Supplementary Material

A Auxiliary Results

Lemma 1 ([19, 20]). Suppose every f € % is L-Lipschitz continuous. When p € [1,00), it holds
that

1 i

Ewo (f? ) mm{)\g + — - Z sup {f )\||x—a: ||P}}
i=1xEX

When p = oo, it holds that

i sup f(x).

1
Lros(fi0) =Ly o (fi0) = =
N i=1azeZ |la—i'||<e
Lemma 2 (Lemma 2 in [29]).

Es | sup (Ep,,[f] — En[f])
fez

< 2R, (7).

Lemma 3. Suppose f(x) € [0, M| forall f € F, then for any t > 0, with probability 1 — e, we

have:
[t
Sup ‘Eptrue [f] - Epn [f]l S an(y) + M Y
feF 2n
If we have || fllo < M, then by replacing f by f + M, we can get the same result by replacing M
by 2M.

Lemma 4 (Contraction Lemma). Let f be a L-Lipschitz function, and F a family of functions on Z .
Then:
R (f o F) < L-R,(F),

where fo F ={fog:g9€ F}.

We bound [||0f]||4,p,, and |||0f]]l4... in both absolute difference and relative difference.
Lemma 5. Assume Assumptions I and 3 hold. Then

1,4
10f1llq.e, = lIlOf] < ZA P N0F1IG e, = NOFING Py -

| q,Prue

Let t > 0. Then with probability at least 1 — e™¢,
1
t\ ¢
l051Ly < 0fllae, (1284 — (L5 ) v wre s

Proof. For the first part, notice that the function s — s is Lipschitz continuous on ((n A 77)%, 00)
with constant no larger than = (77 AR~ % . The result follows from the Mean Value Theorem.

For the second part, using McDiarmid’s inequality, with probability at least 1 — e =%, for every f € .Z,
q -9 t
Ep [10f1(z) _1’ <E { Fp [-10f1(x) _1H L/n)dy /) —,
o [Een Lot ) — ) < Bs. | g [Be. oy, 2] = 1] + B/ o
which implies that

L S i3
Tof@,., ~ 12 =@ = (L) 50.

Thus, it holds that

t\"%
Pt < 11071110 (1= 290 (07,) — (Lfmyy =)

1o .
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B Proofs for Section 3

B.1 Proof of Proposition 1

By [18, Lemma EC.8], for all § > 0,

| sup  f(z) = f(@") — [0f|(3")8] < 6T 4 2L (8 — d(2", Zy)) , - )
v a1 <6

We start with the simple case of p = oo, for which (WO) and (RO) coincide. Using Lemma 1, we
have

£ (fi0) = L2 (f;0) = ; sup f(x).

1
n ze€X,|lx—2||<o

By (2) and (4),
L0 (f10) = L3, (f3 0)] < ho™*t +2Ley (o).
Next we consider p € (1, 00). Let us first prove for the upper bound. By Assumption 1,
0< sup {f(a") = f(@) = Alla* — 2'[|P} < sup{Ld — Aé"},
TieX 6>0
hence the optimal ¢ satisfies

0 < ( )p-T = 4)
If p < 1+ «, by (4) we can bound the inner maximization as

sup{£(a*) — F(#*) A’ — ]}
= sup {f(z") = f(@") — Ao"}
0<o<(§) 7T i~z <5

< sup {10f1(2")6 + h* ™ + 2L(6 — d(#', D)), — A"}
0<5<( )p T

< s {9FI0 — O BT 4 2L (6 — d(#, 7)) )

o<5<(—)p 1

< sup{|af|(#)5 — (A — h(L) "
5>0

)07} + 2L (%) 7T — d(i', 7)), ,
which can be finite only when A > L(%)i It follows from Lemma 1 that

£ (fi0) =+ 3 @)

min Su A1 _ L D %ﬁ_ ji’
< ){Ae+ > ap (91108 = (3 = h(8) 70} + 2L L) 7T = e, 7))

O T n -
=7 min {00+ 1 30 sup{[0f1(3)6: — AT} + 2L((5)7T — d(@', 7)), |+ LT o
2 i=16;>0
A= l1291ley g f1—p
< 10l 0+ LT & + 2LEs, () 7T — (@', 7).

(6)
Ifp > 1+ a,by (4)and (5), we have

sup{f(a") — f(#") = Alla" — #'||"} < sup{|0f(& )8 = 20} + h(§) 5

1

Tt L((%)ﬁ - d(‘%iﬂ @f))-;-

It follows that
1o,
£wo (f7 ) g ;f(;sz)
<1§1>1n{)\g +1 gsi%ﬂaﬂ(”)a — AP} + (R LR —a@2p) f D)

odl 41 L 1 i
<l10f1lle,.q -+ h(m)P’l o™+ 2LEp, (o) 7T 0 — d(@', Z5)) |,
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where the last inequality holds by taking a feasible solution A\ = %gl‘p. This completes the
proof for the upper bound.

Next, we prove the lower bound. If p > « + 1, by (4) we have

L s S - £GY)

n {zi},€Z i=1
> > gg%{lafl(”) hop ™ = 2L(6; — d(3', Zy)) |+ 5 X0 0F < 7}
i=1 i=1
> 4 sup {z OF1()5: — 2L(5 — d(#, 7)), + £ 3507 < "} — L sup S {hoet LY 67 <
§;>0 =1 i=1 §;>04=1 i=1

> [10f gz, 0~ 2L Be, [ (i)t 0 = (@, 7p) | = ho™*,
where the first term in the last inequality is obtained by taking §; = %g, and the second term
q,Pn

is due to Holder’s inequality.
If p < @+ 1, using Lemma 1 and the fact that the optimal § < (%) a (c.f. (5)), we have
et = S M zmn e+ 1S s (S = £ -2,
= o<5<( )a |l —a: <6
Using 4 we can bound the inner supremum as
sup {f(z:) = £(37) = A7}

1 .
0<6<(£)a |lwi—24(|<5

> ig%{lﬁf\(ifi) — (A +h(E)S

=)oP — 2L (5 — (i, 7y)) , }.

It follows that
wo 1z ~0
Lo (fi0) = = 3 1)
i=1

o<+1 P

> min A\o? + )oP — 2L(5 - d(ji7 '@f))Jr}

41
A>0 n

> sup{19[()3 ~ (A+ k()™

+1—p

> 10f e, - 0 = h(E) 50" — 2L - Be, [ (oA 210 - d(2, 7)), | .

where the last inequality holds by taking § = |Iﬁ£|f(ﬁl) o. Finally, using the assumption that
q, ]Pn
10 llqp, > 7 forall f € F, we get the desired result.

We remark that the result can be extended to arbitrary nominal distributions using exactly the same
idea, with summation replaced by integration.

B.2 Proof of Proposition 2

Since £3°,(0) — L7 ,(0) > 0 trivially holds, it suffices to prove the other direction. Fixing f € .7
consider the dual problem from Lemma 1,

L0 =min {Ae" + 1 Y2 sup {f(') ~ Ala’ — 1"} }.

i=1zteX
Define
v(A) = AP + o Zbup{f() Az — 2|7},

211

and let \,, be a minimizer. If \,, = 0, then £} (0) = L}? (o), since there exists a worst-case
distribution that supports on n points according to the structure of the worst-case distribution [19]. In
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the sequel we consider A,, > 0. By Assumption 1 and the structure of the worst-case distribution
[19], £3,°,(0) is attained at a distribution of the form

1 nzl 1—c¢ €
- l; 0, + 635'2 + 56‘1’1’
where _ _
x' € argmax{f(z) — M|z —&'|’}, i=1,...,n,
el
2y € argmax{f(z) — Allz — 2"},
TEX
and
1zl i 1—¢ €
- _ Ai||P no_gnp L S\pn _ anp — oP
I e Rl B B R

By (5), we have that ||z* — 2| < (/\L)ﬁ Without loss of generality, we assume that [|27} — 2| >

n

lz™ — 2™, which implies f(z") > f(z™). It follows that {z*,i = 1,...n — 1,2™ } € 2,(0), and
we have
S COEES SEORES (D
max = x = x = f(z™
{Ii}?:1€‘%pp(9) n =1 n =1 n

WO € n
> Li5(0) = —(f(a2) = f(=h))
> L0, (0) = 2 ()T
It remains to lower bound \,,. To this end, observe that by choosing Ay = %gﬂ’“, by (6)

and (7), we have for all f € %,

12 i 1
o0) = - 32 £ <107 leq - 0+ 2Len ((afhe) 7o)

p—1 o
+1{p < a+ IL(E)"T o + 1{p > a + Bh(gp—)e™ ",

recalling that e,, is defined in (2). Also note that
12 niy @ 1z i a+1 i P
v(An) = = X0 f(@") = Ano? + = 30 sup{|9f[(2)d; — hé7 T — 2L(6; — d(@', D)) . — Madl'}
=1 M i=16,>0

§;=2p
> 2/[0flllgp, -0 — 220" h — (2P —1)0" Ay — 2Len (20).

If
(22 = 1), < [[|0f|lgp,, - 0 — 2T 0T h — 2Le, (20)
__Lp \iE (VR o Lp o+l
- 2Le"<(ll\3f\ﬁ)vn,q)p 9) L(z) = ¢ = (e )™
then
1o
v(An) — = > f(@")
n ;=1

1 p=1 o
> 10fllqp. - 0+ 2Len (i) 7T 0) + LT 0 + W)™
12, .
= v(Xo) = — X (&),
n =1
which is contradicted to the optimality of \,,. Hence, we must have
(27 = 1" An = [10flllgp, - 0 =277 0T h — 2Len(20)
_ Ly \oEr o) (VS P p(Lp ot
2Len( ()77 0) — L)' & — (e,

hence we complete the proof.
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B.3 Proof of Proposition 3

In the sequel, when the loss function f € .# is clear from the context, we denote H (z), G(x) for
Hy(z),Gy(x), and G; for G(Z;) to simplify the notation. The upper bound is straightforward.

To prove the lower bound, we first consider (WO), without loss of generality, we assume that
G(zYH) > G ) .. G(2™), otherwise we just relabel them. Suppose the maximum in defining G;

is attained at 2* w1th dlstance d; from 2*; otherwise we can use an appr0x1mat10n argument. Startmg
fromi = 1,ifd; > n® o, wesetx' =1' 0therw1se we set ¢ = 3¢ 4 nd ou;, where u; 18 a direction to
be determined later, i.e., we perturb & with distance 6; = ||z* — #*|| = max(d;, n%0), in the direction
of # — ' ifd; > n? o, or u; otherwise. Then we proceed to ¢ + 1, until we achieve the largest

N such that %L Zf\;l ; < o. Note that since each §; > n°p, we have N < |n'~?|. If for some i
we cannot perturb it with fully mass 1/n, we perturb % of 41, so that % Zivzl 0; + §5N+1 =0,
where 0 < € < 1. By construction, {z°};,—; ., € 21(0). Hence we have

L3 (/) - 1)
> 15 - ) + SN - 5 )
Hldgﬁg(f(xi) - f(@") +i.d§n5g(f(xi) FEN] + SN - )
= i[i-dgn‘sgéi(;i + ibd{jﬂég(f(xi)_— F@E")] + %(f(a:N“) — f(ENTY).

To bound second sum above involving d; < nlo, by (4), we choose u; (and thus z*) so that
fla') = f(&") 2 [0f|(@")0; — (h- 677 + L(6; — d(3", Zy)) ,)- 8)
On the other hand, to bound the first sum above involving the difference between G; and |9 f|(2%),
by (4) and §; > d; > 0 when d; < n’p, we have
Gid; = f(&") = f(&') < |0f|(&")d; + h - di ™ + L(d; — (&', 7)) ,

Hence,

(=7)

(Gi = [0f1(2)d; = (Gi — |0f](2"))di E

(2

< h-d?o; + L(d; — d(@', y)) , - ©)

S

<h- 60t 4+ L(6 - d(3, 7y))

Therefore we have

L2 (F) - £(@)

>L Y 66+ Y G —2(h- 62 L(8 — d(#, 2y)) )| + On1Cn
ird;>n’ 0 i:d; <n o n
1 X 2 6 \o+1 6 A1
> Z iGi+ 5N+1GN+1 - = Z (h-(n°0)* ™ + L((n°0) — d(2',%y)) )
h(N + .
> o(lfllip — An) - %m%) 2B, [(n'0 - d(a, 7)) ]

> o(|flluip — An) = (4™ )0’ — 2Ley (n o),

Next we consider (RO). Fix N = [n'=?] + 1, and we just perturb the first |n' =% | points z* with
distance §; = ||z’ — &[] = 3¢ < n’ in the direction u’ so that

fa') = f@') > [0f|(@")6; — (h- 677" + L(6; — d(i', Zy)) )
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and remain the rest points unchanged. Then,

B ;(f(xi) - f(@"))

> L5 9180 — (h- 65 + L(5; — d(#', 7)) ,)
=1

1 N Az 1 N d \a+1 5 ~1

2 o L OAIE) = 2 3 (h- (0™ + L((n"0) — d(@, 21)).,)
hN
> |03 e — == (n"0)**" — LB, [(n’e — d(x, 7y)) ]
> [0f|(#V )0 — (2h0* )0’ — LEs, [(n0 — d(x, Zy)) , .
The rest follows a similar argument as for (WO). O]

Proof of Remark 2. Here we bound A,,. Observe that H¢(A,,) is the (|7 =% | 4 1)-th order statistic
of n i.i.d samplings from the unit uniform distribution, which follows Beta distribution B(|n'=%| +
1,n — |n'=%]), which is sub-Gaussian with proxy variance m [28]. Hence, for any ¢ > 0, with

probability at least 1 — 6*2’”2, we have
nt=0) +1
H(A,) — ——— <t
(An) n+1
Replacing ¢ with \F’ we have with probability at least 1 — e =%,
t 1-6 1 t 1-6 1
A, < H Y (= u) <e By u)ﬁ’
NG n+1 Vi on+1
whenever f + Lnniﬁ < a. When ¢ = g, = O(1/+/n), by [18, Theorem 1] we have g, A, +
4hn®® o®+1 4 2Le,, (on® )=0(n" —-&4 + (3489 4 (- 28)), 0
C Proofs for Section 4
C.1 Proofs of Propositions 4 and 5
In the sequel, we set X" := (z',...,2™), and define a metric d on 2" as d(x",x™) = (3", ||z —

2'||P)'/P. The following result follows from the proof of Lemma 5 in [17] by replacing Eg and 7
therein with Eg and Tont™ » , respectively.

Lemma 6. Let p € [1,2]. Assume Assumption 5 holds. Let F : 2™ — R. Assume Eg, [F] = 0 and
there exist M, L > 0 and xg € 2™ such that

L
F(x") <M+ —=d(x",x3)?, vx" € 2.
n
Define R(+; F) : Ry — Ry as

Rs, plo; F) = min {)\Q +Eg, [ sup {F(f{") - F(x") — )\d(i”,x”)pH }
’ A> xnegn n

Let t > 0. Then with probability at least 1 — e~ ¢,

F(x") < Rs, (, |Tnt. F> .
ne
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Proof of Propositions 4 and 5. We first fix f € .Z. Set F(x") = Ep,.[f] — Ep, [f]. By definition
Es, [F(x™)] = 0. By Assumption 1 we have

PE") - F(x) < sup {1 S 7@ f(xi)}
feF n ;=1
L& i i
<5 YL - o)
<L+ - )

?

1
= L+ Ld(x",x")P.
Hence, by Lemma 6, with probability at least 1 — e~*, we have

Ep,,.[f] — Ep,[f]
< F(x")

S RSn,p Tizt; r
ne
P
Cmind A [T Es | swp {PEY) - P - 2dgexnyr
= r/\nzlg n% Sn ;(nbélglzfn n )

sgg{x< t) s [i o i<—f<oz”'>+f<aci>—A||a:~l‘—acivf’)]}

nr xneXm i=1
; P
. Tn _ )
= {)‘ ( n§> + Ep,,. Lsggr; {— (@) + fla) = N|Z - x||P}} } .

2
np

We denote the last line as R, ( ot f > . Note that Assumption 1 implies that for any A > || f||vip,
sup { = £(2) — f(2) = Az — ]| } = 0.
TEX

Consequently by definition R1(0; —f) < o||f]|lLip for all ¢ > 0. Moreover, for p € (1,2], by
Proposition 1 (in which P,, is replaced with Py,e), we have

Ry (g5 =) < ollo=Dllla + Cog ™" + 2Le((pL /)77 )

< (1 — 2R, (M) — (L/n)q\/i> _%gllla(—f)\

with probability at least 1 — ¢, following Lemma 5.

|g.p + Coo T - 2Le((pL /)77 0),

To obtain a uniform bound, by Assumption 6, for any distribution P it holds that

Ep[fo'] — Ep[fo] < 5[0 —0]|e.
Let € > 0 and O, be an e-cover of ©.
When p = 1, we have that

Pus, {30 € ©, 5.0 L(fy) > L3 oo (fo3 0) + 2ne |
=Py, {30 € 0,5 Er,,,[fo] > B, [fo] + oll follip + 2ne |
< Pys, {30 € Oc,5.t. Bx, [for] > Bz, [fo + ol folliv |

< 5 P, {Erlfol > Ee, [fo] + oll follui }-
0'cO.
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Letting € = 1/n yields that with probability at least 1 — .4 (¢; O, ||-||o)e ™", for every 6 € O,
Tnt 2K
Epoe[fo] = Be, [f,] < Ra(y) —55 = fo) + —
Replacing ¢ with ¢ 4 log .4 (€; ©, ||-||o) yields Proposition 4.
When p € (1,2], let
€= C’gg(o‘ﬂ)/\p + 2Le((pL/n)ﬁg).
We have that

Pus, {30 € ©,5.8. L7(fy) > L4, (fos0) + 2me + &}
=Pus, {39 € 0, s.t. Ep,,,[fo] > Ep,[fo] + 0l/|0fo]llq + 2re + €}
=Py, {30 € 0, 5.0. Br,,.[fo] > B, [fo] + oll|0(—fo)l g + 26 + ¢}

< e £ By, {30 € O st Ba,, o] > Br, [for] + (L= 29%u(A) — (L/m)\/5) " *alllo(—for)ll e, + €}

1 .
e 5 Py, {Brlfi] > Ee, o] + (1= 29(4) — /"y £) 7 allot ooz, + )
/e €
Letting € = 1/n yields that with probability at least 1 — (1 + .4'(1;0,[|-|0))e ", for every 6 € ©,
vr 2k
Epoo[fo] = Br,[fo] < Lq(fos00) + = + &
Finally, replacing ¢ with ¢ + log(1 + .4 (%;©, ||-||e)) yields Proposition 5. O

C.2  Proof for Example 1

Lemma 7. We gather a few simple facts about Assumption 6:

(i) If {fo : 0 € O} satisfies Assumption 6 with parameter k, and ¢ is a L-Lipschitz over the
range of all functions in {fy : 0 € ©}, then {¢ o fy : 0 € O} satisfies Assumption 6 with
parameter LK.

(ii) If both {fy : 0 € ©} and {gg : 6 € O} satisfy Assumption 6 with parameters k1 and
Ko, then {afg + bge : 0 € O} satisfies Assumption 6 with parameters aky + bk for any
constants a,b > 0.

(iii) {x v+ 0Tz :0 € O,|z||2 < B} satisfies Assumption 6 with parameter B when ||0|| = ||-||2.
(iv) {x = [|[W x|z : W €W C R>F ||z||2 < B} satisfies Assumption 6 with parameter B
when [[Wlw = [W| ¢

PVOOf: () |¢O f91 - (bo f92| < L|f91 - f92| < LH”91 - 92“

(i) |afo, +bgo, — afo, — bge,| < alfo, — fo.| + blge, — go.| < (ak1 + bk2)|[01 — O2]|2.

(iii) 0 @ — 05 2| < (|01 = O22]|z[|2 < Bl|61 — O2]|2.

@) (W @l — [IWy 2] < [[(Wy — Wa) Tl < [Wh = Wall2|lz]l2 < Bl|W1 — Wallz.

O

Set 6 = [0, —1], then fo(z,y) = 107 (x,y)|P € F. Itis clear from the definition that every f € F is
piece-wise differentiable. We assumed both feature space 2~ and the weight space © are bounded:

|z]l2 < By forallz € 2, |y| < By forally € ¢, and ||6]|2 < B3 — 1 forall § € O. Note that | - |P
is Lipschitz, with constant bounded by the upper bound of the gradient norm:

plOT ()P < plOlE (2, y)lls ™ < pBE T (By+ Ba)P (10)
hence Assumption 1 is verified.

To verify Assumption 6, observe that by (10), | - |P is Lipschitz over the range of o7 (z,y), for all
0 € ©. The verification follows from Lemma 7 (i) and (iii).
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D Proofs for Section 5

D.1 Proofs for Example 3

Let us verify .# is a family of Lipschitz functions, hence Assumption 1.
[fw (@) = fw (@) < W (2 = ) 2(IW T &2 + W zl2)
< 2B|W|Ellx - Zl2,
hence we get that fy is 2Bk-Lipschitz.
Moreover, we have that
Ep. IV fw 3] = Epy,, [I12WW T ||3]
= 4Bp,, [z " WW "]
= ATe(W " Ep,,, [za T ]W)

k
= > w] B, [z |w;
i=1
2 41{)\minEPtrue [:L-x—r]’

hence Assumption 3 is verified with n = 21/kApinEp,. |77 T].

To verify Assumption 6, observe that ||WW ' z||y < ||W||#||z|l2 < VkB, hence (-)? is Lipschitz over
the range of |W " x|, where W W = I).. Hence, using Lemma 7(i)(iv) we have x = 2v/kB>.

D.2 Proofs for Section 5.2

1

Lemma 8. Assume Assumptions 1, 2 and 4 hold, and Py, is continuous, and o < 3 (%) 85, where
the constants are from Assumption 4. Then

ab )

L3 (05 f) — L% (05 )] < CoMTa48), Vf e Z.

Proof. Forevery x € 2, let S(x) be such that
f(S(2)) = f(x) = d(z, S(2))G(f)(=),
)

where we have assumed the existence of the maximizer defining G( f)(x), otherwise we can argue by
approximation. Let€,0 > 0. Set Z. = {x € 2" : G(f)(x) > [|G(f)lo0.Pruc — €}-

Define a mapping T, : &~ — 2 as

S(x), if r € 2, d(z,S(x)) > o' °,
T.(z) = o+ 0 %u, ifre 2, dx S)) <o,
x, ifee (Z\ Z)U 2y,

where u is the direction such that

f(Te(x)) = f(z) 2 |0f|(2) - d(z, Te(x)) — h - d(z, T(x))**,
which holds due to (4).

Define the monotonically increasing function
M(e) = Ep,,, [d(z, T-(x))1{z € 2z, d(z,S(x)) = o' °}]+0' °Ep,, [L{z € 2¢, d(z,S(x)) < o' *}],

and define
=inf {M(e) > o}.
€ 31210{ (e) > Q}

By Assumption 4, we have

M(3) > ¢ "Bz, [L{z € 23}] > o' el

/=
vV
s}

)

N QI
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It follows that € < % < a. For any €y < €, we similarly have

0> M(eo) > 0" °Ep,, [z € 2,}] > o' Pc(eo) 7.

Taking the limit ¢y — €, we get that 91*506% < o, which implies € < (%)5. Define €; = € + (%)B.
Since M(e;) > o, we choose r < 1 such that M (e;) = o. Now we define a distribution
P = (1 — 7)Peye + 7T, % Prrue. Then

Ep[f(2)] = Epy. [f ()] = 1 (Eey [ (T, (2))] = Ep,,, [f(2)])-
For xz € Z.,,if d(x,S(x)) > o' 7%, we have f(T,, (x)) — f(z) = G(f)(x) - d(z, T,, (x)), and if
d(x, S(z)) < 0*~°, similar to (8) (9) in proof of Proposition 3, it holds that
F(Te (@) = f(z) 2 G()(@)d(T, (x),2) — 2h - d(T, (x), ).

It follows that

Ep(f ()] — Epyo[f (@)] = 7 (Bp,.. [ (T, ()] — Ep,.. [f (2)])
> M (e1)(|1G(F) oo e — €1) = 2rho =By, [H{a € 20, 1)
> 0l|G(f) oo P — 2¢~ Bl T8 _ oppl=0)(at)+d
where the last row is due to 7Ep, [1{x € 2, }o'™° < rM(e)) = o.
Setting § = %% yields that

apB_
By [f (Te; (2))] = b [ (@)] = 0| G(f) oo 2y — Col' 57,
O
Proof of Theorems 3 and 4. Set Ly (o; f) := Ep,,.[f] + oll|0f]|[|4- Observe the following decompo-
sition
|00, (05 f) = L3 (03 /)
<100 (05 f) = L (o5 I+ 1L (03 ) = L3 (03 )| + L3 (03 ) — L3 (03 )]

Below we bound the three terms on the right-hand side separately. For the last term, by [2, Remark
9], we have |L}°(; f) — LY (0; f)| < Co? for some C > 0.

We consider p > 1 first. For the first term, by Proposition 1, we have
1L, (05 f) = Lt (03 £)] < Cog ™ +2Le, ((pL/71)" o).
For the second term, it follows from Lemma 3 and Lemma 5 that with probability at least 1 — 2¢~t,
\L3 4 (0 f) = L5 (03 f)] < [Epy,.[f] — H ollllofllge, = 10F1llq B

< 2%, ( +M,/ n/\n*"(zmn(agfq)JrLa/%).

Therefore, we obtain the result.

(1)

Next, we consider p = 1. By Proposition 3,

Lo (0 f) = L7 oo (05 )] < €

Moreover, with probability at least 1 — e~?,

1L oo(@5 ) = L3(0 )] < ;élgr{lEmme[f] — Ep, [f1] + ol G(f)loo e = [G(F)lloc .., [}

[t
< 2R, (ZF)+ My — + Ayo
2n
[t
< — )
<2R,(F)+ M 2n+en

Finally, the third term is computed in Lemma 8. Thereby we complete the proof. O
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