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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs for language polishing and minor rewrites of paragraphs after we had written the
technical content. We did not use LLMs to generate research ideas, design experiments, or write
technical sections. All analyses, methods, and results were conceived and verified by the authors.

B OVERVIEW

We first present a comprehensive review in the Section [C] section and a detailed overview of the
Section D, including descriptions of the datasets and baseline models. We then evaluate DeCoP’s
Section [E in terms of computational efficiency, generalization under limited data conditions, and
the effects of different filtering strategies in the Instance-level Contrastive Module (ICM). Next, we
perform a Section[F] investigating the impact of varying patch lengths and the learnable hyperparam-
eter ainitial for the Instance-wise Patch Normalization (IPN) module, different look-back lengths for
the Dependency Controlled Learning (DCL) module, and varying filter intensities 5 and contrastive
loss weights  for ICM. Finally, we provide the Section [G and the Section [H for both time series
forecasting and classification tasks.

C RELATED WORK

C.1 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) has become a dominant paradigm across domains, with notable ex-
amples including Masked Language Modeling (MLM) [Devlin et al. (2019) and Generative Pre-
trained Models (GPM) Brown et al. (2020). In MLM, random tokens are masked in text and
predicted based on surrounding unmasked tokens, while GPM predicts the next token in an au-
toregressive manner. These methods leverage large unlabeled datasets, allowing models to learn
meaningful representations without manual labeling, which supports scalable learning across vast
datasets, preserves data diversity, and minimizes labeling costs. Contrastive learning (CL) (Chen
et al. (2020a); |Gao et al.|(2021) has also gained attraction, focusing on maximizing similarity be-
tween positive pairs while minimizing it between negative pairs. Foundational works such as Sim-
CLR |Chen et al. (2020b) and MoCo [He et al.|(2020) in computer vision, along with CLIP Radford
et al. (2021) in multimodal alignment, underscore its versatility. However, our framework combines
the self-supervised nature of MLM with the contrastive principles of CL, enhancing robustness and
consistency in feature learning to address distribution shifts.

C.2 MASKED TIME SERIES MODELING

Inspired by the success of Masked Language Modeling (MLM), masked time series modeling
(MTM) Rasul et al.| (2023); |Garza et al.| (2023); [Das et al.| (2023) has gained popularity in time
series analysis. PatchTST |Nie et al.|(2022) first introduced the patching technique and masked mod-
eling pretext task for low-level time series forecasting. SimMTM Dong et al.| (2024) constructed
positive samples from a manifold perspective and reconstructed time series from multiple masked
sequences, while needing large computing resources when training. Meanwhile, CL has been widely
adopted for high-level time series classification tasks. TF-C|Zhang et al.| (2022b) proposed a time
and frequency domain contrastive learning framework to enhance consistency in both the time and
frequency domains. In contrast, our framework better at handling complex distributions and dynam-
ical dependency by incorporating dependence controlled learning.

D EXPERIMENTAL DETAILS

D.1 DATASET

We evaluate our framework using 10 datasets across forecasting and classification tasks in both in-
domain and cross-domain settings. Detailed descriptions of the datasets are provided in Table[6} The
ETT datasets [Zhou et al. (2021) (ETTh1, ETTh2, ETTml, and ETTm?2) were collected from two
distinct electric transformers over a two-year period, from July 2016 to July 2018. These datasets are
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available in two temporal resolutions: 15 minutes and 1 hour, denoted as ”m” and "’h,” respectively.
The Weather dataset [Wetterstation| (2021) comprises 21 meteorological indicators recorded every
10 minutes in Germany during 2020. The Electricity dataset|UCI (2021) contains hourly electricity
consumption records of 321 customers from 2012 to 2014.

For classification tasks, the SleepEEG dataset

Kemp et al.| (2000) includes 153 whole-night Table 6: Datasets for Forecasting and Classifi-
electroencephalography (EEG) recordings, cate- cation Tasks

gorized into five stages: Wake (W), Non-rapid

€ye movement (Nl, N2, N3), and Rapld Eye Tasks Datasets Channels Length Classes Frequency
Movement (REM). The EPILEPSY dataset |An- ETTO) 7 7420 - ! Hour
drzejak et al. (2001) features single-channel EEG Forecasting ~ ETTml 7 69680 . 15 1\/([);::5
3 3 3 ETTm2 7 69680 - 15 Mins
measurements from 500 subjectg, with blngry la- eathe I St o 1o M
bels indicating whether the subject experienced Electricity 321 26304 - 1 Hour
a seizure. The FD-B dataset [Lessmeier et al. SleepEEG 1 200 3 100 Hz
. R Epilepsy 1 178 2 174 Hz
(2016) was generated using an electromechani-  Classification ~ FD-B I 5120 3 64K Hz
EMG 1 1500 3 4K Hz

cal drive system to monitor rolling bearing con-
ditions and classify faults into three categories:
undamaged, inner-damaged, and outer-damaged. The Electromyogram (EMG) dataset |PhysioBank
(2000) records electrical activity in muscle responses to neural stimulation. It consists of single-
channel EMG recordings from the tibialis anterior muscle of three healthy volunteers suffering from
neuropathy and myopathy, where each patient represents a classification category.

D.2 DETAILS OF BASELINE SETTINGS

For the time series forecasting task, we categorize the baseline models into two paradigms: self-
supervised and supervised. PatchTST [Nie et al.| (2022) and SimMTM |Dong et al. (2024) are rep-
resentative self-supervised models. In contrast, DLinear Zeng et al.|(2023)), FEDformer Zhou et al.
(2022), Autoformer [Wu et al.[(2021), and Informer Zhou et al.| (2021)) are robust supervised mod-
els for forecasting tasks. Additionally, CycleNet and TimeMixer represent the latest state-of-the-art
methods, also grounded in the supervised paradigm. For the classification task, we divide the base-
line models into two paradigms: masked time series models (MTM) and contrastive learning (CL)
models. SimMTM |Dong et al. (2024), Ti-MAE [Li et al.| (2023), and TST [Zerveas et al. (2021
follow the MTM paradigm, while LaST Wang et al. (2022), TF-C |Zhang et al.| (2022a), CoST |Woo
et al.|(2022)), and TS2Vec|Yue et al. (2022) are based on the CL paradigm.

For time series forecasting task, the default look-back window for various MTM models is set to
512, following|Nie et al.|(2022)). The results for DLinear , FEDformer, Autoformer, and Informer are
from PatchTST. Meanwhile, for time series classification task,the results for Ti-MAE, TST, LaST ,
TF-C, CoST, and TS2Vec are obtained from SimMTM. For the latest state-of-the-art methods ' Wang
et al. (2024); Lin et al. (2024)), the look-back window length is consistently fixed at 512, adhering to
Nie et al. (2022). The classification results of PatchTST are reproduced using the official codebase,
with hyperparameters further tuned based on the default settings to achieve optimal performance.

D.3 IMPLEMENTATION DETAILS

All experiments were repeated five times, implemented using PyTorch, and conducted on an
NVIDIA RTX 4090 GPU with 24GB of memory. The baselines were implemented based on their
official repositories, adhering to the configurations specified in their original papers. For forecasting
tasks, all datasets were chronologically split into training, validation, and test sets, with splitting ra-
tios of 6:2:2 for the ETT datasets and 7:1:2 for the other datasets, as outlined in Wu et al. (2021). For
classification tasks, the dataset splits followed the setup described in [Zhang et al. (2022a). During
pre-training, each model was typically trained for 100 epochs. This was followed by linear probing
of the head for 10 epochs and fine-tuning the entire model for 20 epochs, in line with Nie et al.
(2022).
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Table 7: Forecasting Configuration and Classification Configuration

Task Dataset Amodet Wy dl d2 Source Data Target Data  d Wk dy dy  Agg
ETThI/ETTh2 128 (2.5) 256 512 Epilepsy Epilepsy 128 (3,6) 256 512 Avg
F asti ETTm1/ETTm2 128 “4,8) 256 512 SleepEEG Epilepsy 128 (2,5) 256 512 Avg
orecasting Weather 128 (2,5 256 512 SleepEEG FD-B 128 (25) 128 256 Avg
Electricity 256 (3,6) 512 512 SleepEEG EMG 128 (2,5) 256 512 Max

(@) ()

D.4 MODEL PARAMETERS

By default, all experiments are configured with the following parameters: e;4yers = 2, topC = 0.3,
Qintial = 0.01, and v = 0.1. During pre-training, a dropout ratio of 0.2 is applied. For forecasting
tasks, both in-domain and cross-domain experiments share the same configuration, with a patch
size and stride of 12. For classification tasks, the patch size is set to 8 for all datasets. A learning
rate of 1e-4 is applied across all tasks during the pre-training and fine-tuning stage. Additional key
parameters for forecasting and classification are detailed in Table

D.5 RESULTS WITH DIFFERENT RANDOM SEEDS

To examine the robustness of our results, we

train the supervised PatchTST model with 5 dif-
ferent random seeds: 1,2,3,4,5 and calculate
the MSE and MAE scores with each selected

Table 8: Comparison of DeCoP under differ-
ent random seed across different forecasting
datasets.

seed. The mean and standard derivation of DeCoP
. Datasets ~ Pred len
the results are reported in Table [§] The find- MSE MAE
ings demonstrate that the variances in MSE and 96 0.360440.0010  0.390040.0008
MAE across different random seeds are notably ETThI 192 0.393520.0010  0.4104:-0.0007
11. indicati the stabilit d robust £ 336 0.41734+0.0033  0.427540.0016
small, mndicating the stabilily and robustness o 720 0.4328+0.0015 0.4552:+0.0009
the r,nodel. This consistency suggests that De- % 02677100024 03324200011
CoP’s performance is not significantly affected ETTh? 192 0.3281£0.0019  0.3735+0.0034
by random initialization, reinforcing the reliabil- §g6 8»35?0103033 8'43137?110'0035
ity of its predictions across different experimen- 0 38182000 :425420.00
tal setups. Specifically, the robustness is evi- 96 0.2809+0.0033  0.3395+0.0014
h . . ETTml 192 0.325440.0017  0.366140.0006
dent across diverse datasets, 1nclud1ng ETThl, 336 0.353240.0038 0.3867+0.0010
ETTh2, ETTm1, ETTm2, Weather, and Electric- 720 0.4098+0.0018 0.4134+0.0015
ity, where the standard deviations are consistently 96 0.163040.0006  0.2546+0.0006
low, regardless of the prediction length. ETTm? 192 0.2172+0.0004  0.2900+0.0002
336 0.26614+0.0010  0.323940.0011
720 0.34964+0.0008  0.377040.0010
D.6 PERFORMANCE VISUALIZATIONS 96 0.14564+0.0005  0.193140.0007
Weather 192 0.189740.0003  0.236340.0004
We provide qualitative comparisons on the 336 0.2421:£0.0001  0.2770:£0.0008
. - 720 0.315240.0008  0.3300+0.0008
ETThl dataset to illustrate the predictive behav-
ior of each model. As sh i DeCoP 96 0.1274£0.0001  0.2223+0.0001
1or ol each model. AS shown 1n lgure@ cLo Electricit 192 0.145740.0001  0.2359+0.0001
achieves superior performance, reducing MAE Y336 0.16064+0.0003  0.2555-0.0004
720 0.194940.0008  0.2889+40.0008

by 2.4% and 0.7% compared to PatchTST and
SimMTM, respectively. Visually, DeCoP more
accurately follows both the overall trend and the
fine-grained fluctuations of the target signal, demonstrating its advantage in modeling temporal dy-
namics.

D.7 POSITIVE SAMPLE PAIRS VISUALIZATION

We present qualitative examples of positive sample pairs generated by the proposed Instance-level
Contrastive Module (ICM) across six representative datasets, as shown in Figure@} These visualiza-
tions illustrate how ICM preserves the global temporal structure of anchor samples while introducing
controlled perturbations for contrastive learning. The generated positive samples (green) maintain
the overall trends and periodic patterns of the anchor sequences (blue) by selectively filtering out
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Figure 8: Performance visualization on the ETTh1 dataset. DeCoP captures both the overall trend
and local fluctuations more accurately than PatchTST and SimMTM.

time-variant low-amplitude frequency components in the frequency domain. Compared to anchor
sequences, the positive samples exhibit reduced noise and smoother trajectories, achieved by tuning
the filtering intensity. Importantly, the filtered noise (orange) primarily consists of random fluctua-
tions lacking meaningful temporal patterns, which are effectively suppressed in the positive samples.

These results demonstrate that ICM generates high-quality positive pairs that retain semantically
important characteristics while attenuating irrelevant variations. When used with a contrastive loss,
these samples enable DeCoP to learn more discriminative and generalized high-level representations
from diverse time series inputs, improving generalization across various downstream tasks.

E PERFORMANCE ANALYSIS

E.1 EFFICIENCY

We evaluate DeCoP’s efﬁciency for practical de- Table 9: Computation and memory costs across
ployment. The ICM is removed during fine- datasets.

tuning, incurring no impact on inference per-

formance (see Table [0). During pretraining,  Metric | Pretrain Time | Pretrain Mem | Finetune Time
ICM contributes mlnlmally to resource consump- Dataset | Overall ICM | Overall ICM | Overall Inference
tion—accounting for only 10% of total training 5Tl | 208 0| R ol in 1%
time and 6% of GPU memory (in MiB) per itera-  Epilepsy | 1632 230 | 53 031 | 472 1.03
tion across datasets. For example, on the ETTh1

dataset, ICM adds only 1.25 ms to pretraining

time and 6.36 MiB of memory overhead. Despite its low cost, ICM remains effective, improv-
ing F1 by 9.95% in the SleepEEG—FD-B transfer scenario. For deployment, the IPN serves as a
lightweight normalization layer, while the DCL module leverages simple temporal learners with low
parameter overhead. As shown in Table 5 in main text, DeCoP consistently achieves lower inference
FLOPs and latency than all baselines.

E.2 GENERALIZATION ON ANOMALY DETECTION BENCHMARK

Similarly, to evaluate its generalization capabilities on other tasks, we benchmarked DeCoP on three
anomaly detection datasets: SMAP Hundman et al.| (2018)), PSM |Abdulaal et al. (2021), and MSL
Hundman et al. (2018)). As shown in Table DeCoP achieves state-of-the-art performance on two
of the three datasets. Specifically, it obtains the highest F1 score on SMAP (87.80), outperforming
the strong PatchTST baseline by 1.74%, and also leads on PSM with an F1 score of 94.86. On the
MSL dataset. Overall, these results demonstrate DeCoP’s robust generalization to anomaly detection
tasks.

E.3 ALTERNATIVE FILTER METHODS
To test the effectiveness of our time-invariant filter strategy. We evaluated several base-

lines—including random, all-zero, and spectral attention filters—all of which underperformed com-
pared to our proposed time-invariant filter method. As shown in Table[I0b] ICM achieves the lowest
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Table 10: (a).DeCoP demonstrates strong performance on anomaly detection benchmarks. P, R
denotes precision and recall, respectively;(b).Comparison of different filter strategies across fore-
casting and classification tasks.

(a) (b)
Dataset SMAP PSM MSL Filters | Ic™M | All-Zeros | Random | Spectral Att.
Metrics P R F1 P R F1 P R F1 Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

DeCoP 87.26 88.36 87.80 95.69 94.04 94.86 84.28 87.55 85.89 ETThl | 0401 0421 | 0406 0424 | 0403 0423 | 0404 0.423
PatchTST  86.80 85.33 86.06 96.06 90.73 93.32 84.54 86.85 85.68 Metric | ACC Fl | ACC Fl | ACC Fl | ACC Fl
DLinear 9236 55.41 69.29 98.28 89.26 93.55 84.34 85.42 84.88 .

Autoformer 9040 58.62 71.12 99.08 88.15 93.29 77.27 80.92 79.05 Epilepsy | 0.955 0927 | 0940 0.904 | 0.944 0905 | 0.952 0.924
Informer ~ 90.11 57.13 69.92 64.27 96.33 77.10 81.77 86.48 84.06

Value

— e W 7 S o e e 7 S X3 Y
Time step Time step Time step

Figure 9: The visualization of generated positive sample pairs using ICM. These generated
positive sample pairs from each forecasting dataset with a sequence length of 100. The variable
index represents the relative order of channels within each dataset. The blue line indicates the
original anchor sample, while the green and orange lines represent the positive sample and filtered
noise, respectively. The positive sample (green) preserves the primary characteristics of the anchor
sample while exhibiting controlled variations in amplitude and temporal fluctuations.

error across both forecasting and classification tasks. On the Epilepsy dataset, for example, the
all-zero filter reduced F1 by 3.1% relative to ICM, demonstrating its limited efficacy. Top-K time-
invariant filtering effectively generates noise-controlled positive samples, even in the early stages of
training. In contrast, learnable filters often struggle to provide the stable supervision required for
effective representation learning, particularly during the early stages of training. Moreover, our time-
invariant filter is a parameter-free module. Contrastively, other competing strategies can introduce a
performance drop while simultaneously requiring additional parameters.

F PARAMETER SENSITIVITY ANALYSIS

F.1 THE ROBUSTNESS OF IPN

The analysis of parameter cjuitial. We evalu-  Table 11: DeCoP remains stable around differ-
ate the sensitivity of IPN to the initialization of ent a4, on three different datasets.

the scaling parameter upj. As shown in Ta-

ble [IT} IPN consistently achieves stable perfor- — ETThi | ETTml | Weather
mance across a wide range of jpiga values (0.0.1 CEESE MAE | MSE MAE | MSE MAE
to 0.5) on all three datasets. Thq qbservc.:d vari- 001 0401 0421 | 0223 0259 | 0223 0259
ations in MSE and MAE are minimal, indicat- 0.1 0403 0422 | 0223 0259 | 0224 0.260
ing that IPN is robust to the choice of Qiyitis and 0.2 0.404 0422 | 0224 0.260 | 0.223  0.260
does not require careful tuning for effective per- %5 0404 0422 ] 0.224 0.260 | 0223 0260

formance.

The analysis of patch size P. We investigate the robustness of the IPN module under varying patch
lengths. Specifically, we assess the model’s sensitivity to the patch size P=2, 4, 8, 12, 16, 24, 32,
40, with the look-back window fixed at 512 and the stride set equal to the patch length to avoid
overlap. The forecasting horizon is fixed at 96 time steps. Figure [I0] illustrates the MSE scores
across three representative datasets: ETTh1l, ETTml, and Weather. The results demonstrate that
the performance of the IPN module remains consistently stable for a wide range of patch lengths,
particularly within the interval P = 8 to P = 40. This indicates that the IPN module is largely
invariant to moderate changes in patch configuration, highlighting its robustness. Interestingly, while
very small patch lengths (e.g., P = 2) occasionally result in slight performance degradation, larger
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Figure 10: IPN Module Shows Robust Performance Across Patch Sizes. MSE scores are eval-
uated for patch lengths P = [2, 4, 8, 12, 16, 24, 32, 40] with a fixed look-back window of 512 and
prediction length of 96. The results indicate small variation in MSE values, particularly for P = [8,
40], highlighting the IPN module’s robustness.

patches consistently yield strong results. This observation suggests that using moderately large patch
sizes can improve stability and performance, depending on the dataset’s temporal structure. Overall,
these findings confirm that the IPN module adapts effectively to different patch granularities without
extensive hyperparameter tuning. This flexibility is crucial for practical deployment across datasets
with diverse characteristics, reinforcing the IPN module’s generalization capability.

F.2 THE EFFECTIVENESS OF ICM

To further assess the contribution of the ICM module, we conduct a detailed evaluation of its impact
under various filtering intensities on both forecasting and classification tasks. ICM is designed to fil-
ter noisy, high-frequency components in time series signals during pretraining, improving the qual-
ity of global semantics for dependency-controlled learning. By applying frequency-domain filtering,
ICM allows the model to focus on temporally stable positive pairs, enhancing global representation
learning at the latent level.

We investigate the effect of the S parameter, which determines the proportion of high-amplitude fre-
quency components retained during filtering. Higher 3 values correspond to stronger filtering (i.e.,
more low-energy frequencies are removed). Table |12 summarizes the results on ETThl, ETTml,
and Epilepsy datasets with 5 € {0.0,0.1,0.2,0.4}. On the forecasting tasks, we observe consis-
tent improvements in both MSE and MAE when using non-zero § values. For instance, on the
ETTm]1 dataset, the average MSE decreases from 0.350 (no filtering) to 0.342 at 8 = 0.1, with cor-
responding MAE also decreasing from 0.378 to 0.376. The performance remains relatively stable
for 5 values up to 0.4, suggesting that ICM is robust to a wide range of filtering intensities. Similar
trends are observed on the ETTh1 dataset, where MSE improves from 0.403 to 0.401 when 3 = 0.1
or f = 0.2. These results confirm that mild frequency filtering enhances temporal modeling by
removing distracting noise without compromising meaningful signal components. From a signal
processing perspective, ICM serves as a soft spectral denoiser that targets low-amplitude compo-
nents often associated with sensor drift, random fluctuations, or local outliers. By suppressing these
perturbations and preserving dominant frequencies, ICM helps the model learn representations that
generalize more effectively across input variations and time horizons. This benefit is especially pro-
nounced for long-horizon forecasting (e.g., 720-step prediction), where accumulated noise tends to
degrade performance more severely.

We also evaluate ICM’s effectiveness on the Epilepsy classification task. Without filtering (5 = 0.0),
the model achieves 94.61% accuracy and 91.30% F1 score. Enabling frequency filtering with
B = 0.1 increases performance to 95.4% accuracy and 92.6% F1, and the performance remains
stable for higher 3 values. This demonstrates that ICM not only improves regression objectives, but
also preserves class-discriminative patterns while removing task-irrelevant spectral artifacts. Impor-
tantly, the 3 analysis shows that ICM is not sensitive to precise hyperparameter settings; gains are
observable as long as minimal filtering is applied (5 > 0). This property simplifies deployment
in real-world scenarios, where robust performance under moderate tuning is often preferred. More-
over, since ICM is only used during pretraining, it imposes no additional inference cost. In summary,
ICM complements the hierarchical modeling of dependencies in DCL by enhancing global repre-
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Table 12: Impact of 3 filtering on forecasting and classification performance across ETTh1, ETTm],
and Epilepsy datasets. For forecasting, MSE/MAE are reported. For classification, Accuracy (ACC)
and F1 score are presented.

Dataset | f3 \ 0 \ 0.1 \ 0.2 \ 0.4
| Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0.362 0.391 | 0.360 0.390 | 0.360 0.390 | 0.361 0.390

ETThl 192 0.395 0411 | 0394 0.410 | 0.394 0.410 | 0.394 0411
336 0418 0427 | 0.417 0.427 | 0417 0427 | 0418 0.427
720 0.439 0.460 | 0.433 0.455 | 0433 0.455 | 0439 0.459

| Avg | 0403 0422 [ 0401 0421 | 0.401 0.421 | 0.403 0.422
Metric | MSE MAE | MSE  MAE | MSE MAE | MSE MAE

96 0.286 0.342 | 0.281 0.340 | 0.284 0.342 | 0.284 0.341
ETTml | 192 0.331 0.368 | 0.325 0.366 | 0.329 0.367 | 0.329 0.367
336 0.364 0.386 | 0.353 0.387 | 0.356 0.387 | 0.361 0.384
720 0421 0418 | 0.410 0.413 | 0416 0415 | 0416 0418

| Avg | 0350 0378 | 0342 0376 | 0.346 0378 | 0.347 0377
| Mewic | ACC  F1 | ACC FlI | ACC Fl | ACC Fl
| Value | 9461 9130 | 954 926 | 951 922 | 951 922

Epilepsy

sentation learning, and plays a critical role in enabling DeCoP to operate reliably under multiscale
and non-stationary conditions.

F.3 THE GENERALIZABILITY OF DCL STRATEGY

The DCL method is designed to model hierarchical temporal dependencies by aggregating in-
formation across multiple temporal resolutions. To evaluate the generalization ability of DCL
across diverse input scales, we conduct experiments by varying the look-back length L €
{96,192, 336,512, 720} while keeping the patch size and stride fixed. This setting isolates the im-
pact of input sequence length while holding the architectural capacity constant. We report forecast-
ing performance compare to CycleNet, a state-of-the-art baseline that adopts a linear or MLP-based
temporal backbone, on three representative datasets (ETTh1, ETTml, and Weather) in Table

Across all datasets and input lengths, DeCoP consistently outperforms CycleNet, demonstrating
its robustness to varying temporal contexts. For instance, on ETTm1, DeCoP achieves the lowest
average MSE of 0.341 and MAE of 0.376, with particularly strong results at L = 192 and L = 336,
indicating its capacity to adaptively extract meaningful patterns at medium-range scales. On ETTh1,
DeCoP shows clear advantages at longer horizons (e.g., L = 512, 720), outperforming CycleNet
in both short- and long-term forecasting regimes. On the Weather dataset, DeCoP outperforms
CycleNet by a significant margin across all settings, especially at L = 720 where it achieves MSE
= 0.222 and MAE = 0.260, confirming its ability to handle highly periodic or irregular signals with
long-range dependencies. These results confirm that DCL not only generalizes across datasets with
varying dynamics but also scales well with increasing input length without degrading performance.
In contrast, CycleNet’s performance tends to deteriorate or plateau under long input sequences,
which we attribute to its static modeling capacity and lack of explicit multi-scale mechanisms. By
progressively expanding the receptive field through hierarchical windows, DCL adaptively captures
dependencies at different temporal scopes and mitigates issues such as temporal overfitting. In
summary, DCL provides robustness to both local and global temporal changes, making it an effective
backbone for time series modeling under real-world scenarios with varying historical contexts.

F.4 ABLATION STUDY ON THE CONTRASTIVE LOSS WEIGHT «

We investigate the sensitivity of model performance to the contrastive loss weight , which
controls the contribution of L. during training. As shown in Table smaller values
of v (e.g., 0.1) yield competitive results on regression tasks such as ETTh2 and Weather,
with minimal variation across settings. In contrast, larger values of ~ significantly im-
prove performance on high-level classification tasks, as evidenced by a steady increase in
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Table 13: Dependence-Controlled Learning Effectiveness Across Different Look-Back Times.
This table compares the performance of DeCoP and CycleNet across various look-back windows
and prediction horizons on three different datasets. The best result for each dataset is marked in
yellow, and the best under each look-back time is marked in pink. DeCoP achieve allover best in
each dataset and can get best result under the same look-back time once the input length larger than

96.
. 96 192 336 512 720
Dataset  Models  Look-back time  yyqp " "\jAE  MSE MAE MSE MAE MSE MAE MSE MAE
DeCop 96 0384 0394 0380 0396 0370 0393 0361 0390 0363 0394
eCo 192 0436 0424 0421 0418 0403 0413 0394 0410 0400 0418
336 0478 0446 0453 0436 0428 0429 0414 0427 0426 0436
ETTh1 720 0478 0470 0451 0460 0442 0460 0437 0458 0453 0472
Avg 0444 0433 0426 0428 0411 0424 0401 0421 0411 0430
96 0378 0391 - 0374 039 - - 0379 0403
192 0426 0.419 - 0406 0415 - - 0416 0425
CycleNet 336 0464 0439 - 0431 043 - - 0447 0445
720 0461  0.46 - 045 0464 - - 0477 0483
Avg 0432 0427 - 0415 0426 - - 043 0439
96 0314 0356 0288 0340 0282 0338 0280 0338 0296 0.348
192 0358 0380 0323 0363 0324 0365 0323 0365 0332 0369
DeCoP 336 0387 0400 0357 038 0355 0385 0353 0385 0364 0386
720 0449 0435 0417 0421 0411 0418 0409 0418 0412 0415
ETTml Avg 0377 0393 0346 0377 0343 0377 0342 0376 0351 0379
96 0319 036 - 0299 0348 - - 0307 0353
192 036 0381 - 033 0367 - - 0337 0371
CycleNet 336 0389  0.403 - 0368 038 - - 0364 0387
720 0.447 0.441 - 0417 0414 - - 041 0411
Avg 0379 0396 - 0355 0379 - - 0355 0381
96 0.175 0216 0.157 0201 0.148 0.195 0.45 0.193 0.144 0.192
192 0222 0256 0201 0242 0.192 0238 0190 0237 0.189 0236
DeCoP 336 0277 0296 0255 0283 0244 0278 0242 0278 0242 0279
720 0352 0346 0332 0336 0318 0331 0314 0329 0313 0.331
Weather Avg 0256 0278 0236 0266 0226 0261 0223 0259 0222 0.260
96 0.158  0.203 - 0148 02 - - 0149 0203
192 0207 0247 - 019 024 - - 0192 0244
CycleNet 336 0262 0.289 - 0243 0283 - - 0242 0283
720 0344 0344 - 032 0339 - - 0312 0333
Avg 0243 0271 - 0226 0266 - - 0224 0266

accuracy and F1 score on the Epilepsy dataset.

These results suggest that contrastive su-

pervision is especially beneficial for learning global representations in classification settings.

The visualization of time-invariant filter. We
visualize the effect of our time-invariant filtering
on both forecasting (ETThl) and classification
(SleepEEG) tasks. As shown in Figure[T[a), the
ICM successfully removes noise while generating
positive samples that preserve the temporal struc-
ture of the anchor. The filtered noise (orange) ex-
hibits near-zero mean and low variance, resem-
bling white noise, which aligns with the central
limit theorem. Figures[TT|b) and[IT]c) further an-
alyze the retained and discarded frequencies. The

Table 14: DeCoP remains stable performance
around different  for ETTh2 and Weather
datasets.

5 ETTh2 |  Weather | Epilepsy
MSE MAE | MSE MAE | Accuracy  Fl
0.01 0.336 0.385 | 0.224 0.261 93.38 89.41
0.1 0.336  0.385 | 0.224 0.261 93.84 90.08
03 0335 0385 | 0.224 0.261 94.86 91.26
0.5 0.336  0.385 | 0.225 0.261 95.53 92.86

green dots denote time-invariant frequencies preserved by ICM, while orange dots indicate time-
variant components filtered out. Notably, despite their lower amplitude, the retained green frequen-
cies remain consistent across both datasets, validating their stability and importance for learning
generalizable patterns. This demonstrates that the ICM mechanism prioritizes informative, time-
invariant signals over low-amplitude and unstable variations, preventing information loss and pro-

viding stable positive pairs during pretraining.
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Figure 11: The ICM filters time-variant noise while preserving meaningful time-invariant frequen-
cies. The top and bottom rows show this process on examples from two different tasks: the ETTh1
forecasting dataset (sequence length 100) and the SleepEEG classification dataset (sequence length
178), respectively. Column (a) Visualization of the anchor sample, filtered noise, and generated
positive sample on the last channel of the ETThl and SleepEEG dataset. The filtered noise (or-
ange) resembles white noise with zero mean, consistent with the central limit theorem. Column (b)
Amplitude spectrum of (a), where green dots denote time-invariant frequencies retained by ICM,
and orange dots indicate time-variant frequencies removed by the F'mask. Column (c) Although
the green-highlighted frequencies in (b) show lower amplitude, they remain prominent across (c),
confirming their time-invariant nature and importance for capturing stable patterns.

G FULL ABLATION STUDY RESULTS

To thoroughly assess the contribution of each module in our proposed DeCoP framework, we con-
duct comprehensive ablation studies on both forecasting and classification tasks, across both in-
domain and cross-domain settings.

G.1 ABLATION STUDY ON FORECASTING TASKS

These studies evaluate the necessity and effectiveness of the key components: Instance-wise Patch
Normalization (IPN), the Instance-level Contrastive Module (ICM), and the Dependency-Controlled
Learning (DCL) mechanism. We summarize forecasting ablation results in Table [I5] and Table
and classification results in Table[T7]

We design four ablation variants: (1) w/o IPN, (2) w/o ICM, (3) PI (fully Patch-Independent DCL),
and (4) PD (fully Patch-Dependent DCL). These are compared against the full DeCoP model across
six datasets for forecasting (ETTh1, ETTh2, ETTml1, ETTm2, Weather, Electricity) and three for
classification (Epilepsy, FD-B, EMG).

Across all datasets and forecast horizons, the full DeCoP model consistently outperforms its ab-
lated variants. In in-domain forecasting as shown in Table [T5] DeCoP achieves the lowest average
MSE and MAE in nearly every case. For example, on ETTh2, DeCoP obtains an average MSE
of 0.333, significantly outperforming w/o IPN (0.337), w/o ICM (0.385), and both PI and PD vari-
ants (0.335 and 0.383, respectively). The impact of the IPN and ICM is particularly evident on
datasets like ETTm1 and Electricity, where the removal of either leads to a substantial drop in per-
formance—highlighting their critical role in ICM and frequency-based noise suppression.
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Table 15: Full ablation studies ablation studies were conducted on in-domain learning tasks. The
experiments focus on forecasting future time points F' € {96, 192, 336, 720} based on a look-back
window of 512 past time points. Best results are denoted by bold.

Models w/o IPN w/o ICM PI PD DeCoP
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.365 0.392 0362 0391 0364 0.392 0363 0.391 0360 0.390
192 0.400 0413 0395 0411 0400 0415 0398 0413 0394 0410
ETTh1—ETThl 336 0423 0429 0418 0427 0416 0426 0419 0426 0417 0427
720 0434 0455 0439 0460 0444 0462 0442 0460 0433 0455

Average 0.406 0.422 0.403 0.422 0406 0424 0405 0423 0401 0421

96 0275 0336 0.273 0333 0272 0.334 0.267 0332 0.267 0.332
192 0.331 0375 0.330 0374 0.329 0373 0330 0.374 0328 0.373
ETTh2—ETTh2 336 0.358 0.400 0.360 0.398 0.355 0.398 0.359 0.399 0.353 0.397
720 0.386 0429 0385 0427 0385 0427 0383 0.427 0.382 0425

Average 0.337 0385 0.337 0.383 0.335 0.383 0.335 0.383 0.333 0.382

96 0290 0.345 0.286 0.342 0292 0.349 0.290 0.345 0.281 0.340
192 0.330 0.370 0.331 0368 0.330 0.373 0.323 0364 0.325 0.366
ETTml1—ETTml 336 0.366 0.386 0.364 0386 0364 0.392 0356 0386 0.353 0.387
720 0424 0416 0421 0418 0405 0416 0411 0413 0410 0413

Average 0.352 0.379 0.350 0.378 0.348 0.382 0.345 0.377 0.342 0.376

96 0.164 0.255 0.164 0.256 0.163 0.253 0.167 0.252 0.163 0.255
192 0220 0296 0.221 0294 0.216 0.289 0220 0.295 0217 0.290
ETTm2—ETTm2 336 0272 0.330 0.273 0331 0269 0.323 0.268 0.327 0.266 0.324
720 0.356 0.382 0.358 0.384 0.393 0.408 0.353 0.381 0.350 0.377

Average 0.253 0316 0.254 0.316 0260 0.318 0.252 0314 0.249 0.311

96 0.151 0.201 0.150 0.199 0.156 0.206 0.146 0.197 0.146 0.193
192 0.194 0.240 0.193 0.239 0.196 0.241 0.193 0.242 0.190 0.236
Weather— Weather 336 0244 0.279 0.243 0.278 0.247 0.282 0.245 0.281 0.242 0.277
720 0316 0.331 0.317 0332 0317 0334 0329 0339 0315 0.330

Average 0.226 0.263 0.226 0.262 0.229 0.266 0.228 0.265 0.223 0.259

96 0.132 0.227 0.132 0.228 0.135 0.230 0.130 0.226 0.127 0.222
192 0.149 0.243 0.149 0.243 0.150 0.244 0.148 0.242 0.145 0.239
Electricity—Electricity 336 0.165 0.259 0.165 0.260 0.166 0.260 0.164 0.259 0.161 0.257
720 0.204 0.293 0.204 0.293 0205 0.293 0.203 0.293 0.195 0.289

Average 0.162 0255 0.163 0.256 0.164 0.257 0.162 0.255 0.157 0.251

Scenarios

Moreover, the ablation of the DCL mechanism provides further insights into the importance of
dependency control. Among the two variants, the Patch-Independent (PI) version consistently un-
derperforms, suggesting that treating patches as completely independent fails to capture important
hierarchical dependencies. The PD variant (fully dependent) performs slightly better, but still falls
short of DeCoP, indicating that overly strong dependency assumptions may lead to overfitting or
loss of flexibility. The superior performance of DeCoP, which adopts a partially dependent design,
confirms that adaptive dependency modeling offers the best trade-off between representation expres-
siveness and regularization.

In the cross-domain forecasting setup (Table , where models are transferred across datasets,
the performance gaps become even more pronounced. For instance, on the ETTm2 — ETThl
transfer task, DeCoP achieves an average MSE of 0.404, while all ablation baselines perform worse,
with the PI variant dropping to 0.428 and the ICM-ablated version reaching 0.412. This widening
performance gap under domain shift further emphasizes the importance of ICM and DCL in enabling
generalizable temporal representations. Additionally, results on Weather — ETTh1 demonstrate that
DeCoP can effectively transfer temporal priors from one domain to another, outperforming baselines
even under significant distributional changes.

G.2 ABLATION STUDY ON CLASSIFICATION TASKS

For classification tasks as shown in Table DeCoP similarly outperforms all ablation variants in
both in-domain and cross-domain settings. In the in-domain Epilepsy classification task, DeCoP
attains an average score of 94.20%, compared to 92.19% and 92.77% for the w/o IPN and w/o
ICM variants, and substantially higher than PI (90.26%) and PD (71.69%). In the more challeng-
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Table 16: Full ablation studies ablation studies were conducted on cross-domain transfer tasks
to ETTh]l and ETTml datasets. The experiments focus on forecasting future time points F' €
{96,192, 336, 720} based on a look-back window of 512 past time points. Best results are denoted
by bold.

Models w/o IPN w/o ICM PI PD DeCoP
Metricr MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0364 0392 0364 0392 0364 0391 0365 0391 0362 0.391

ETTh2 192 039 0411 039 0412 0401 0414 0401 0414 0394 0411
1 336 0421 0429 0428 0428 0424 0431 0425 0431 0417 0427
ETTh1 720 0446 0462 0442 0460 0443 0460 0443 0463 0438 0.459

Average 0.407 0423 0407 0423 0408 0424 0408 0425 0.403 0.422

96 0363 0391 0366 0.394 0363 0390 0364 0.390 0364 0.392

ETTml1 192 0395 0411 0398 0415 039 0411 0400 0414 0395 0411
1 336 0422 0432 0421 0429 0422 0429 0423 0430 0419 0.430
ETThl 720 0451 0468 0445 0464 0442 0460 0443 0464 0441 0.459

Average 0.408 0426 0407 0425 0406 0422 0407 0425 0.405 0.423

96 0363 0391 0371 0.398 0364 0391 0364 0389 0363 0.392

ETTm2 192 039 0411 0402 0417 0397 0411 0401 0414 0395 0411
4 336 0421 0427 0426 0432 0429 0428 0424 0430 0418 0.429
ETTh1 720 0.442 0459 0449 0465 0444 0460 0442 0459 0441 0461

Average 0.406 0.422 0412 0428 0408 0423 0408 0423 0.404 0.423

96 0363 0392 0365 0393 0364 0391 0365 0391 0365 0.392

Weather 192 039 0413 0397 0413 0397 0411 0398 0412 0397 0412
4 336 0422 0430 0421 0428 0422 0428 0424 0431 0421 0428
ETTh1 720 0.447 0467 0442 0461 0443 0460 0442 0459 0439 0458

Average 0.407 0.425 0406 0424 0407 0423 0407 0423 0405 0.422

96 0.287 0.343 0.286 0.342 0.297 0.350 0.285 0.341 0.282 0.340

ETTh2 192 0.328 0.368 0.328 0368 0341 0372 0327 0366 0.323 0.365
4 336 0357 0386 0.356 0386 0.359 0.389 0360 0.386 0.359 0.389
ETTml1 720 0417 0422 0421 0424 0418 0419 0414 0415 0408 0413

Average 0.347 0.380 0.348 0380 0.354 0.382 0346 0.377 0.343 0.377

96 0.287 0.343 0.287 0.343 0.295 0.349 0.288 0.345 0.283 0.340

ETTh1 192 0.329 0369 0.328 0368 0334 0374 0329 0366 0.329 0.367
1 336 0356 0.387 0.357 0387 0.366 0390 0364 0.387 0357 0.389
ETTml 720 0426 0424 0420 0424 0410 0417 0420 0419 0414 0417

Average 0350 0.381 0.348 0.380 0.351 0.382 0350 0.379 0.346 0.379

96 0.287 0342 0.286 0.342 0.297 0.350 0.282 0.340 0.283 0.342

ETTm2 192 0.330 0.368 0.330 0.368 0.333 0.371 0.324 0.365 0.323 0.364
1 336 0356 0.387 0.365 0386 0.363 0.389 0.359 0.386 0.355 0.385
ETTml1 720 0418 0422 0420 0422 0408 0415 0413 0419 0406 0414

Average 0.348 0.380 0.350 0.379 0.350 0.381 0.344 0.377 0.342 0.376

96 0290 0.345 0286 0343 0291 0347 0291 0344 0284 0.341

Weather 192 0.331 0368 0.332 0371 0.327 0371 0328 0.369 0325 0.365
1 336 0364 0385 0364 0386 0364 0392 0362 0386 0357 0.384
ETTml1 720 0419 0421 0418 0422 0411 0417 0417 0418 0417 0414

Average 0.351 0.380 0.350 0.380 0.348 0.382 0349 0.379 0.345 0.376

Scenarios

ing cross-domain scenarios, such as SleepEEG — FD-B and EMG, DeCoP maintains top perfor-
mance—achieving 93.97% and 100% average scores, respectively—while all ablated variants suffer
from severe accuracy drops, especially when dependency modeling is removed. Additionally, we
include an additional classification setting using the SleepEEG — Gesture dataset in this section,
and the results are consistent with those observed on other datasets.

Together, these results validate the contribution of each module in our framework. The ICM plays a
vital role in filtering irrelevant frequency components while preserving semantically meaningful pat-
terns, which enhances global representation quality for downstream modeling. The IPN mechanism
stabilizes patch-level inputs by eliminating scale variance across instances. Finally, the DCL strat-
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Table 17: Ablation study conducted on classification tasks in both in-domain and cross-domain
settings. For the in-domain setting, the model is pre-trained and fine-tuned on the same dataset
(Epilepsy). In the cross-domain setting, the model is pre-trained on the SleepEEG dataset and sub-
sequently fine-tuned on various target datasets, including Epilepsy, FD-B, and EMG. AVG denotes
the average of accuracy and F1 score. Best results are denoted by bold.

Scenarios Models | Acc(%) P(%) R (%) FI1(%) | Avg (%)

w/o IPN 94.19 93.64 87.57 90.19 92.19
Epilepsy w/oICM | 94.67 95.20 87.73  90.87 92.77
93.02 94.51 83.27  87.50 90.26
Epilepsy PD 83.45 89.07 5852  59.92 71.69

95.53 9351 9225 9286 | 94.20

w/oIPN | 9440 9389 8801  90.57 92.49
SleepEEG | w/o ICM | 94.15 9420 86.94  89.99 92.07

In-Domain
o
—

=~
&
Q
(=]
o~}

! PI 9473  93.14 89.85 9137 | 93.05
Epilepsy | PD 9044 9385 7621 8146 | 8595
< | | DeCoP | 9582 9423 9241 9328 | 94.55
<
£ wioIPN | 8605  89.85 89.78 89.78 | 87.91
O | SleepBEG | w/oICM | 82.12 8693 8684 8677 | 84.44
Z ¢ PI 7158 7974  79.19 7897 | 75.28
S| FDB | PD 70.51 7854 7826 7829 | 74.40
\ | DeCoP | 93.04 9492 9490 9490 | 93.97

w/o IPN 78.33 80.44 7833  76.33 77.33
SleepEEG | w/o ICM 80.00 80.21 80.00  77.83 78.91

1 PI 70.83 68.78  70.83  68.75 69.79
Gesture | PD 79.17 7738 7917  71.56 78.36
| | DeCoP | 81.67 80.99  81.67 80.10 | 80.89

w/oIPN | 9756 9444 98.04 9596 | 96.76
SleepEEG | w/oICM | 92.68 8796 8471  86.03 89.36

1 PI 87.80 59.09  66.67  62.39 75.10
EMG PD 82.93 59.12  63.16  59.12 71.03
| | DeCoP | 100.00 100.00 100.00 100.00 | 100.00

egy—particularly its partially dependent variant—proves crucial for capturing structured temporal
dependencies without overfitting.

Overall, the ablation study provides empirical evidence that the combination of each module is key
to DeCoP’s success. These components jointly enable DeCoP to generalize across a wide range
of datasets, input lengths, and tasks, delivering robust performance even in cross-domain scenarios
where generalization is most challenging.

H FULL BENCHMARK OF TIME SERIES FORECASTING

H.1 FuULL IN-DOMAIN FORECASTING RESULTS

Table[I8]reports the complete results on six benchmark datasets under the long-term forecasting set-
ting, where the models are trained on the past 512 time points and evaluated on future horizons of 96,
192, 336, and 720 steps. Our proposed DeCoP variants, particularly DeCoPy p, consistently out-
perform existing baselines across a wide range of datasets and forecast lengths. DeCoPyp achieves
the best average performance in both MSE and MAE metrics.

Notably, DeCoPyyp sets new state-of-the-art results on ETTm2 and Weather, two challenging
datasets characterized by complex seasonality and high variability. For instance, on ETTm2,
DeCoPyy p obtains an MSE of 0.249 and MAE of 0.311, outperforming the second-best method
by a substantial margin. Additionally, we observe that DeCoPy j,.,—a lightweight variant of our
model—already surpasses most baselines, demonstrating the strong generalization capability and
robustness of the decomposition-based design even without complex nonlinear transformations.

Overall, the empirical results validate the effectiveness of DeCoP in capturing long-term temporal
dependencies and mitigating error accumulation across diverse domains. The performance gains are
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Table 18: Complete results of long-term forecasting tasks for the in-domain setting of forecasting
the future F' € {96, 192,336, 720} time points based on the past 512 time points. The best results
are denoted by bold.

Models DeCoPpipear DeCoPpp SIMMTM  PatchTST  CycleNet TimeMixer  Dlinear iTransformer Fedformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 10.360 0.390 0.363 0.392 0.367 0.402 0.366 0.397 0.383 0.408 0.378 0.406 0.375 0.399 0.400 0.425 0.376 0.415 0.435 0.446 0.941 0.769
192(0.394 0.410 0.395 0.412 0.401 0.425 0.431 0.443 0.410 0.426 0.444 0.448 0.405 0.426 0.427 0.443 0.423 0.446 0.456 0.457 1.007 0.786
336|0.417 0.427 0.418 0.430 0.415 0.430 0.45 0.456 0.440 0.444 0.424 0.444 0.439 0.443 0.457 0.465 0.444 0.462 0.486 0.487 1.038 0.784
720(0.433 0.455 0.451 0.463 0.455 0.464 0.472 0.484 0.487 0.482 0.485 0.485 0.472 0.490 0.631 0.574 0.469 0.492 0.515 0.517 1.144 0.857

Avg|0.401 0.421 0.408 0.424 0.404 0.428 0.43 0.445 0.430 0.440 0.432 0.446 0.423 0.440 0.479 0.477 0.428 0.454 0.473 0.477 1.033 0.799

96 10.268 0.333 0.271 0.334 0.288 0.347 0.284 0.343 0.299 0.355 0.280 0.352 0.289 0.353 0.299 0.359 0.332 0.374 0.332 0.368 1.549 0.952
192(0.328 0.373 0.334 0.377 0.346 0.385 0.355 0.387 0.354 0.394 0.367 0.400 0.383 0.418 0.377 0.406 0.407 0.446 0.426 0.434 3.792 1.542
336|0.353 0.397 0.360 0.404 0.363 0.401 0.379 0.411 0.392 0.425 0.385 0.420 0.448 0.465 0.429 0.442 0.4 0.447 0.477 0.479 4.215 1.642
72010.383 0.426 0.396 0.436 0.396 0.431 0.4 0.435 0.424 0.451 0.469 0.480 0.605 0.551 0.444 0.466 0.412 0.469 0.453 0.490 3.656 1.619

Avg|0.333 0.382 0.341 0.388 0.348 0.391 0.355 0.394 0.367 0.406 0.375 0.413 0.431 0.447 0.387 0.418 0.388 0.434 0.422 0.443 3.303 1.439

96 10.308 0.348 0.281 0.340 0.299 0.354 0.288 0.345 0.305 0.361 0.306 0.358 0.299 0.343 0.311 0.366 0.326 0.390 0.510 0.492 0.626 0.560
192(0.338 0.366 0.325 0.366 0.343 0.379 0.330 0.372 0.343 0.379 0.347 0.381 0.335 0.365 0.348 0.385 0.365 0.415 0.514 0.495 0.725 0.619
336|0.370 0.386 0.353 0.387 0.375 0.401 0.359 0.392 0.384 0.411 0.437 0.369 0.386 0.389 0.380 0.405 0.392 0.425 0.51 0.492 1.005 0.741
720(0.426 0.416 0.410 0.413 0.431 0.439 0.406 0.421 0.439 0.431 0.466 0.425 0.424 0.422 0.443 0.444 0.446 0.458 0.527 0.493 1.133 0.845

Avg|0.361 0.379 0.342 0.376 0.362 0.393 0.346 0.383 0.368 0.395 0.389 0.383 0.361 0.380 0.371 0.400 0.382 0.422 0.515 0.493 0.872 0.691

96 10.164 0.252 0.163 0.255 0.176 0.27 0.164 0.256 0.180 0.266 0.173 0.263 0.167 0.260 0.179 0.273 0.18 0.271 0.205 0.293 0.355 0.462
192(0.218 0.290 0.217 0.290 0.232 0.304 0.223 0.296 0.234 0.302 0.228 0.301 0.224 0.303 0.242 0.315 0.252 0.318 0.278 0.336 0.595 0.586
336|0.271 0.324 0.266 0.324 0.288 0.339 0.277 0.332 0.285 0.340 0.277 0.332 0.281 0.342 0.291 0.345 0.324 0.364 0.343 0.379 1.27 0.871
720(0.366 0.387 0.350 0.377 0.381 0.396 0.365 0.387 0.371 0.392 0.369 0.390 0.397 0.421 0.377 0.398 0.41 0.420 0.414 0.419 3.001 1.267

Avg|0.255 0.313 0.249 0.311 0.269 0.327 0.257 0.318 0.267 0.325 0.262 0.322 0.267 0.332 0.272 0.333 0.292 0.343 0.310 0.357 1.305 0.797

96 10.169 0.222 0.146 0.193 0.152 0.206 0.144 0.193 0.148 0.202 0.149 0.202 0.176 0.237 0.168 0.220 0.238 0.314 0.249 0.329 0.354 0.405
192(0.214 0.259 0.190 0.236 0.197 0.246 0.190 0.236 0.192 0.244 0.198 0.246 0.220 0.282 0.209 0.254 0.275 0.329 0.325 0.370 0.419 0.434
336|0.260 0.294 0.242 0.278 0.246 0.285 0.244 0.280 0.243 0.282 0.245 0.286 0.265 0.319 0.266 0.295 0.339 0.377 0.351 0.391 0.583 0.543
720(0.326 0.341 0.315 0.330 0.314 0.335 0.320 0.335 0.314 0.333 0.321 0.340 0.323 0.362 0.341 0.345 0.389 0.409 0.415 0.426 0.916 0.705

Avg|0.242 0.279 0.223 0.259 0.227 0.268 0.225 0.261 0.224 0.265 0.228 0.269 0.246 0.300 0.246 0.278 0.310 0.357 0.335 0.379 0.568 0.522

96 10.137 0.233 0.127 0.222 0.133 0.223 0.126 0.221 0.126 0.221 0.135 0.234 0.140 0.237 0.132 0.227 0.186 0.302 0.196 0.313 0.304 0.393
192(0.151 0.245 0.146 0.236 0.147 0.237 0.145 0.238 0.144 0.238 0.152 0.247 0.153 0.249 0.153 0.248 0.197 0.311 0.211 0.324 0.327 0.417
336|0.167 0.261 0.161 0.256 0.166 0.265 0.164 0.256 0.160 0.255 0.169 0.268 0.169 0.267 0.168 0.264 0.213 0.328 0.214 0.327 0.333 0.422
720(0.207 0.294 0.195 0.289 0.203 0.297 0.193 0.291 0.201 0.294 0.203 0.297 0.203 0.301 0.193 0.286 0.233 0.344 0.236 0.342 0.351 0.427

Avg|0.165 0.258 0.157 0.251 0.162 0.256 0.157 0.252 0.158 0.252 0.165 0.261 0.166 0.264 0.161 0.256 0.207 0.321 0.214 0.327 0.329 0.415

ETThl

ETTh2

ETTml1

ETTm2

Weather

Electricity

particularly prominent at longer horizons (e.g., 336 and 720 steps), highlighting DeCoP’s scalability
toward robust long-term forecasting.

H.2 CRrR0OSS-DOMAIN FORECASTING RESULTS

We further evaluate the transferability of time series forecasting models under two challenging set-
tings: in-domain transfer and cross-domain transfer. In the in-domain setting (Table [T9), models
are trained on one dataset (e.g., ETTh2) and directly evaluated on another from the same domain
(e.g., ETThI). In the cross-domain setting (Table[T9), models are pre-trained on one domain (e.g.,
Weather) and fine-tuned on the target datasets (ETTh1 and ETTm1).

Across both settings, DeCoPy p demonstrates consistently superior generalization performance. In
the in-domain scenario, DeCoPyy p achieves the best or second-best results in 6 out of 8 cases and
achieves the lowest average MSE (0.342) and MAE (0.376), outperforming strong baselines like
PatchTST (MSE: 0.348, MAE: 0.382) and SimMTM (MSE: 0.351, MAE: 0.383). Similarly, in
the more difficult cross-domain setting, DeCoPyp significantly outperforms all baselines in most
transfer paths. For example, on the Weather — ETTh1 transfer task, DeCoPyp achieves an average
MSE of 0.411 and MAE of 0.426, clearly surpassing other models, including PatchTST (MSE:
0.426, MAE: 0.448) and SimMTM (MSE: 0.456, MAE: 0.467).

Importantly, DeCoPyyp maintains its leading position even under domain shift, as evidenced by
its robust performance on ETTm2 — ETThl (MSE: 0.412), ETTm1 — ETThl (MSE: 0.416), and
ETThl — ETTmI1 (MSE: 0.346) settings. This indicates strong transferability across temporal struc-
tures and seasonal patterns. Furthermore, its linear variant, DeCoPpe,r, also achieves competitive
results with significantly fewer parameters, reinforcing the efficacy of the controllable design for
generalizing across domains.

These results highlight the remarkable adaptability of DeCoP in both in-domain and cross-domain
scenarios, making it a promising choice for real-world forecasting applications where distribution
shifts are common and labeled target-domain data is limited.
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Table 19: Complete results of long-term forecasting tasks are presented for the cross-domain setting,
where future time points F' € {96, 192,336,720} are predicted based on the preceding 512 time
points. The best results are denoted by bold.

DeCoPrpinear DeCoPyrp PatchTST  SimMTM TF-C LaST Ti-MAE CoST TST TS2Vec
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.362 0.391 0.365 0.394 0.380 0.411 0.372 0.402 0.596 0.569 0.362 0.42 0.399 0.424 0.376 0.362 0.401 0.425 0.436 0.43

ETTh2 192 0.394 0.411 0.397 0.414 0.419 0.436 0.414 0.425 0.614 0.621 0.426 0.478 0.454 0.44 0.376 0.362 0.531 0.484 0.455 0.44
1 336 0.417 0.427 0.427 0.434 0.436 0.449 0.429 0.436 0.694 0.664 0.522 0.509 0.497 0.469 0.444 0.444 0.474 0.459 0.689 0.584
ETThl 720 0.438 0.459 0.446 0.462 0.457 0.474 0.446 0.458 0.635 0.683 0.46 0.478 0.515 0.492 0.517 0.51 0.471 0.469 0.489 0.49

Ave  0.403 0.422 0.409 0.426 0.423 0.443 0.415 0.43 0.635 0.634 0.443 0.471 0.466 0.456 0.428 0.433 0.469 0.459 0.517 0.486

96 0.306 0.347 0.283 0.342 0.294 0.35 0.297 0.348 0.61 0.577 0.304 0.388 0.333 0.378 0.32 0.364 0.327 0.364 0.422 0.434

ETTm2 192 0.337 0.367 0.323 0.364 0.333 0.371 0.332 0.37 0.725 0.657 0.429 0.494 0.381 0.398 0.367 0.386 0.362 0.389 0.387 0.371
4 336 0.369 0.385 0.355 0.385 0.359 0.392 0.364 0.393 0.768 0.684 0.499 0.523 0.394 0.413 0.374 0.394 0.401 0.418 0.402 0.444
ETTml 720 0.424 0.416 0.406 0.414 0.407 0.414 0.41 0.431 0.927 0.759 0.422 0.45 0.455 0.453 0.479 0.503 0.437 0.437 0.481 0.432

Ave  0.359 0.379 0.342 0.376 0.348 0.382 0.351 0.383 0.758 0.669 0.414 0.464 0.39 0.41 0.385 0.412 0.382 0.402 0.423 0.42

96 0.363 0.392 0.366 0.394 0.385 0.411 0.388 0.421 0.968 0.738 0.428 0.454 0.433 0.431 0.403 0.426 0.389 0.413 0.483 0.48

ETTm2 192 0.395 0.411 0.401 0.416 0.425 0.439 0.419 0.423 1.08 0.801 0.427 0.497 0.474 0.458 0.457 0.468 0.463 0.452 0.579 0.537
4 336  0.418 0.429 0.423 0.430 0.44 0.451 0.435 0.444 1.091 0.824 0.528 0.54 0.515 0.448 0.794 0.682 0.492 0.465 0.673 0.563
ETThl 720 0.441 0.461 0.459 0.465 0.482 0.488 0.468 0.474 1.226 0.893 0.527 0.537 0.496 0.488 0.739 0.617 0.468 0.468 0.729 0.62

Average 0.404 0.423 0.412 0.426 0.433 0.447 0.428 0.441 1.091 0.814 0.503 0.507 0.464 0.456 0.598 0.548 0.453 0.45 0.616 0.55

96  0.305 0.348 0.282 0.340 0.302 0.353 0.322 0.347 0.677 0.603 0.314 0.396 0.323 0.362 0.322 0.351 0.338 0.383 0.679 0.546

ETTh2 192 0.341 0.370 0.323 0.365 0.342 0.375 0.332 0.375 0.718 0.638 0.587 0.545 0.37 0.395 0.331 0.373 0.394 0.408 0.673 0.551
1 336 0.368 0.385 0.359 0.389 0.37 0.392 0.394 0.391 0.755 0.663 0.631 0.584 0.397 0.413 0.382 0.397 0.401 0.412 0.703 0.557
ETTml 720 0.424 0.415 0.408 0.413 0.439 0.426 0.411 0.424 0.848 0.712 0.368 0.429 0.442 0.439 0.417 0.428 0.434 0.432 0.722 0.573

Average 0.360 0.379 0.343 0.377 0.363 0.387 0.365 0.384 0.75 0.654 0.475 0.489 0.383 0.402 0.363 0.387 0.391 0.409 0.694 0.557

96 0.364 0.392 0.371 0.394 0.388 0.411 0.367 0.398 0.666 0.647 0.36 0.374 0.4 0.418 0.465 0.456 0.443 0.44 0.413 0.443

ETTml 192 0.395 0.411 0.403 0.414 0.422 0.431 0.396 0.421 0.672 0.653 0.381 0.371 0.434 0.445 0.722 0.588 0.471 0.455 0.459 0.465
1 336 0.419 0.430 0.428 0.431 0.449 0.449 0.471 0.437 0.626 0.711 0.472 0.531 0.51 0.467 0.712 0.586 0.462 0.455 0.614 0.554
ETThl 720 0.441 0.459 0.460 0.469 0.53 0.513 0.454 0.463 0.835 0.797 0.49 0.488 0.636 0.544 0.581 0.533 0.525 0.503 0.45 0.464

Average 0.405 0.423 0.416 0.427 0.447 0.451 0.422 043 0.7 0.702 0.426 0.441 0.495 0.469 0.62 0.541 0.475 0.463 0.484 0.482

96 0.309 0.350 0.283 0.340 0.293 0.344 0.29 0.348 0.672 0.6 0.295 0.387 0.311 0.355 0.308 0.355 0.315 0.354 0.681 0.545

ETThl 192 0.340 0.368 0.329 0.367 0.327 0.366 0.327 0.372 0.721 0.639 0.335 0.379 0.337 0.372 0.357 0.39 0.365 0.391 0.689 0.551
4 336 0.371 0.385 0.357 0.389 0.364 0.397 0.357 0.392 0.755 0.664 0.379 0.363 0.372 0.398 0.396 0.402 0.384 0.4 0.705 0.56
ETTml 720 0.422 0.414 0.414 0.417 0.409 0.417 0.409 0.423 0.837 0.705 0.403 0.431 0.422 0.433 0.419 0.423 0.428 0.426 0.722 0.571

Average 0.361 0.379 0.346 0.379 0.348 0.381 0.346 0.384 0.746 0.652 0.353 0.39 0.36 0.39 0.37 0.393 0.373 0.393 0.699 0.557

Scenarios Len

96 0.365 0.392 0.365 0.393 0.386 0.409 0.477 0.444 - - - - 0397 0.44 0421 0.41 0.428 0.429 0.393 0.41
Weather 192 0.397 0.412 0.397 0.413 0.405 0.42 0.454 0.522 - - - - 0.458 0.466 0.539 0.503 0.461 0.451 0.44 0.437
| 336 0.421 0.428 0.431 0.431 0.448 0.454 0.424 0.434 - - - - 0.4790.458 0.568 0.514 0.463 0.456 0.45 0.451
ETThl 720 0.439 0.458 0.452 0.465 0.508 0.508 0.468 0.469 - - - - 0.5150.492 0.544 0.522 0.507 0.489 0.567 0.541
Average 0.405 0.422 0.411 0.426 0.426 0.448 0.456 0.467 - - - - 0.462 0.464 0.518 0.487 0.465 0.456 0.463 0.46
96  0.306 0.348 0.287 0.343 0.284 0.341 0.304 0.354 - - - - 0338 0.38 0.324 0.36 0.324 0.366 0.329 0.359
Weather 192 0.338 0.367 0.325 0.365 0.332 0.373 0.338 0.375 - - - - 0.4730.457 0.359 0.387 0.349 0.377 0.392 0.392
4 336 0.369 0.386 0.357 0.384 0.36 0.391 0.371 0.397 - - - - 0.4020.415 0.395 0.399 0.378 0.398 0.372 0.4
ETTml 720 0.424 0.416 0.417 0.414 0.418 0.421 0.417 0.426 - - - - 04320438 0.45 0.467 0.422 0.427 0.434 0.429
Average 0.359 0.379 0.345 0.376 0.348 0.383 0.358 0.388 - = = - 0.4110.423 0.382 0.403 0.368 0.392 0.382 0.395

I FULL BENCHMARK OF TIME SERIES CLASSIFICATION

1.1 IN- AND CROSS-DOMAIN CLASSIFICATION RESULTS

To evaluate the generalization capability of our method beyond time series forecasting, we further
conduct experiments on EEG classification tasks under both in-domain and cross-domain settings
(Table[20). In the in-domain setting, models are trained and evaluated on the same dataset (Epilepsy).
In cross-domain setting, models are pre-trained on the SleepEEG dataset and fine-tuned on four
target datasets: Epilepsy, FD-B, Gesture, and EMG.

In the in-domain scenario, DeCoP achieves state-of-the-art results across all metrics, with an accu-
racy of 95.53%, F1-score of 92.86%, and the highest average score of 94.20%, outperforming prior
methods such as SInMTM (Avg: 92.92%) and TF-C (Avg: 91.03%). Notably, DeCoP achieves
strong recall (92.25%) without sacrificing precision (93.51%), indicating its balanced and reliable
classification capacity. Under cross-domain transfer, DeCoP continues to exhibit robust generaliza-
tion. On the SleepEEG — Epilepsy task, DeCoP achieves the highest average score of 94.55%,
with competitive performance across all metrics. On SleepEEG — FD-B, DeCoP achieves an av-
erage score of 93.97%, significantly outperforming the next-best model (SimMTM, 73.78%). On
SleepEEG — EMG, DeCoP highest precision (100%) and F1 value (100%). On SleepEEG —
Gesture, DeCoP highest precision (81.67%) and F1 value (80.1%). These results confirm that De-
CoP is not only effective in time series forecasting but also excels in classification tasks involving
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Table 20: For in-domain setting, we pre-train and fine-tune on the same dataset: Epilepsy. For cross-
domain setting, we pre-train the model on SleepEEG and then fine-tune it on different datasets:
Epilepsy, FD-B, Gesture and EMG. AVG denotes the average of accuracy and F1 score. The best
are denoted by bold.

Scenarios Models | Acc (%) P(%) R(%) Fl1(%) | Avg (%)

TS2vec 92.17 9384 81.19 8571 | 88.94
i} CoST 8807 9158 6605 69.11 | 78.59
-1 LaST 9211  93.12 8147 8574 | 88.93
z | Epil

E|PTPY | rsT 8021  40.11 5000 4451 | 62.36
S| god Ti-MAE | 9009 9390 7724 7821 | 84.56
£ | PPHePSY | TR C 93.96 9487 8582 89.46 | 91.71
PatchTST | 89.56 9039 89.56  80.11 | 84.84
SimMTM | 9475 9560 89.93 9141 | 93.08
\ | DeCoP | 9553 9351 9225 92.86 | 94.20
TS2vec 9395 9059 9039 9045 | 9220
CoST 8840 8820 7234 76.88 | 82.64
LaST 8646 9077 6635 70.67 | 7857

SleepEEG
ee‘i TST 8021  40.11 5000 4451 | 6336
Eoil Ti-MAE | 8971 7236 6747 6855 | 79.13
PUEPSY | TF-C 9495 9456 80.08 91.49 | 93.22
PatchTST | 9327 9251 8557 8848 | 89.96
SimMTM | 9549 9336 9228 9281 | 94.15
| | DeCoP | 9582 9423 9241 9328 | 94.55
TS2Vec 479 4339 4842 4389 | 45.90
CoST 4706 3879 3842 3479 | 4093
LaST 4667 439 4771 4517 | 4592

SleepEEG
g eei TST 464 4158 455 4134 | 4387
S| pp | T-MAE | 6088 6698 6894 6656 | 66.56
8 - TF-C 6938 7559 7202 7487 | 74.87
2 PatchTST | 80.15 8225 8547  83.05 | 86.08
g SInMTM | 69.4 7418 7641  75.11 | 72.26
| | DeCoP | 93.04 9492 9490 9490 | 9397
TS2Vec 69.17 6545 6854 6570 | 67.44
CoST 6833 653 6833 6642 | 67.38
LaST 64.17 7036 6417 5876 | 61.47

SleepEEG
ee‘i TST 69.17 666 69.17 6601 | 67.59
o Ti-MAE | 7188 7035 7675 6837 | 70.13
esture | Tp.C 7642 7731 7429 7572 | 76.07
PatchTST | 74.17 7218 7417 7140 | 7278
SimMTM | 80.00  79.03 80.00 78.67 | 79.34
| | DeCoP | 8167 8099 8167 80.10 | 80.89
TS2Vec 7854 804 6785 6766 | 73.10
CoST 5365 4907 421 3527 | 4446
LaST 6634 7934 6333 7255 | 6945

SleepEEG
ee‘i TST 7834 7711 803  68.89 | 73.62
evG | TPIMAE | 6999 7025 6344 7089 | 7044
TF-C 8171 7265 8159 76.83 | 79.27
PatchTST | 9024 8296 8295 8291 | 82.94
SimMTM | 9756 9833 9804 98.14 | 97.85

| | DeCoP | 100.00 100.00 100.00 100.00 | 100.00

physiological signals. Its consistent performance across datasets and domains highlights its strong
inductive bias and adaptability, especially in low-resource transfer scenarios. Unlike prior models
that exhibit strong performance on only specific metrics (e.g., high recall but low precision), DeCoP
demonstrates balanced, high-quality predictions across all evaluation dimensions.
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