will facilitate detailed comparison across multiple design choices,448

for example, digital and analog spiking [A5, A6] against reduced precision approaches [A7] using449

modern AI workloads. We believe that temporal coding is essential for neuromorphic HW to be450

truly as efficient as the biological brain. Encoding information into the pulse width may rather be451

considered as non-return-zero rSNNs without much information temporarily.452

2Similar results with imagenet in multinode distributed data-parallel to be published upon approval
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Biological implications453

Though the present research is on artificial neural networks, originally initiated by treating neural454

signals as slowly-traveling elastic waves [31, 32], there are growing pieces of works on the impor-455

tance of wave dynamics in biological neural networks as well [33, 34]. Thus, it may also be worth456

investigating more biological neuron models, such as Izhikevich neurons [A8] within our represen-457

tation. Specific functional forms for σ1 and σ2 will affect amplifying and/or damping of collective458

wave dynamics, which may better elucidate what is happening in biological systems.459

Since the geometrical size of spike signals is less than typical axon-synapse-dendrite network sizes,460

it makes sense, also from a biological standpoint, to explicitly deal with the traveling wave dynamics461

of spike signals. The width in size of a spike signal is ∼ 1 mm for a velocity ∼ of 1 m/s and a width in462

time of ∼1 ms. Thus, the axon-synapse-dendrite networks need to be treated as distributed entities,463

rather than lumped. The biological implications of present LC TL models for axons and dendrites464

should be argued further in comparison to the conventional RC cable models. LC TLs are superior465

in better transmitting signal energy and information without dissipation. However, since the origin466

of a reasonable amount of L is still controversial, the use of L in the biology literature is limited [A9]467

to our knowledge.468

Here, we speculate that significant L could be caused by more than 4 orders of magnitude heavier469

masses of ions than that of electrons (3.81754× 10−23g for Na+ and 9.1093837× 10−28g for e−).470

This is because the kinetic inductance LK due to the elastic inertia without scattering given by the471

following equation [A10] is also more than 4 orders of magnitude higher:472

L = LEM + LK , LK =
m

nq2
l

A
(A1)

where m is mass, n density, q charge, l length, A area. For the electric TLs, it is well known that,473

though microscopic electron motions are diffusive, the coherent electrical signal waves driven by the474

macroscopic charge density offset is not much affected by them. It should be carefully investigated475

further whether the same situation holds in more electro-mechanical biological environments with476

much more complex ion dynamics, and therefore, whether the heavier ion masses can indeed make477

LK a dominant component as Eq. A1 indicates.478

Ingress and egress operators can naturally represent orthodromic and antidromic spike transmis-479

sions [A11]. Thus, our operator formalism may help to systematically model bidirectional spike480

transmissions in biological systems.481

Perspective on future AI and QC482

It is one of the primary agendas in future computing how AI and QC would evolve in parallel483

with conventional computing systems. The present approach will shed new light on it as "AI ∪484

QC" arguments, alternative to historical "AI ∩ QC" [A12], and facilitate us to unlock unknown485

mechanisms of the brain. This is because the present idea seems to suggest that classical wave486

dynamics alone can achieve some limited functionalities of QC by taking advantage of Euclidean-487

norm computing features that have been considered unique to QC [29].488

Figure A1 (a) illustrates delay and sum beamforming with delay precoding. It examplifies how the489

Euclidean norm can enhance the contrast between desired and undesired signals for better perfor-490

mance under a given energy budget (known as the beamforming gain in wireless literature [30]).491

Freespace should be replaced with a waveguide network for neural signals and the geometrical size492

will be orders of magnitude reduced as the signal velocity is reduced from the speed of light (3.0493

×108 m / s) to ∼ 1 m/s [31,32]. Well-arranged attenuated superpositions of neural signals from pre-494

ceding neurons can increase desired signal amplitudes with constructive interference, and decrease495

undesired ones with destructive interference. We still need to carefully work on how to exploit this496

feature in future computing, but let us discuss some interesting possibilities below.497

Grover algorithm is well known as a QC algorithm with quadratic speed-up by using amplitude498

amplification. Here, we would like to argue that the same algorithm is also possible with cubits as499

shown in Fig.A1(b). By using n normalized full cubits instead of m = log2 n qubits, the state ||ρ⟩⟩500

is given as501

||ρ⟩⟩ = ||ρ1⟩⟩ ⊕ ....⊕ ||ρn⟩⟩ = ||ρ′⟩⟩ ⊕ ||ρ′′⟩⟩ . (A2)
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Figure A1: (a) Delay and sum beamforming in wireless communications (freespace is to be replaced
with a waveguide network for neural signals); (b) Grover algorithm with cubits; (c) A tensor product
state with two cubits. All take advantage of classical wave physics with the Euclidean norm.

This corresponds to the following m qubit state:502

|ρ⟩ = ρ1 |00⟩⊗|01⟩⊗ ...⊗|0m⟩⊕ρ2 |10⟩⊗|01⟩⊗ ...⊗|0m⟩⊕ ....ρn |10⟩⊗|11⟩⊗ ...⊗|1m⟩ . (A3)

So, n cubits and m qubits span the same state space of n = 2m dimension. Then the following503

exactly the same two unitary operations, starting with ||ρ⟩⟩ = ||ρinit⟩⟩, are repeated O(n1/2) times504

on the cubit state:505

Uρ′ = 2 ||ρ⟩⟩ ⟨⟨ρ|| − I, (A4)
and506

Uρ′′ =

{
− ||ρi⟩⟩ if ||ρi⟩⟩ = ||ρ′′⟩⟩ ,
||ρi⟩⟩ otherwise. (A5)

Though an exponentially larger number of cubits is required (this may make sense considering507

∼ 1011 neurons in our brain), the complications associated with encoding n data into m qubits can508

be avoided.509

In contrast, the exponential speedup in specific QC algorithms, such as quantum Fourier transform510

and factoring, seems difficult since they take full advantage of tensor product state spaces. Though511

tensor product state of cubits, such as512

||ρi⟩⟩ ⊗ ||ρj⟩⟩ (A6)
can be defined and constructed with signal multipliers as exemplified in Fig. A1(c), the states can513

entangle only locally and the dimension is limited by the bandwidth.514

There are other distinct differences to be mentioned. The interference discussed here of classical515

waves can occur for signals from different sources. This is a noticeable difference since the qubits516

interfere only from the same sources. In addition, the coherence time of classical waves can be quite517

long even at room temperature, as is observed in sound waves, radio waves, ocean waves, and so518

on [31–34].519
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