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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs for language polishing and minor rewrites of paragraphs after we had written the
technical content. We did not use LLMs to generate research ideas, design experiments, or write
technical sections. All analyses, methods, and results were conceived and verified by the authors.

B OVERVIEW

We first present a comprehensive review in the Section C section and a detailed overview of the
Section D, including descriptions of the datasets and baseline models. We then evaluate DeCoP’s
Section E in terms of computational efficiency, generalization under limited data conditions, and
the effects of different filtering strategies in the Instance-level Contrastive Module (ICM). Next, we
perform a Section F, investigating the impact of varying patch lengths and the learnable hyperparam-
eter ↵initial for the Instance-wise Patch Normalization (IPN) module, different look-back lengths for
the Dependency Controlled Learning (DCL) module, and varying filter intensities � and contrastive
loss weights � for ICM. Finally, we provide the Section G and the Section H for both time series
forecasting and classification tasks.

C RELATED WORK

C.1 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) has become a dominant paradigm across domains, with notable ex-
amples including Masked Language Modeling (MLM) Devlin et al. (2019) and Generative Pre-
trained Models (GPM) Brown et al. (2020). In MLM, random tokens are masked in text and
predicted based on surrounding unmasked tokens, while GPM predicts the next token in an au-
toregressive manner. These methods leverage large unlabeled datasets, allowing models to learn
meaningful representations without manual labeling, which supports scalable learning across vast
datasets, preserves data diversity, and minimizes labeling costs. Contrastive learning (CL) Chen
et al. (2020a); Gao et al. (2021) has also gained attraction, focusing on maximizing similarity be-
tween positive pairs while minimizing it between negative pairs. Foundational works such as Sim-
CLR Chen et al. (2020b) and MoCo He et al. (2020) in computer vision, along with CLIP Radford
et al. (2021) in multimodal alignment, underscore its versatility. However, our framework combines
the self-supervised nature of MLM with the contrastive principles of CL, enhancing robustness and
consistency in feature learning to address distribution shifts.

C.2 MASKED TIME SERIES MODELING

Inspired by the success of Masked Language Modeling (MLM), masked time series modeling
(MTM) Rasul et al. (2023); Garza et al. (2023); Das et al. (2023) has gained popularity in time
series analysis. PatchTST Nie et al. (2022) first introduced the patching technique and masked mod-
eling pretext task for low-level time series forecasting. SimMTM Dong et al. (2024) constructed
positive samples from a manifold perspective and reconstructed time series from multiple masked
sequences, while needing large computing resources when training. Meanwhile, CL has been widely
adopted for high-level time series classification tasks. TF-C Zhang et al. (2022b) proposed a time
and frequency domain contrastive learning framework to enhance consistency in both the time and
frequency domains. In contrast, our framework better at handling complex distributions and dynam-
ical dependency by incorporating dependence controlled learning.

D EXPERIMENTAL DETAILS

D.1 DATASET

We evaluate our framework using 10 datasets across forecasting and classification tasks in both in-
domain and cross-domain settings. Detailed descriptions of the datasets are provided in Table 6. The
ETT datasets Zhou et al. (2021) (ETTh1, ETTh2, ETTm1, and ETTm2) were collected from two
distinct electric transformers over a two-year period, from July 2016 to July 2018. These datasets are

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

available in two temporal resolutions: 15 minutes and 1 hour, denoted as ”m” and ”h,” respectively.
The Weather dataset Wetterstation (2021) comprises 21 meteorological indicators recorded every
10 minutes in Germany during 2020. The Electricity dataset UCI (2021) contains hourly electricity
consumption records of 321 customers from 2012 to 2014.

Table 6: Datasets for Forecasting and Classifi-
cation Tasks

Tasks Datasets Channels Length Classes Frequency

Forecasting

ETTh1 7 17420 - 1 Hour
ETTh2 7 17420 - 1 Hour
ETTm1 7 69680 - 15 Mins
ETTm2 7 69680 - 15 Mins
Weather 21 52696 - 10 Mins

Electricity 321 26304 - 1 Hour

Classification

SleepEEG 1 200 5 100 Hz
Epilepsy 1 178 2 174 Hz

FD-B 1 5120 3 64K Hz
EMG 1 1500 3 4K Hz

For classification tasks, the SleepEEG dataset
Kemp et al. (2000) includes 153 whole-night
electroencephalography (EEG) recordings, cate-
gorized into five stages: Wake (W), Non-rapid
eye movement (N1, N2, N3), and Rapid Eye
Movement (REM). The EPILEPSY dataset An-
drzejak et al. (2001) features single-channel EEG
measurements from 500 subjects, with binary la-
bels indicating whether the subject experienced
a seizure. The FD-B dataset Lessmeier et al.
(2016) was generated using an electromechani-
cal drive system to monitor rolling bearing con-
ditions and classify faults into three categories:
undamaged, inner-damaged, and outer-damaged. The Electromyogram (EMG) dataset PhysioBank
(2000) records electrical activity in muscle responses to neural stimulation. It consists of single-
channel EMG recordings from the tibialis anterior muscle of three healthy volunteers suffering from
neuropathy and myopathy, where each patient represents a classification category.

D.2 DETAILS OF BASELINE SETTINGS

For the time series forecasting task, we categorize the baseline models into two paradigms: self-
supervised and supervised. PatchTST Nie et al. (2022) and SimMTM Dong et al. (2024) are rep-
resentative self-supervised models. In contrast, DLinear Zeng et al. (2023), FEDformer Zhou et al.
(2022), Autoformer Wu et al. (2021), and Informer Zhou et al. (2021) are robust supervised mod-
els for forecasting tasks. Additionally, CycleNet and TimeMixer represent the latest state-of-the-art
methods, also grounded in the supervised paradigm. For the classification task, we divide the base-
line models into two paradigms: masked time series models (MTM) and contrastive learning (CL)
models. SimMTM Dong et al. (2024), Ti-MAE Li et al. (2023), and TST Zerveas et al. (2021)
follow the MTM paradigm, while LaST Wang et al. (2022), TF-C Zhang et al. (2022a), CoST Woo
et al. (2022), and TS2Vec Yue et al. (2022) are based on the CL paradigm.

For time series forecasting task, the default look-back window for various MTM models is set to
512, following Nie et al. (2022). The results for DLinear , FEDformer, Autoformer, and Informer are
from PatchTST. Meanwhile, for time series classification task,the results for Ti-MAE, TST, LaST ,
TF-C, CoST, and TS2Vec are obtained from SimMTM. For the latest state-of-the-art methods Wang
et al. (2024); Lin et al. (2024), the look-back window length is consistently fixed at 512, adhering to
Nie et al. (2022). The classification results of PatchTST are reproduced using the official codebase,
with hyperparameters further tuned based on the default settings to achieve optimal performance.

D.3 IMPLEMENTATION DETAILS

All experiments were repeated five times, implemented using PyTorch, and conducted on an
NVIDIA RTX 4090 GPU with 24GB of memory. The baselines were implemented based on their
official repositories, adhering to the configurations specified in their original papers. For forecasting
tasks, all datasets were chronologically split into training, validation, and test sets, with splitting ra-
tios of 6:2:2 for the ETT datasets and 7:1:2 for the other datasets, as outlined in Wu et al. (2021). For
classification tasks, the dataset splits followed the setup described in Zhang et al. (2022a). During
pre-training, each model was typically trained for 100 epochs. This was followed by linear probing
of the head for 10 epochs and fine-tuning the entire model for 20 epochs, in line with Nie et al.
(2022).
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Table 7: Forecasting Configuration and Classification Configuration

Task Dataset dmodel Wk d1 d2

Forecasting

ETTh1/ETTh2 128 (2,5) 256 512
ETTm1/ETTm2 128 (4,8) 256 512

Weather 128 (2,5) 256 512
Electricity 256 (3,6) 512 512

(a)

Source Data Target Data d WK d1 d2 Agg

Epilepsy Epilepsy 128 (3,6) 256 512 Avg
SleepEEG Epilepsy 128 (2,5) 256 512 Avg
SleepEEG FD-B 128 (2,5) 128 256 Avg
SleepEEG EMG 128 (2,5) 256 512 Max

(b)

D.4 MODEL PARAMETERS

By default, all experiments are configured with the following parameters: elayers = 2, topK = 0.3,
↵intial = 0.01, and � = 0.1. During pre-training, a dropout ratio of 0.2 is applied. For forecasting
tasks, both in-domain and cross-domain experiments share the same configuration, with a patch
size and stride of 12. For classification tasks, the patch size is set to 8 for all datasets. A learning
rate of 1e-4 is applied across all tasks during the pre-training and fine-tuning stage. Additional key
parameters for forecasting and classification are detailed in Table 7.

D.5 RESULTS WITH DIFFERENT RANDOM SEEDS

Table 8: Comparison of DeCoP under differ-
ent random seed across different forecasting
datasets.

Datasets Pred len DeCoP
MSE MAE

ETTh1

96 0.3604±0.0010 0.3900±0.0008
192 0.3935±0.0010 0.4104±0.0007
336 0.4173±0.0033 0.4275±0.0016
720 0.4328±0.0015 0.4552±0.0009

ETTh2

96 0.2672±0.0024 0.3324±0.0011
192 0.3281±0.0019 0.3735±0.0034
336 0.3530±0.0034 0.3974±0.0032
720 0.3818±0.0024 0.4254±0.0022

ETTm1

96 0.2809±0.0033 0.3395±0.0014
192 0.3254±0.0017 0.3661±0.0006
336 0.3532±0.0038 0.3867±0.0010
720 0.4098±0.0018 0.4134±0.0015

ETTm2

96 0.1630±0.0006 0.2546±0.0006
192 0.2172±0.0004 0.2900±0.0002
336 0.2661±0.0010 0.3239±0.0011
720 0.3496±0.0008 0.3770±0.0010

Weather

96 0.1456±0.0005 0.1931±0.0007
192 0.1897±0.0003 0.2363±0.0004
336 0.2421±0.0001 0.2770±0.0008
720 0.3152±0.0008 0.3300±0.0008

Electricity

96 0.1274±0.0001 0.2223±0.0001
192 0.1457±0.0001 0.2359±0.0001
336 0.1606±0.0003 0.2555±0.0004
720 0.1949±0.0008 0.2889±0.0008

To examine the robustness of our results, we
train the supervised PatchTST model with 5 dif-
ferent random seeds: 1,2,3,4,5 and calculate
the MSE and MAE scores with each selected
seed. The mean and standard derivation of
the results are reported in Table 8. The find-
ings demonstrate that the variances in MSE and
MAE across different random seeds are notably
small, indicating the stability and robustness of
the model. This consistency suggests that De-
CoP’s performance is not significantly affected
by random initialization, reinforcing the reliabil-
ity of its predictions across different experimen-
tal setups. Specifically, the robustness is evi-
dent across diverse datasets, including ETTh1,
ETTh2, ETTm1, ETTm2, Weather, and Electric-
ity, where the standard deviations are consistently
low, regardless of the prediction length.

D.6 PERFORMANCE VISUALIZATIONS

We provide qualitative comparisons on the
ETTh1 dataset to illustrate the predictive behav-
ior of each model. As shown in Figure 8, DeCoP
achieves superior performance, reducing MAE
by 2.4% and 0.7% compared to PatchTST and
SimMTM, respectively. Visually, DeCoP more
accurately follows both the overall trend and the
fine-grained fluctuations of the target signal, demonstrating its advantage in modeling temporal dy-
namics.

D.7 POSITIVE SAMPLE PAIRS VISUALIZATION

We present qualitative examples of positive sample pairs generated by the proposed Instance-level
Contrastive Module (ICM) across six representative datasets, as shown in Figure 9. These visualiza-
tions illustrate how ICM preserves the global temporal structure of anchor samples while introducing
controlled perturbations for contrastive learning. The generated positive samples (green) maintain
the overall trends and periodic patterns of the anchor sequences (blue) by selectively filtering out
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DeCop PatchTST SimMTM

Figure 8: Performance visualization on the ETTh1 dataset. DeCoP captures both the overall trend
and local fluctuations more accurately than PatchTST and SimMTM.

time-variant low-amplitude frequency components in the frequency domain. Compared to anchor
sequences, the positive samples exhibit reduced noise and smoother trajectories, achieved by tuning
the filtering intensity. Importantly, the filtered noise (orange) primarily consists of random fluctua-
tions lacking meaningful temporal patterns, which are effectively suppressed in the positive samples.

These results demonstrate that ICM generates high-quality positive pairs that retain semantically
important characteristics while attenuating irrelevant variations. When used with a contrastive loss,
these samples enable DeCoP to learn more discriminative and generalized high-level representations
from diverse time series inputs, improving generalization across various downstream tasks.

E PERFORMANCE ANALYSIS

E.1 EFFICIENCY

Table 9: Computation and memory costs across
datasets.

Metric Pretrain Time Pretrain Mem Finetune Time

Dataset Overall ICM Overall ICM Overall Inference

ETTh1 12.38 1.250 1072 6.36 4.23 1.82
Weather 17.05 1.678 1740 21.46 4.90 2.26
Epilepsy 16.32 2.30 536 0.31 4.72 1.03

We evaluate DeCoP’s efficiency for practical de-
ployment. The ICM is removed during fine-
tuning, incurring no impact on inference per-
formance (see Table 9). During pretraining,
ICM contributes minimally to resource consump-
tion—accounting for only 10% of total training
time and 6% of GPU memory (in MiB) per itera-
tion across datasets. For example, on the ETTh1
dataset, ICM adds only 1.25 ms to pretraining
time and 6.36 MiB of memory overhead. Despite its low cost, ICM remains effective, improv-
ing F1 by 9.95% in the SleepEEG!FD-B transfer scenario. For deployment, the IPN serves as a
lightweight normalization layer, while the DCL module leverages simple temporal learners with low
parameter overhead. As shown in Table 5 in main text, DeCoP consistently achieves lower inference
FLOPs and latency than all baselines.

E.2 GENERALIZATION ON ANOMALY DETECTION BENCHMARK

Similarly, to evaluate its generalization capabilities on other tasks, we benchmarked DeCoP on three
anomaly detection datasets: SMAP Hundman et al. (2018), PSM Abdulaal et al. (2021), and MSL
Hundman et al. (2018). As shown in Table 10a, DeCoP achieves state-of-the-art performance on two
of the three datasets. Specifically, it obtains the highest F1 score on SMAP (87.80), outperforming
the strong PatchTST baseline by 1.74%, and also leads on PSM with an F1 score of 94.86. On the
MSL dataset. Overall, these results demonstrate DeCoP’s robust generalization to anomaly detection
tasks.

E.3 ALTERNATIVE FILTER METHODS

To test the effectiveness of our time-invariant filter strategy. We evaluated several base-
lines—including random, all-zero, and spectral attention filters—all of which underperformed com-
pared to our proposed time-invariant filter method. As shown in Table 10b, ICM achieves the lowest
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Table 10: (a).DeCoP demonstrates strong performance on anomaly detection benchmarks. P, R
denotes precision and recall, respectively;(b).Comparison of different filter strategies across fore-
casting and classification tasks.

(a)

Dataset SMAP PSM MSL
Metrics P R F1 P R F1 P R F1

DeCoP 87.26 88.36 87.80 95.69 94.04 94.86 84.28 87.55 85.89

PatchTST 86.80 85.33 86.06 96.06 90.73 93.32 84.54 86.85 85.68
DLinear 92.36 55.41 69.29 98.28 89.26 93.55 84.34 85.42 84.88
Autoformer 90.40 58.62 71.12 99.08 88.15 93.29 77.27 80.92 79.05
Informer 90.11 57.13 69.92 64.27 96.33 77.10 81.77 86.48 84.06

(b)

Filters ICM All-Zeros Random Spectral Att.
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.401 0.421 0.406 0.424 0.403 0.423 0.404 0.423

Metric ACC F1 ACC F1 ACC F1 ACC F1

Epilepsy 0.955 0.927 0.940 0.904 0.944 0.905 0.952 0.924

Time step

Va
lu

e

Time step Time step

Figure 9: The visualization of generated positive sample pairs using ICM. These generated
positive sample pairs from each forecasting dataset with a sequence length of 100. The variable
index represents the relative order of channels within each dataset. The blue line indicates the
original anchor sample, while the green and orange lines represent the positive sample and filtered
noise, respectively. The positive sample (green) preserves the primary characteristics of the anchor
sample while exhibiting controlled variations in amplitude and temporal fluctuations.

error across both forecasting and classification tasks. On the Epilepsy dataset, for example, the
all-zero filter reduced F1 by 3.1% relative to ICM, demonstrating its limited efficacy. Top-K time-
invariant filtering effectively generates noise-controlled positive samples, even in the early stages of
training. In contrast, learnable filters often struggle to provide the stable supervision required for
effective representation learning, particularly during the early stages of training. Moreover, our time-
invariant filter is a parameter-free module. Contrastively, other competing strategies can introduce a
performance drop while simultaneously requiring additional parameters.

F PARAMETER SENSITIVITY ANALYSIS

F.1 THE ROBUSTNESS OF IPN

Table 11: DeCoP remains stable around differ-
ent ↵initial on three different datasets.

↵initial
ETTh1 ETTm1 Weather

MSE MAE MSE MAE MSE MAE

0.01 0.401 0.421 0.223 0.259 0.223 0.259
0.1 0.403 0.422 0.223 0.259 0.224 0.260
0.2 0.404 0.422 0.224 0.260 0.223 0.260
0.5 0.404 0.422 0.224 0.260 0.223 0.260

The analysis of parameter ↵initial. We evalu-
ate the sensitivity of IPN to the initialization of
the scaling parameter ↵initial. As shown in Ta-
ble 11, IPN consistently achieves stable perfor-
mance across a wide range of ↵initial values (0.01
to 0.5) on all three datasets. The observed vari-
ations in MSE and MAE are minimal, indicat-
ing that IPN is robust to the choice of ↵initial and
does not require careful tuning for effective per-
formance.

The analysis of patch size P . We investigate the robustness of the IPN module under varying patch
lengths. Specifically, we assess the model’s sensitivity to the patch size P=2, 4, 8, 12, 16, 24, 32,
40, with the look-back window fixed at 512 and the stride set equal to the patch length to avoid
overlap. The forecasting horizon is fixed at 96 time steps. Figure 10 illustrates the MSE scores
across three representative datasets: ETTh1, ETTm1, and Weather. The results demonstrate that
the performance of the IPN module remains consistently stable for a wide range of patch lengths,
particularly within the interval P = 8 to P = 40. This indicates that the IPN module is largely
invariant to moderate changes in patch configuration, highlighting its robustness. Interestingly, while
very small patch lengths (e.g., P = 2) occasionally result in slight performance degradation, larger
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WeatherETTm1ETTh1

Figure 10: IPN Module Shows Robust Performance Across Patch Sizes. MSE scores are eval-
uated for patch lengths P = [2, 4, 8, 12, 16, 24, 32, 40] with a fixed look-back window of 512 and
prediction length of 96. The results indicate small variation in MSE values, particularly for P = [8,
40], highlighting the IPN module’s robustness.

patches consistently yield strong results. This observation suggests that using moderately large patch
sizes can improve stability and performance, depending on the dataset’s temporal structure. Overall,
these findings confirm that the IPN module adapts effectively to different patch granularities without
extensive hyperparameter tuning. This flexibility is crucial for practical deployment across datasets
with diverse characteristics, reinforcing the IPN module’s generalization capability.

F.2 THE EFFECTIVENESS OF ICM

To further assess the contribution of the ICM module, we conduct a detailed evaluation of its impact
under various filtering intensities on both forecasting and classification tasks. ICM is designed to fil-
ter noisy, high-frequency components in time series signals during pretraining, improving the qual-
ity of global semantics for dependency-controlled learning. By applying frequency-domain filtering,
ICM allows the model to focus on temporally stable positive pairs, enhancing global representation
learning at the latent level.

We investigate the effect of the � parameter, which determines the proportion of high-amplitude fre-
quency components retained during filtering. Higher � values correspond to stronger filtering (i.e.,
more low-energy frequencies are removed). Table 12 summarizes the results on ETTh1, ETTm1,
and Epilepsy datasets with � 2 {0.0, 0.1, 0.2, 0.4}. On the forecasting tasks, we observe consis-
tent improvements in both MSE and MAE when using non-zero � values. For instance, on the
ETTm1 dataset, the average MSE decreases from 0.350 (no filtering) to 0.342 at � = 0.1, with cor-
responding MAE also decreasing from 0.378 to 0.376. The performance remains relatively stable
for � values up to 0.4, suggesting that ICM is robust to a wide range of filtering intensities. Similar
trends are observed on the ETTh1 dataset, where MSE improves from 0.403 to 0.401 when � = 0.1
or � = 0.2. These results confirm that mild frequency filtering enhances temporal modeling by
removing distracting noise without compromising meaningful signal components. From a signal
processing perspective, ICM serves as a soft spectral denoiser that targets low-amplitude compo-
nents often associated with sensor drift, random fluctuations, or local outliers. By suppressing these
perturbations and preserving dominant frequencies, ICM helps the model learn representations that
generalize more effectively across input variations and time horizons. This benefit is especially pro-
nounced for long-horizon forecasting (e.g., 720-step prediction), where accumulated noise tends to
degrade performance more severely.

We also evaluate ICM’s effectiveness on the Epilepsy classification task. Without filtering (� = 0.0),
the model achieves 94.61% accuracy and 91.30% F1 score. Enabling frequency filtering with
� = 0.1 increases performance to 95.4% accuracy and 92.6% F1, and the performance remains
stable for higher � values. This demonstrates that ICM not only improves regression objectives, but
also preserves class-discriminative patterns while removing task-irrelevant spectral artifacts. Impor-
tantly, the � analysis shows that ICM is not sensitive to precise hyperparameter settings; gains are
observable as long as minimal filtering is applied (� > 0). This property simplifies deployment
in real-world scenarios, where robust performance under moderate tuning is often preferred. More-
over, since ICM is only used during pretraining, it imposes no additional inference cost. In summary,
ICM complements the hierarchical modeling of dependencies in DCL by enhancing global repre-
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Table 12: Impact of � filtering on forecasting and classification performance across ETTh1, ETTm1,
and Epilepsy datasets. For forecasting, MSE/MAE are reported. For classification, Accuracy (ACC)
and F1 score are presented.

Dataset � 0 0.1 0.2 0.4

ETTh1

Metric MSE MAE MSE MAE MSE MAE MSE MAE
96 0.362 0.391 0.360 0.390 0.360 0.390 0.361 0.390
192 0.395 0.411 0.394 0.410 0.394 0.410 0.394 0.411
336 0.418 0.427 0.417 0.427 0.417 0.427 0.418 0.427
720 0.439 0.460 0.433 0.455 0.433 0.455 0.439 0.459
Avg 0.403 0.422 0.401 0.421 0.401 0.421 0.403 0.422

ETTm1

Metric MSE MAE MSE MAE MSE MAE MSE MAE
96 0.286 0.342 0.281 0.340 0.284 0.342 0.284 0.341
192 0.331 0.368 0.325 0.366 0.329 0.367 0.329 0.367
336 0.364 0.386 0.353 0.387 0.356 0.387 0.361 0.384
720 0.421 0.418 0.410 0.413 0.416 0.415 0.416 0.418
Avg 0.350 0.378 0.342 0.376 0.346 0.378 0.347 0.377

Epilepsy
Metric ACC F1 ACC F1 ACC F1 ACC F1
Value 94.61 91.30 95.4 92.6 95.1 92.2 95.1 92.2

sentation learning, and plays a critical role in enabling DeCoP to operate reliably under multiscale
and non-stationary conditions.

F.3 THE GENERALIZABILITY OF DCL STRATEGY

The DCL method is designed to model hierarchical temporal dependencies by aggregating in-
formation across multiple temporal resolutions. To evaluate the generalization ability of DCL
across diverse input scales, we conduct experiments by varying the look-back length L 2
{96, 192, 336, 512, 720} while keeping the patch size and stride fixed. This setting isolates the im-
pact of input sequence length while holding the architectural capacity constant. We report forecast-
ing performance compare to CycleNet, a state-of-the-art baseline that adopts a linear or MLP-based
temporal backbone, on three representative datasets (ETTh1, ETTm1, and Weather) in Table 13.

Across all datasets and input lengths, DeCoP consistently outperforms CycleNet, demonstrating
its robustness to varying temporal contexts. For instance, on ETTm1, DeCoP achieves the lowest
average MSE of 0.341 and MAE of 0.376, with particularly strong results at L = 192 and L = 336,
indicating its capacity to adaptively extract meaningful patterns at medium-range scales. On ETTh1,
DeCoP shows clear advantages at longer horizons (e.g., L = 512, 720), outperforming CycleNet
in both short- and long-term forecasting regimes. On the Weather dataset, DeCoP outperforms
CycleNet by a significant margin across all settings, especially at L = 720 where it achieves MSE
= 0.222 and MAE = 0.260, confirming its ability to handle highly periodic or irregular signals with
long-range dependencies. These results confirm that DCL not only generalizes across datasets with
varying dynamics but also scales well with increasing input length without degrading performance.
In contrast, CycleNet’s performance tends to deteriorate or plateau under long input sequences,
which we attribute to its static modeling capacity and lack of explicit multi-scale mechanisms. By
progressively expanding the receptive field through hierarchical windows, DCL adaptively captures
dependencies at different temporal scopes and mitigates issues such as temporal overfitting. In
summary, DCL provides robustness to both local and global temporal changes, making it an effective
backbone for time series modeling under real-world scenarios with varying historical contexts.

F.4 ABLATION STUDY ON THE CONTRASTIVE LOSS WEIGHT �

We investigate the sensitivity of model performance to the contrastive loss weight �, which
controls the contribution of Lcl during training. As shown in Table 14, smaller values
of � (e.g., 0.1) yield competitive results on regression tasks such as ETTh2 and Weather,
with minimal variation across settings. In contrast, larger values of � significantly im-
prove performance on high-level classification tasks, as evidenced by a steady increase in
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Table 13: Dependence-Controlled Learning Effectiveness Across Different Look-Back Times.

This table compares the performance of DeCoP and CycleNet across various look-back windows
and prediction horizons on three different datasets. The best result for each dataset is marked in
yellow, and the best under each look-back time is marked in pink. DeCoP achieve allover best in
each dataset and can get best result under the same look-back time once the input length larger than
96.

Dataset Models Look-back time 96 192 336 512 720

ETTh1

DeCoP

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.384 0.394 0.380 0.396 0.370 0.393 0.361 0.390 0.363 0.394
192 0.436 0.424 0.421 0.418 0.403 0.413 0.394 0.410 0.400 0.418
336 0.478 0.446 0.453 0.436 0.428 0.429 0.414 0.427 0.426 0.436
720 0.478 0.470 0.451 0.460 0.442 0.460 0.437 0.458 0.453 0.472
Avg 0.444 0.433 0.426 0.428 0.411 0.424 0.401 0.421 0.411 0.430

CycleNet

96 0.378 0.391 - - 0.374 0.396 - - 0.379 0.403
192 0.426 0.419 - - 0.406 0.415 - - 0.416 0.425
336 0.464 0.439 - - 0.431 0.43 - - 0.447 0.445
720 0.461 0.46 - - 0.45 0.464 - - 0.477 0.483
Avg 0.432 0.427 - - 0.415 0.426 - - 0.43 0.439

ETTm1

DeCoP

96 0.314 0.356 0.288 0.340 0.282 0.338 0.280 0.338 0.296 0.348
192 0.358 0.380 0.323 0.363 0.324 0.365 0.323 0.365 0.332 0.369
336 0.387 0.400 0.357 0.386 0.355 0.385 0.353 0.385 0.364 0.386
720 0.449 0.435 0.417 0.421 0.411 0.418 0.409 0.418 0.412 0.415
Avg 0.377 0.393 0.346 0.377 0.343 0.377 0.342 0.376 0.351 0.379

CycleNet

96 0.319 0.36 - - 0.299 0.348 - - 0.307 0.353
192 0.36 0.381 - - 0.334 0.367 - - 0.337 0.371
336 0.389 0.403 - - 0.368 0.386 - - 0.364 0.387
720 0.447 0.441 - - 0.417 0.414 - - 0.41 0.411
Avg 0.379 0.396 - - 0.355 0.379 - - 0.355 0.381

Weather

DeCoP

96 0.175 0.216 0.157 0.201 0.148 0.195 0.145 0.193 0.144 0.192
192 0.222 0.256 0.201 0.242 0.192 0.238 0.190 0.237 0.189 0.236
336 0.277 0.296 0.255 0.283 0.244 0.278 0.242 0.278 0.242 0.279
720 0.352 0.346 0.332 0.336 0.318 0.331 0.314 0.329 0.313 0.331
Avg 0.256 0.278 0.236 0.266 0.226 0.261 0.223 0.259 0.222 0.260

CycleNet

96 0.158 0.203 - - 0.148 0.2 - - 0.149 0.203
192 0.207 0.247 - - 0.19 0.24 - - 0.192 0.244
336 0.262 0.289 - - 0.243 0.283 - - 0.242 0.283
720 0.344 0.344 - - 0.322 0.339 - - 0.312 0.333
Avg 0.243 0.271 - - 0.226 0.266 - - 0.224 0.266

accuracy and F1 score on the Epilepsy dataset. These results suggest that contrastive su-
pervision is especially beneficial for learning global representations in classification settings.

Table 14: DeCoP remains stable performance
around different � for ETTh2 and Weather
datasets.

�
ETTh2 Weather Epilepsy

MSE MAE MSE MAE Accuracy F1

0.01 0.336 0.385 0.224 0.261 93.38 89.41
0.1 0.336 0.385 0.224 0.261 93.84 90.08
0.3 0.335 0.385 0.224 0.261 94.86 91.26
0.5 0.336 0.385 0.225 0.261 95.53 92.86

The visualization of time-invariant filter. We
visualize the effect of our time-invariant filtering
on both forecasting (ETTh1) and classification
(SleepEEG) tasks. As shown in Figure 11(a), the
ICM successfully removes noise while generating
positive samples that preserve the temporal struc-
ture of the anchor. The filtered noise (orange) ex-
hibits near-zero mean and low variance, resem-
bling white noise, which aligns with the central
limit theorem. Figures 11(b) and 11(c) further an-
alyze the retained and discarded frequencies. The
green dots denote time-invariant frequencies preserved by ICM, while orange dots indicate time-
variant components filtered out. Notably, despite their lower amplitude, the retained green frequen-
cies remain consistent across both datasets, validating their stability and importance for learning
generalizable patterns. This demonstrates that the ICM mechanism prioritizes informative, time-
invariant signals over low-amplitude and unstable variations, preventing information loss and pro-
viding stable positive pairs during pretraining.
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Noise

Time-invariant frequency
High-amplitude frequency
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Time step Frequency Frequency

Figure 11: The ICM filters time-variant noise while preserving meaningful time-invariant frequen-
cies. The top and bottom rows show this process on examples from two different tasks: the ETTh1
forecasting dataset (sequence length 100) and the SleepEEG classification dataset (sequence length
178), respectively. Column (a) Visualization of the anchor sample, filtered noise, and generated
positive sample on the last channel of the ETTh1 and SleepEEG dataset. The filtered noise (or-
ange) resembles white noise with zero mean, consistent with the central limit theorem. Column (b)
Amplitude spectrum of (a), where green dots denote time-invariant frequencies retained by ICM,
and orange dots indicate time-variant frequencies removed by the Fmask. Column (c) Although
the green-highlighted frequencies in (b) show lower amplitude, they remain prominent across (c),
confirming their time-invariant nature and importance for capturing stable patterns.

G FULL ABLATION STUDY RESULTS

To thoroughly assess the contribution of each module in our proposed DeCoP framework, we con-
duct comprehensive ablation studies on both forecasting and classification tasks, across both in-
domain and cross-domain settings.

G.1 ABLATION STUDY ON FORECASTING TASKS

These studies evaluate the necessity and effectiveness of the key components: Instance-wise Patch
Normalization (IPN), the Instance-level Contrastive Module (ICM), and the Dependency-Controlled
Learning (DCL) mechanism. We summarize forecasting ablation results in Table 15 and Table 16,
and classification results in Table 17.

We design four ablation variants: (1) w/o IPN, (2) w/o ICM, (3) PI (fully Patch-Independent DCL),
and (4) PD (fully Patch-Dependent DCL). These are compared against the full DeCoP model across
six datasets for forecasting (ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity) and three for
classification (Epilepsy, FD-B, EMG).

Across all datasets and forecast horizons, the full DeCoP model consistently outperforms its ab-
lated variants. In in-domain forecasting as shown in Table 15, DeCoP achieves the lowest average
MSE and MAE in nearly every case. For example, on ETTh2, DeCoP obtains an average MSE
of 0.333, significantly outperforming w/o IPN (0.337), w/o ICM (0.385), and both PI and PD vari-
ants (0.335 and 0.383, respectively). The impact of the IPN and ICM is particularly evident on
datasets like ETTm1 and Electricity, where the removal of either leads to a substantial drop in per-
formance—highlighting their critical role in ICM and frequency-based noise suppression.
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Table 15: Full ablation studies ablation studies were conducted on in-domain learning tasks. The
experiments focus on forecasting future time points F 2 {96, 192, 336, 720} based on a look-back
window of 512 past time points. Best results are denoted by bold.

Scenarios Models w/o IPN w/o ICM PI PD DeCoP

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1!ETTh1

96 0.365 0.392 0.362 0.391 0.364 0.392 0.363 0.391 0.360 0.390
192 0.400 0.413 0.395 0.411 0.400 0.415 0.398 0.413 0.394 0.410
336 0.423 0.429 0.418 0.427 0.416 0.426 0.419 0.426 0.417 0.427
720 0.434 0.455 0.439 0.460 0.444 0.462 0.442 0.460 0.433 0.455

Average 0.406 0.422 0.403 0.422 0.406 0.424 0.405 0.423 0.401 0.421

ETTh2!ETTh2

96 0.275 0.336 0.273 0.333 0.272 0.334 0.267 0.332 0.267 0.332
192 0.331 0.375 0.330 0.374 0.329 0.373 0.330 0.374 0.328 0.373
336 0.358 0.400 0.360 0.398 0.355 0.398 0.359 0.399 0.353 0.397
720 0.386 0.429 0.385 0.427 0.385 0.427 0.383 0.427 0.382 0.425

Average 0.337 0.385 0.337 0.383 0.335 0.383 0.335 0.383 0.333 0.382

ETTm1!ETTm1

96 0.290 0.345 0.286 0.342 0.292 0.349 0.290 0.345 0.281 0.340
192 0.330 0.370 0.331 0.368 0.330 0.373 0.323 0.364 0.325 0.366
336 0.366 0.386 0.364 0.386 0.364 0.392 0.356 0.386 0.353 0.387
720 0.424 0.416 0.421 0.418 0.405 0.416 0.411 0.413 0.410 0.413

Average 0.352 0.379 0.350 0.378 0.348 0.382 0.345 0.377 0.342 0.376

ETTm2!ETTm2

96 0.164 0.255 0.164 0.256 0.163 0.253 0.167 0.252 0.163 0.255
192 0.220 0.296 0.221 0.294 0.216 0.289 0.220 0.295 0.217 0.290
336 0.272 0.330 0.273 0.331 0.269 0.323 0.268 0.327 0.266 0.324
720 0.356 0.382 0.358 0.384 0.393 0.408 0.353 0.381 0.350 0.377

Average 0.253 0.316 0.254 0.316 0.260 0.318 0.252 0.314 0.249 0.311

Weather!Weather

96 0.151 0.201 0.150 0.199 0.156 0.206 0.146 0.197 0.146 0.193
192 0.194 0.240 0.193 0.239 0.196 0.241 0.193 0.242 0.190 0.236
336 0.244 0.279 0.243 0.278 0.247 0.282 0.245 0.281 0.242 0.277
720 0.316 0.331 0.317 0.332 0.317 0.334 0.329 0.339 0.315 0.330

Average 0.226 0.263 0.226 0.262 0.229 0.266 0.228 0.265 0.223 0.259

Electricity!Electricity

96 0.132 0.227 0.132 0.228 0.135 0.230 0.130 0.226 0.127 0.222
192 0.149 0.243 0.149 0.243 0.150 0.244 0.148 0.242 0.145 0.239
336 0.165 0.259 0.165 0.260 0.166 0.260 0.164 0.259 0.161 0.257
720 0.204 0.293 0.204 0.293 0.205 0.293 0.203 0.293 0.195 0.289

Average 0.162 0.255 0.163 0.256 0.164 0.257 0.162 0.255 0.157 0.251

Moreover, the ablation of the DCL mechanism provides further insights into the importance of
dependency control. Among the two variants, the Patch-Independent (PI) version consistently un-
derperforms, suggesting that treating patches as completely independent fails to capture important
hierarchical dependencies. The PD variant (fully dependent) performs slightly better, but still falls
short of DeCoP, indicating that overly strong dependency assumptions may lead to overfitting or
loss of flexibility. The superior performance of DeCoP, which adopts a partially dependent design,
confirms that adaptive dependency modeling offers the best trade-off between representation expres-
siveness and regularization.

In the cross-domain forecasting setup (Table 16), where models are transferred across datasets,
the performance gaps become even more pronounced. For instance, on the ETTm2 ! ETTh1
transfer task, DeCoP achieves an average MSE of 0.404, while all ablation baselines perform worse,
with the PI variant dropping to 0.428 and the ICM-ablated version reaching 0.412. This widening
performance gap under domain shift further emphasizes the importance of ICM and DCL in enabling
generalizable temporal representations. Additionally, results on Weather ! ETTh1 demonstrate that
DeCoP can effectively transfer temporal priors from one domain to another, outperforming baselines
even under significant distributional changes.

G.2 ABLATION STUDY ON CLASSIFICATION TASKS

For classification tasks as shown in Table 17, DeCoP similarly outperforms all ablation variants in
both in-domain and cross-domain settings. In the in-domain Epilepsy classification task, DeCoP
attains an average score of 94.20%, compared to 92.19% and 92.77% for the w/o IPN and w/o

ICM variants, and substantially higher than PI (90.26%) and PD (71.69%). In the more challeng-
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Table 16: Full ablation studies ablation studies were conducted on cross-domain transfer tasks
to ETTh1 and ETTm1 datasets. The experiments focus on forecasting future time points F 2
{96, 192, 336, 720} based on a look-back window of 512 past time points. Best results are denoted
by bold.

Scenarios Models w/o IPN w/o ICM PI PD DeCoP

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
#

ETTh1

96 0.364 0.392 0.364 0.392 0.364 0.391 0.365 0.391 0.362 0.391
192 0.396 0.411 0.396 0.412 0.401 0.414 0.401 0.414 0.394 0.411
336 0.421 0.429 0.428 0.428 0.424 0.431 0.425 0.431 0.417 0.427
720 0.446 0.462 0.442 0.460 0.443 0.460 0.443 0.463 0.438 0.459

Average 0.407 0.423 0.407 0.423 0.408 0.424 0.408 0.425 0.403 0.422

ETTm1
#

ETTh1

96 0.363 0.391 0.366 0.394 0.363 0.390 0.364 0.390 0.364 0.392
192 0.395 0.411 0.398 0.415 0.396 0.411 0.400 0.414 0.395 0.411
336 0.422 0.432 0.421 0.429 0.422 0.429 0.423 0.430 0.419 0.430
720 0.451 0.468 0.445 0.464 0.442 0.460 0.443 0.464 0.441 0.459

Average 0.408 0.426 0.407 0.425 0.406 0.422 0.407 0.425 0.405 0.423

ETTm2
#

ETTh1

96 0.363 0.391 0.371 0.398 0.364 0.391 0.364 0.389 0.363 0.392
192 0.396 0.411 0.402 0.417 0.397 0.411 0.401 0.414 0.395 0.411
336 0.421 0.427 0.426 0.432 0.429 0.428 0.424 0.430 0.418 0.429
720 0.442 0.459 0.449 0.465 0.444 0.460 0.442 0.459 0.441 0.461

Average 0.406 0.422 0.412 0.428 0.408 0.423 0.408 0.423 0.404 0.423

Weather
#

ETTh1

96 0.363 0.392 0.365 0.393 0.364 0.391 0.365 0.391 0.365 0.392
192 0.396 0.413 0.397 0.413 0.397 0.411 0.398 0.412 0.397 0.412
336 0.422 0.430 0.421 0.428 0.422 0.428 0.424 0.431 0.421 0.428
720 0.447 0.467 0.442 0.461 0.443 0.460 0.442 0.459 0.439 0.458

Average 0.407 0.425 0.406 0.424 0.407 0.423 0.407 0.423 0.405 0.422

ETTh2
#

ETTm1

96 0.287 0.343 0.286 0.342 0.297 0.350 0.285 0.341 0.282 0.340
192 0.328 0.368 0.328 0.368 0.341 0.372 0.327 0.366 0.323 0.365
336 0.357 0.386 0.356 0.386 0.359 0.389 0.360 0.386 0.359 0.389
720 0.417 0.422 0.421 0.424 0.418 0.419 0.414 0.415 0.408 0.413

Average 0.347 0.380 0.348 0.380 0.354 0.382 0.346 0.377 0.343 0.377

ETTh1
#

ETTm1

96 0.287 0.343 0.287 0.343 0.295 0.349 0.288 0.345 0.283 0.340
192 0.329 0.369 0.328 0.368 0.334 0.374 0.329 0.366 0.329 0.367
336 0.356 0.387 0.357 0.387 0.366 0.390 0.364 0.387 0.357 0.389
720 0.426 0.424 0.420 0.424 0.410 0.417 0.420 0.419 0.414 0.417

Average 0.350 0.381 0.348 0.380 0.351 0.382 0.350 0.379 0.346 0.379

ETTm2
#

ETTm1

96 0.287 0.342 0.286 0.342 0.297 0.350 0.282 0.340 0.283 0.342
192 0.330 0.368 0.330 0.368 0.333 0.371 0.324 0.365 0.323 0.364
336 0.356 0.387 0.365 0.386 0.363 0.389 0.359 0.386 0.355 0.385
720 0.418 0.422 0.420 0.422 0.408 0.415 0.413 0.419 0.406 0.414

Average 0.348 0.380 0.350 0.379 0.350 0.381 0.344 0.377 0.342 0.376

Weather
#

ETTm1

96 0.290 0.345 0.286 0.343 0.291 0.347 0.291 0.344 0.284 0.341
192 0.331 0.368 0.332 0.371 0.327 0.371 0.328 0.369 0.325 0.365
336 0.364 0.385 0.364 0.386 0.364 0.392 0.362 0.386 0.357 0.384
720 0.419 0.421 0.418 0.422 0.411 0.417 0.417 0.418 0.417 0.414

Average 0.351 0.380 0.350 0.380 0.348 0.382 0.349 0.379 0.345 0.376

ing cross-domain scenarios, such as SleepEEG ! FD-B and EMG, DeCoP maintains top perfor-
mance—achieving 93.97% and 100% average scores, respectively—while all ablated variants suffer
from severe accuracy drops, especially when dependency modeling is removed. Additionally, we
include an additional classification setting using the SleepEEG ! Gesture dataset in this section,
and the results are consistent with those observed on other datasets.

Together, these results validate the contribution of each module in our framework. The ICM plays a
vital role in filtering irrelevant frequency components while preserving semantically meaningful pat-
terns, which enhances global representation quality for downstream modeling. The IPN mechanism
stabilizes patch-level inputs by eliminating scale variance across instances. Finally, the DCL strat-
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Table 17: Ablation study conducted on classification tasks in both in-domain and cross-domain
settings. For the in-domain setting, the model is pre-trained and fine-tuned on the same dataset
(Epilepsy). In the cross-domain setting, the model is pre-trained on the SleepEEG dataset and sub-
sequently fine-tuned on various target datasets, including Epilepsy, FD-B, and EMG. AVG denotes
the average of accuracy and F1 score. Best results are denoted by bold.

Scenarios Models Acc (%) P (%) R (%) F1 (%) Avg (%)

In
-D

om
ai

n
Epilepsy

#
Epilepsy

w/o IPN 94.19 93.64 87.57 90.19 92.19
w/o ICM 94.67 95.20 87.73 90.87 92.77
PI 93.02 94.51 83.27 87.50 90.26
PD 83.45 89.07 58.52 59.92 71.69
DeCoP 95.53 93.51 92.25 92.86 94.20

C
ro

ss
-D

om
ai

n

SleepEEG
#

Epilepsy

w/o IPN 94.40 93.89 88.01 90.57 92.49
w/o ICM 94.15 94.20 86.94 89.99 92.07
PI 94.73 93.14 89.85 91.37 93.05
PD 90.44 93.85 76.21 81.46 85.95
DeCoP 95.82 94.23 92.41 93.28 94.55

SleepEEG
#

FD-B

w/o IPN 86.05 89.85 89.78 89.78 87.91
w/o ICM 82.12 86.93 86.84 86.77 84.44
PI 71.58 79.74 79.19 78.97 75.28
PD 70.51 78.54 78.26 78.29 74.40
DeCoP 93.04 94.92 94.90 94.90 93.97

SleepEEG
#

Gesture

w/o IPN 78.33 80.44 78.33 76.33 77.33
w/o ICM 80.00 80.21 80.00 77.83 78.91
PI 70.83 68.78 70.83 68.75 69.79
PD 79.17 77.38 79.17 77.56 78.36
DeCoP 81.67 80.99 81.67 80.10 80.89

SleepEEG
#

EMG

w/o IPN 97.56 94.44 98.04 95.96 96.76
w/o ICM 92.68 87.96 84.71 86.03 89.36
PI 87.80 59.09 66.67 62.39 75.10
PD 82.93 59.12 63.16 59.12 71.03
DeCoP 100.00 100.00 100.00 100.00 100.00

egy—particularly its partially dependent variant—proves crucial for capturing structured temporal
dependencies without overfitting.

Overall, the ablation study provides empirical evidence that the combination of each module is key
to DeCoP’s success. These components jointly enable DeCoP to generalize across a wide range
of datasets, input lengths, and tasks, delivering robust performance even in cross-domain scenarios
where generalization is most challenging.

H FULL BENCHMARK OF TIME SERIES FORECASTING

H.1 FULL IN-DOMAIN FORECASTING RESULTS

Table 18 reports the complete results on six benchmark datasets under the long-term forecasting set-
ting, where the models are trained on the past 512 time points and evaluated on future horizons of 96,
192, 336, and 720 steps. Our proposed DeCoP variants, particularly DeCoPMLP, consistently out-
perform existing baselines across a wide range of datasets and forecast lengths. DeCoPMLP achieves
the best average performance in both MSE and MAE metrics.

Notably, DeCoPMLP sets new state-of-the-art results on ETTm2 and Weather, two challenging
datasets characterized by complex seasonality and high variability. For instance, on ETTm2,
DeCoPMLP obtains an MSE of 0.249 and MAE of 0.311, outperforming the second-best method
by a substantial margin. Additionally, we observe that DeCoPLinear—a lightweight variant of our
model—already surpasses most baselines, demonstrating the strong generalization capability and
robustness of the decomposition-based design even without complex nonlinear transformations.

Overall, the empirical results validate the effectiveness of DeCoP in capturing long-term temporal
dependencies and mitigating error accumulation across diverse domains. The performance gains are
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Table 18: Complete results of long-term forecasting tasks for the in-domain setting of forecasting
the future F 2 {96, 192, 336, 720} time points based on the past 512 time points. The best results
are denoted by bold.

Models DeCoPLinear DeCoPMLP SIMMTM PatchTST CycleNet TimeMixer Dlinear iTransformer Fedformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

96 0.360 0.390 0.363 0.392 0.367 0.402 0.366 0.397 0.383 0.408 0.378 0.406 0.375 0.399 0.400 0.425 0.376 0.415 0.435 0.446 0.941 0.769
192 0.394 0.410 0.395 0.412 0.401 0.425 0.431 0.443 0.410 0.426 0.444 0.448 0.405 0.426 0.427 0.443 0.423 0.446 0.456 0.457 1.007 0.786
336 0.417 0.427 0.418 0.430 0.415 0.430 0.45 0.456 0.440 0.444 0.424 0.444 0.439 0.443 0.457 0.465 0.444 0.462 0.486 0.487 1.038 0.784
720 0.433 0.455 0.451 0.463 0.455 0.464 0.472 0.484 0.487 0.482 0.485 0.485 0.472 0.490 0.631 0.574 0.469 0.492 0.515 0.517 1.144 0.857
Avg 0.401 0.421 0.408 0.424 0.404 0.428 0.43 0.445 0.430 0.440 0.432 0.446 0.423 0.440 0.479 0.477 0.428 0.454 0.473 0.477 1.033 0.799

ET
Th

2

96 0.268 0.333 0.271 0.334 0.288 0.347 0.284 0.343 0.299 0.355 0.280 0.352 0.289 0.353 0.299 0.359 0.332 0.374 0.332 0.368 1.549 0.952
192 0.328 0.373 0.334 0.377 0.346 0.385 0.355 0.387 0.354 0.394 0.367 0.400 0.383 0.418 0.377 0.406 0.407 0.446 0.426 0.434 3.792 1.542
336 0.353 0.397 0.360 0.404 0.363 0.401 0.379 0.411 0.392 0.425 0.385 0.420 0.448 0.465 0.429 0.442 0.4 0.447 0.477 0.479 4.215 1.642
720 0.383 0.426 0.396 0.436 0.396 0.431 0.4 0.435 0.424 0.451 0.469 0.480 0.605 0.551 0.444 0.466 0.412 0.469 0.453 0.490 3.656 1.619
Avg 0.333 0.382 0.341 0.388 0.348 0.391 0.355 0.394 0.367 0.406 0.375 0.413 0.431 0.447 0.387 0.418 0.388 0.434 0.422 0.443 3.303 1.439

ET
Tm

1

96 0.308 0.348 0.281 0.340 0.299 0.354 0.288 0.345 0.305 0.361 0.306 0.358 0.299 0.343 0.311 0.366 0.326 0.390 0.510 0.492 0.626 0.560
192 0.338 0.366 0.325 0.366 0.343 0.379 0.330 0.372 0.343 0.379 0.347 0.381 0.335 0.365 0.348 0.385 0.365 0.415 0.514 0.495 0.725 0.619
336 0.370 0.386 0.353 0.387 0.375 0.401 0.359 0.392 0.384 0.411 0.437 0.369 0.386 0.389 0.380 0.405 0.392 0.425 0.51 0.492 1.005 0.741
720 0.426 0.416 0.410 0.413 0.431 0.439 0.406 0.421 0.439 0.431 0.466 0.425 0.424 0.422 0.443 0.444 0.446 0.458 0.527 0.493 1.133 0.845
Avg 0.361 0.379 0.342 0.376 0.362 0.393 0.346 0.383 0.368 0.395 0.389 0.383 0.361 0.380 0.371 0.400 0.382 0.422 0.515 0.493 0.872 0.691

ET
Tm

2

96 0.164 0.252 0.163 0.255 0.176 0.27 0.164 0.256 0.180 0.266 0.173 0.263 0.167 0.260 0.179 0.273 0.18 0.271 0.205 0.293 0.355 0.462
192 0.218 0.290 0.217 0.290 0.232 0.304 0.223 0.296 0.234 0.302 0.228 0.301 0.224 0.303 0.242 0.315 0.252 0.318 0.278 0.336 0.595 0.586
336 0.271 0.324 0.266 0.324 0.288 0.339 0.277 0.332 0.285 0.340 0.277 0.332 0.281 0.342 0.291 0.345 0.324 0.364 0.343 0.379 1.27 0.871
720 0.366 0.387 0.350 0.377 0.381 0.396 0.365 0.387 0.371 0.392 0.369 0.390 0.397 0.421 0.377 0.398 0.41 0.420 0.414 0.419 3.001 1.267
Avg 0.255 0.313 0.249 0.311 0.269 0.327 0.257 0.318 0.267 0.325 0.262 0.322 0.267 0.332 0.272 0.333 0.292 0.343 0.310 0.357 1.305 0.797

W
ea

th
er

96 0.169 0.222 0.146 0.193 0.152 0.206 0.144 0.193 0.148 0.202 0.149 0.202 0.176 0.237 0.168 0.220 0.238 0.314 0.249 0.329 0.354 0.405
192 0.214 0.259 0.190 0.236 0.197 0.246 0.190 0.236 0.192 0.244 0.198 0.246 0.220 0.282 0.209 0.254 0.275 0.329 0.325 0.370 0.419 0.434
336 0.260 0.294 0.242 0.278 0.246 0.285 0.244 0.280 0.243 0.282 0.245 0.286 0.265 0.319 0.266 0.295 0.339 0.377 0.351 0.391 0.583 0.543
720 0.326 0.341 0.315 0.330 0.314 0.335 0.320 0.335 0.314 0.333 0.321 0.340 0.323 0.362 0.341 0.345 0.389 0.409 0.415 0.426 0.916 0.705
Avg 0.242 0.279 0.223 0.259 0.227 0.268 0.225 0.261 0.224 0.265 0.228 0.269 0.246 0.300 0.246 0.278 0.310 0.357 0.335 0.379 0.568 0.522

El
ec

tri
ci

ty 96 0.137 0.233 0.127 0.222 0.133 0.223 0.126 0.221 0.126 0.221 0.135 0.234 0.140 0.237 0.132 0.227 0.186 0.302 0.196 0.313 0.304 0.393
192 0.151 0.245 0.146 0.236 0.147 0.237 0.145 0.238 0.144 0.238 0.152 0.247 0.153 0.249 0.153 0.248 0.197 0.311 0.211 0.324 0.327 0.417
336 0.167 0.261 0.161 0.256 0.166 0.265 0.164 0.256 0.160 0.255 0.169 0.268 0.169 0.267 0.168 0.264 0.213 0.328 0.214 0.327 0.333 0.422
720 0.207 0.294 0.195 0.289 0.203 0.297 0.193 0.291 0.201 0.294 0.203 0.297 0.203 0.301 0.193 0.286 0.233 0.344 0.236 0.342 0.351 0.427
Avg 0.165 0.258 0.157 0.251 0.162 0.256 0.157 0.252 0.158 0.252 0.165 0.261 0.166 0.264 0.161 0.256 0.207 0.321 0.214 0.327 0.329 0.415

particularly prominent at longer horizons (e.g., 336 and 720 steps), highlighting DeCoP’s scalability
toward robust long-term forecasting.

H.2 CROSS-DOMAIN FORECASTING RESULTS

We further evaluate the transferability of time series forecasting models under two challenging set-
tings: in-domain transfer and cross-domain transfer. In the in-domain setting (Table 19), models
are trained on one dataset (e.g., ETTh2) and directly evaluated on another from the same domain
(e.g., ETTh1). In the cross-domain setting (Table 19), models are pre-trained on one domain (e.g.,
Weather) and fine-tuned on the target datasets (ETTh1 and ETTm1).

Across both settings, DeCoPMLP demonstrates consistently superior generalization performance. In
the in-domain scenario, DeCoPMLP achieves the best or second-best results in 6 out of 8 cases and
achieves the lowest average MSE (0.342) and MAE (0.376), outperforming strong baselines like
PatchTST (MSE: 0.348, MAE: 0.382) and SimMTM (MSE: 0.351, MAE: 0.383). Similarly, in
the more difficult cross-domain setting, DeCoPMLP significantly outperforms all baselines in most
transfer paths. For example, on the Weather ! ETTh1 transfer task, DeCoPMLP achieves an average
MSE of 0.411 and MAE of 0.426, clearly surpassing other models, including PatchTST (MSE:
0.426, MAE: 0.448) and SimMTM (MSE: 0.456, MAE: 0.467).

Importantly, DeCoPMLP maintains its leading position even under domain shift, as evidenced by
its robust performance on ETTm2 ! ETTh1 (MSE: 0.412), ETTm1 ! ETTh1 (MSE: 0.416), and
ETTh1 ! ETTm1 (MSE: 0.346) settings. This indicates strong transferability across temporal struc-
tures and seasonal patterns. Furthermore, its linear variant, DeCoPLinear, also achieves competitive
results with significantly fewer parameters, reinforcing the efficacy of the controllable design for
generalizing across domains.

These results highlight the remarkable adaptability of DeCoP in both in-domain and cross-domain
scenarios, making it a promising choice for real-world forecasting applications where distribution
shifts are common and labeled target-domain data is limited.
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Table 19: Complete results of long-term forecasting tasks are presented for the cross-domain setting,
where future time points F 2 {96, 192, 336, 720} are predicted based on the preceding 512 time
points. The best results are denoted by bold.

Scenarios Len
DeCoPLinear DeCoPMLP PatchTST SimMTM TF-C LaST Ti-MAE CoST TST TS2Vec
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
#

ETTh1

96 0.362 0.391 0.365 0.394 0.380 0.411 0.372 0.402 0.596 0.569 0.362 0.42 0.399 0.424 0.376 0.362 0.401 0.425 0.436 0.43
192 0.394 0.411 0.397 0.414 0.419 0.436 0.414 0.425 0.614 0.621 0.426 0.478 0.454 0.44 0.376 0.362 0.531 0.484 0.455 0.44
336 0.417 0.427 0.427 0.434 0.436 0.449 0.429 0.436 0.694 0.664 0.522 0.509 0.497 0.469 0.444 0.444 0.474 0.459 0.689 0.584
720 0.438 0.459 0.446 0.462 0.457 0.474 0.446 0.458 0.635 0.683 0.46 0.478 0.515 0.492 0.517 0.51 0.471 0.469 0.489 0.49
Ave 0.403 0.422 0.409 0.426 0.423 0.443 0.415 0.43 0.635 0.634 0.443 0.471 0.466 0.456 0.428 0.433 0.469 0.459 0.517 0.486

ETTm2
#

ETTm1

96 0.306 0.347 0.283 0.342 0.294 0.35 0.297 0.348 0.61 0.577 0.304 0.388 0.333 0.378 0.32 0.364 0.327 0.364 0.422 0.434
192 0.337 0.367 0.323 0.364 0.333 0.371 0.332 0.37 0.725 0.657 0.429 0.494 0.381 0.398 0.367 0.386 0.362 0.389 0.387 0.371
336 0.369 0.385 0.355 0.385 0.359 0.392 0.364 0.393 0.768 0.684 0.499 0.523 0.394 0.413 0.374 0.394 0.401 0.418 0.402 0.444
720 0.424 0.416 0.406 0.414 0.407 0.414 0.41 0.431 0.927 0.759 0.422 0.45 0.455 0.453 0.479 0.503 0.437 0.437 0.481 0.432
Ave 0.359 0.379 0.342 0.376 0.348 0.382 0.351 0.383 0.758 0.669 0.414 0.464 0.39 0.41 0.385 0.412 0.382 0.402 0.423 0.42

ETTm2
#

ETTh1

96 0.363 0.392 0.366 0.394 0.385 0.411 0.388 0.421 0.968 0.738 0.428 0.454 0.433 0.431 0.403 0.426 0.389 0.413 0.483 0.48
192 0.395 0.411 0.401 0.416 0.425 0.439 0.419 0.423 1.08 0.801 0.427 0.497 0.474 0.458 0.457 0.468 0.463 0.452 0.579 0.537
336 0.418 0.429 0.423 0.430 0.44 0.451 0.435 0.444 1.091 0.824 0.528 0.54 0.515 0.448 0.794 0.682 0.492 0.465 0.673 0.563
720 0.441 0.461 0.459 0.465 0.482 0.488 0.468 0.474 1.226 0.893 0.527 0.537 0.496 0.488 0.739 0.617 0.468 0.468 0.729 0.62

Average 0.404 0.423 0.412 0.426 0.433 0.447 0.428 0.441 1.091 0.814 0.503 0.507 0.464 0.456 0.598 0.548 0.453 0.45 0.616 0.55

ETTh2
#

ETTm1

96 0.305 0.348 0.282 0.340 0.302 0.353 0.322 0.347 0.677 0.603 0.314 0.396 0.323 0.362 0.322 0.351 0.338 0.383 0.679 0.546
192 0.341 0.370 0.323 0.365 0.342 0.375 0.332 0.375 0.718 0.638 0.587 0.545 0.37 0.395 0.331 0.373 0.394 0.408 0.673 0.551
336 0.368 0.385 0.359 0.389 0.37 0.392 0.394 0.391 0.755 0.663 0.631 0.584 0.397 0.413 0.382 0.397 0.401 0.412 0.703 0.557
720 0.424 0.415 0.408 0.413 0.439 0.426 0.411 0.424 0.848 0.712 0.368 0.429 0.442 0.439 0.417 0.428 0.434 0.432 0.722 0.573

Average 0.360 0.379 0.343 0.377 0.363 0.387 0.365 0.384 0.75 0.654 0.475 0.489 0.383 0.402 0.363 0.387 0.391 0.409 0.694 0.557

ETTm1
#

ETTh1

96 0.364 0.392 0.371 0.394 0.388 0.411 0.367 0.398 0.666 0.647 0.36 0.374 0.4 0.418 0.465 0.456 0.443 0.44 0.413 0.443
192 0.395 0.411 0.403 0.414 0.422 0.431 0.396 0.421 0.672 0.653 0.381 0.371 0.434 0.445 0.722 0.588 0.471 0.455 0.459 0.465
336 0.419 0.430 0.428 0.431 0.449 0.449 0.471 0.437 0.626 0.711 0.472 0.531 0.51 0.467 0.712 0.586 0.462 0.455 0.614 0.554
720 0.441 0.459 0.460 0.469 0.53 0.513 0.454 0.463 0.835 0.797 0.49 0.488 0.636 0.544 0.581 0.533 0.525 0.503 0.45 0.464

Average 0.405 0.423 0.416 0.427 0.447 0.451 0.422 0.43 0.7 0.702 0.426 0.441 0.495 0.469 0.62 0.541 0.475 0.463 0.484 0.482

ETTh1
#

ETTm1

96 0.309 0.350 0.283 0.340 0.293 0.344 0.29 0.348 0.672 0.6 0.295 0.387 0.311 0.355 0.308 0.355 0.315 0.354 0.681 0.545
192 0.340 0.368 0.329 0.367 0.327 0.366 0.327 0.372 0.721 0.639 0.335 0.379 0.337 0.372 0.357 0.39 0.365 0.391 0.689 0.551
336 0.371 0.385 0.357 0.389 0.364 0.397 0.357 0.392 0.755 0.664 0.379 0.363 0.372 0.398 0.396 0.402 0.384 0.4 0.705 0.56
720 0.422 0.414 0.414 0.417 0.409 0.417 0.409 0.423 0.837 0.705 0.403 0.431 0.422 0.433 0.419 0.423 0.428 0.426 0.722 0.571

Average 0.361 0.379 0.346 0.379 0.348 0.381 0.346 0.384 0.746 0.652 0.353 0.39 0.36 0.39 0.37 0.393 0.373 0.393 0.699 0.557

Weather
#

ETTh1

96 0.365 0.392 0.365 0.393 0.386 0.409 0.477 0.444 - - - - 0.397 0.44 0.421 0.41 0.428 0.429 0.393 0.41
192 0.397 0.412 0.397 0.413 0.405 0.42 0.454 0.522 - - - - 0.458 0.466 0.539 0.503 0.461 0.451 0.44 0.437
336 0.421 0.428 0.431 0.431 0.448 0.454 0.424 0.434 - - - - 0.479 0.458 0.568 0.514 0.463 0.456 0.45 0.451
720 0.439 0.458 0.452 0.465 0.508 0.508 0.468 0.469 - - - - 0.515 0.492 0.544 0.522 0.507 0.489 0.567 0.541

Average 0.405 0.422 0.411 0.426 0.426 0.448 0.456 0.467 - - - - 0.462 0.464 0.518 0.487 0.465 0.456 0.463 0.46

Weather
#

ETTm1

96 0.306 0.348 0.287 0.343 0.284 0.341 0.304 0.354 - - - - 0.338 0.38 0.324 0.36 0.324 0.366 0.329 0.359
192 0.338 0.367 0.325 0.365 0.332 0.373 0.338 0.375 - - - - 0.473 0.457 0.359 0.387 0.349 0.377 0.392 0.392
336 0.369 0.386 0.357 0.384 0.36 0.391 0.371 0.397 - - - - 0.402 0.415 0.395 0.399 0.378 0.398 0.372 0.4
720 0.424 0.416 0.417 0.414 0.418 0.421 0.417 0.426 - - - - 0.432 0.438 0.45 0.467 0.422 0.427 0.434 0.429

Average 0.359 0.379 0.345 0.376 0.348 0.383 0.358 0.388 - - - - 0.411 0.423 0.382 0.403 0.368 0.392 0.382 0.395

I FULL BENCHMARK OF TIME SERIES CLASSIFICATION

I.1 IN- AND CROSS-DOMAIN CLASSIFICATION RESULTS

To evaluate the generalization capability of our method beyond time series forecasting, we further
conduct experiments on EEG classification tasks under both in-domain and cross-domain settings
(Table 20). In the in-domain setting, models are trained and evaluated on the same dataset (Epilepsy).
In cross-domain setting, models are pre-trained on the SleepEEG dataset and fine-tuned on four
target datasets: Epilepsy, FD-B, Gesture, and EMG.

In the in-domain scenario, DeCoP achieves state-of-the-art results across all metrics, with an accu-
racy of 95.53%, F1-score of 92.86%, and the highest average score of 94.20%, outperforming prior
methods such as SimMTM (Avg: 92.92%) and TF-C (Avg: 91.03%). Notably, DeCoP achieves
strong recall (92.25%) without sacrificing precision (93.51%), indicating its balanced and reliable
classification capacity. Under cross-domain transfer, DeCoP continues to exhibit robust generaliza-
tion. On the SleepEEG ! Epilepsy task, DeCoP achieves the highest average score of 94.55%,
with competitive performance across all metrics. On SleepEEG ! FD-B, DeCoP achieves an av-
erage score of 93.97%, significantly outperforming the next-best model (SimMTM, 73.78%). On
SleepEEG ! EMG, DeCoP highest precision (100%) and F1 value (100%). On SleepEEG !
Gesture, DeCoP highest precision (81.67%) and F1 value (80.1%). These results confirm that De-
CoP is not only effective in time series forecasting but also excels in classification tasks involving
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Table 20: For in-domain setting, we pre-train and fine-tune on the same dataset: Epilepsy. For cross-
domain setting, we pre-train the model on SleepEEG and then fine-tune it on different datasets:
Epilepsy, FD-B, Gesture and EMG. AVG denotes the average of accuracy and F1 score. The best
are denoted by bold.

Scenarios Models Acc (%) P (%) R (%) F1 (%) Avg (%)

In
-D

om
ai

n
Epilepsy

#
Epilepsy

TS2vec 92.17 93.84 81.19 85.71 88.94
CoST 88.07 91.58 66.05 69.11 78.59
LaST 92.11 93.12 81.47 85.74 88.93
TST 80.21 40.11 50.00 44.51 62.36
Ti-MAE 90.09 93.90 77.24 78.21 84.56
TF-C 93.96 94.87 85.82 89.46 91.71
PatchTST 89.56 90.39 89.56 80.11 84.84
SimMTM 94.75 95.60 89.93 91.41 93.08
DeCoP 95.53 93.51 92.25 92.86 94.20

C
ro

ss
-D

om
ai

n

SleepEEG
#

Epilepsy

TS2vec 93.95 90.59 90.39 90.45 92.20
CoST 88.40 88.20 72.34 76.88 82.64
LaST 86.46 90.77 66.35 70.67 78.57
TST 80.21 40.11 50.00 44.51 63.36
Ti-MAE 89.71 72.36 67.47 68.55 79.13
TF-C 94.95 94.56 80.08 91.49 93.22
PatchTST 93.27 92.51 85.57 88.48 89.96
SimMTM 95.49 93.36 92.28 92.81 94.15
DeCoP 95.82 94.23 92.41 93.28 94.55

SleepEEG
#

FD-B

TS2Vec 47.9 43.39 48.42 43.89 45.90
CoST 47.06 38.79 38.42 34.79 40.93
LaST 46.67 43.9 47.71 45.17 45.92
TST 46.4 41.58 45.5 41.34 43.87
Ti-MAE 60.88 66.98 68.94 66.56 66.56
TF-C 69.38 75.59 72.02 74.87 74.87
PatchTST 80.15 82.25 85.47 83.05 86.08
SimMTM 69.4 74.18 76.41 75.11 72.26
DeCoP 93.04 94.92 94.90 94.90 93.97

SleepEEG
#

Gesture

TS2Vec 69.17 65.45 68.54 65.70 67.44
CoST 68.33 65.3 68.33 66.42 67.38
LaST 64.17 70.36 64.17 58.76 61.47
TST 69.17 66.6 69.17 66.01 67.59
Ti-MAE 71.88 70.35 76.75 68.37 70.13
TF-C 76.42 77.31 74.29 75.72 76.07
PatchTST 74.17 72.18 74.17 71.40 72.78
SimMTM 80.00 79.03 80.00 78.67 79.34
DeCoP 81.67 80.99 81.67 80.10 80.89

SleepEEG
#

EMG

TS2Vec 78.54 80.4 67.85 67.66 73.10
CoST 53.65 49.07 42.1 35.27 44.46
LaST 66.34 79.34 63.33 72.55 69.45
TST 78.34 77.11 80.3 68.89 73.62
Ti-MAE 69.99 70.25 63.44 70.89 70.44
TF-C 81.71 72.65 81.59 76.83 79.27
PatchTST 90.24 82.96 82.95 82.91 82.94
SimMTM 97.56 98.33 98.04 98.14 97.85
DeCoP 100.00 100.00 100.00 100.00 100.00

physiological signals. Its consistent performance across datasets and domains highlights its strong
inductive bias and adaptability, especially in low-resource transfer scenarios. Unlike prior models
that exhibit strong performance on only specific metrics (e.g., high recall but low precision), DeCoP
demonstrates balanced, high-quality predictions across all evaluation dimensions.
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