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Abstract

Pinpointing cancer genes (tumor promoters
or suppressors) within thousands of cancer-
related genes is fundamental to oncogenomics,
which studies genetic changes leading to can-
cer. Approaches to analyzing biological data
such as DNA sequence and gene expression
for the discovery of cancer-related genes are
constrained by their high dimensionality, spar-
sity, and noise, which impede capturing all
relevant connections. Therefore, we propose
an alternative and unexplored perspective: In-
stead of inferring directly from biological data,
we systematically integrate existing textual
knowledge of gene-cancer associations from
the oncogenomics literature to identify genes
most strongly involved in cancer-related activi-
ties. We introduce LILY (Latent, Interaction,
Learn, and Yield), a computational hub that
bridges and uncovers a substantial volume of
promising, novel gene-cancer relationships. It
leverages Biomedical Large Language Mod-
els (BioLLMs) to extract fragmented infor-
mation from individual studies and converts
these relationships into numerical representa-
tions. Then, it interactively refines its knowl-
edge through validation of latent gene-gene
and cancer-cancer associations and generates
predictions of cancer-related genes with high
confidence. Empirical results demonstrate that
LILY produces highly accurate predictions for
cancer-related genes in breast, cervical, lung,
prostate, and sarcoma cancers using limited
training data. Moreover, its performance incre-
mentally improves as additional data become
available, a finding further substantiated by ro-
bustness tests and ablation studies.

1 Introduction

Today, of the approximately 20,000 protein-
coding genes discovered in the human genome,
about 700 have been identified as cancer genes:
driver genes with mutations or overexpression that
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Figure 1: (a) TP53, a tumor suppressor gene, regulates
the cell’s response to DNA damage through mechanisms
like cell cycle arrest, DNA repair, senescence, and apop-
tosis, helping prevent cancer development. (b) However,
when oncogenes are activated or TP53 is inactivated,
such as through MDM?2, its functions are compromised,
allowing damaged cells to proliferate uncontrollably.
This promotes tumorigenesis, increasing the risk of can-
cers of the lung, breast, and colon. Texts with a colored
background refer to gene or cancer entities.

either actively promote tumor progression (known
as oncogenes) or suppress it (Martinez-Jiménez
etal., 2020; Zhang et al., 2024). For instance, TP53,
a tumor suppressor gene, regulates the cellular re-
sponse to DNA damage and maintains genomic
stability through mechanisms such as cell cycle ar-
rest, senescence, and apoptosis (Funk et al., 2025).
Inactivation of TP53, or activation of oncogenes
like MDM2—which negatively regulates TP53 by
promoting its degradation, affects these functions,
allowing damaged cells to bypass safeguards and
proliferate uncontrollably, leading to tumorigene-
sis (see Figure 1). Similarly, overexpression of the
HER?2 gene, common in certain aggressive breast
cancers, promotes uncontrolled cell proliferation
and survival by activating key signaling pathways
such as PI3K/AKT and MAPK. This discovery
has led to targeted therapies such as trastuzumab,
a monoclonal antibody that specifically inhibits



p53 exon 5 and 6 mutation and MIB-1 count were associated with
a statistically significant increase in risk of death from breast cancer.
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Figure 2: Our pipeline model for NER and RE.

HER?2 signaling and improves patient outcomes
(Slamon et al., 1987). Accurate targeting of can-
cer genes enables elucidation of molecular mech-
anisms, identification of biomarkers for early de-
tection and treatment, and guidance for future re-
search. Although well-known cancer genes such as
TP53, MDM?2, and HER?2 have been established,
many additional genes may contribute to oncogen-
esis and require rigorous experimental validation;
however, pinpointing them among nearly 20,000
protein-coding genes for each cancer type remains
a formidable challenge. Therefore, identifying can-
didate genes that are most strongly associated in
cancer-related activities is crucial for efficient and
effective experimental validation.

Biomedical large language models (BioLLMs)
such as BioBERT (Lee et al., 2020) and Clin-
icalBert (Alsentzer et al., 2019) have excelled
in biomedical text mining, patient stratifica-
tion, and prognostic modeling (Clusmann et al.,
2023). It is therefore natural to consider train-
ing these BioLLMs on oncogenomics literature
from sources including PubMed (NLM, 2025) and
OMIM (McKusick, 2007), which offer a rich, high-
quality labeled repository of gene—cancer associ-
ations derived from clinical studies and expert di-
agnoses, capturing both experimentally validated
associations and observed correlations. However,
three challenges remain: (1) most gene—cancer as-
sociations are still undiscovered, leaving the train-
ing data insufficient despite the literature’s richness
and validity; (2) the information is inherently frag-
mented, often from isolated articles (e.g., “Two
genes, called BRCA-1 and BRCA-2, have been
identified that appear to be responsible for the ma-
Jjority of familial breast cancer syndromes” and
“The cancer risks associated with BRCA-2 muta-
tions appear to be somewhat lower than those of
BRCA-1” (Mann and Borgen, 1998)), complicating
BioLLMs processing; and (3) LLMs remain suscep-
tible to hallucination, which undermines their abil-
ity to accurately identify cancer-related genes for
efficient experimental resource allocation (Li et al.,
2024b). Therefore, we propose LILY, a computa-

tional model that leverages BioLL.Ms for training
data collection, integrates such data to model the
complex networks underlying gene—cancer associ-
ations and produces all predictions simultaneously
with high confidence and precision using available
information (Cremin et al., 2022; Moon et al., 2023;
Hughes et al., 2023; Tian et al., 2024).

We extract gene-cancer dependencies from indi-
vidual articles in the oncogenomics literature us-
ing established BioLLMs and text mining mod-
els, including gene—cancer associations, gene-
gene interactions (regulatory/co-expression pat-
terns), and cancer—cancer correlations (shared path-
ways/phenotypic similarities) (Lai et al., 2021a;
Kinnersley et al., 2024). These dependencies are
converted into standardized numerical representa-
tions that capture connection strength and the fre-
quency of repeated mentions, forming three high-
dimensional yet sparse matrices that document la-
tent dynamics between gene-cancer, gene-gene,
and cancer-cancer as inputs into LILY. We devel-
oped a novel sparse matrix completion algorithm
that interactively optimizes these matrices by lever-
aging constraints imposed by their interrelation-
ships. The optimized matrices retain biological
plausibility (e.g., shared pathways and phenotypic
similarities) and yield remarkable performance in
predicting novel cancer-related genes with scarce
data and substantial improvements as additional
data become available (Hoehndorf et al., 2014,
Sunde et al., 2024). Our key contributions are:

1. We introduce a novel computational model that
integrates oncogenomics literature to predict cancer
genes exclusively from BioLLMs-extracted data.
2. We demonstrate that computationally inferring
gene—cancer associations, by integrating interactive
constraints derived from inferred gene-gene and
cancer—cancer relationships, overcomes BioLLMs’
limitations in linking fragmented information.

3. We find that incorporating additional interactive
constraints among entity relationships may further
improve BioLLMs’ ability to robustly bridge in-
formation beyond gene—cancer associations, such
as cancer—symptom and cancer—medicine relation-
ships. Therefore, we provide our collected experi-
mental datasets for future comparative studies.

2 Related Works

2.1 Named Entity Recognition and Relation
Extraction in BioLLMs

BioLLLMs are tailored to biomedical texts, which



differ significantly from general language (Fried-
man et al., 2002). Biomedical Named Entity
Recognition (NER) identifies domain-specific en-
tities (e.g., genes, cancers, chemicals). To ad-
dress the resource-intensive, expertise-driven na-
ture of oncogenomics extraction, recent studies
have yielded promising results: KECI enhances
entity and relation extraction by fusing span graphs
with Unified Medical Language System (UMLS)
knowledge via collective attention (Lai et al.,
2021b). BERT-AMR-KG boosts biomedical in-
formation extraction by fusing abstract meaning
representation with knowledge graphs via an edge-
conditioned graph attention network (Zhang et al.,
2021). PubTator 3.0 (Wei et al., 2019) employs
AIONER (Luo et al., 2023) for NER and BioREx
(Lai et al., 2023) for relation extraction. In our
work, we use PubTator 3.0 in a pipeline approach
to label oncogenomics articles from sources includ-
ing OMIM (McKusick, 2007) and PubMed (NLM,
2025), centralizing on cancer—gene relationships.
This curated dataset serves as the robust data source
for LILY.

2.2 Sparse Matrix Completion

Sparse matrix completion has demonstrated sig-
nificant success in predicting missing values from
observed data and inferring unobserved relation-
ships, achieving remarkable results across domains
such as recommendation systems, social network
analysis, and signal processing (Candes and Recht,
2008; Wen et al., 2012; Bertsimas and Li, 2020;
Kim and Chung, 2023; Wang et al., 2023). In LILY,
after converting textual gene—cancer associations
extracted from oncogenomics literature into em-
beddings, we employ a probabilistic framework for
matrix completion to infer missing links in gene-
cancer networks, aided by gene-gene interactions
and cancer-cancer correlations to substantiate the
results. Our model outputs predictions of cancer
genes with a predetermined, high level of confi-
dence, while those below the confidence threshold
are excluded to preserve the original sparsity of the
data (Zhou and Tao, 2011; Li et al., 2024a).

3 The Proposed Method

In this section, we present the detailed theoretical
foundations of LILY, our proposed model. Key
notations are summarized in Table 1.

3.1 Structured Representation of gene-cancer
Relationships
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Figure 3: Overview of LILY: (a) Interactive updates
between the observed gene-cancer matrix and reasoned
gene-gene and cancer-cancer matrices constructed by
processed oncogenomics data. (b) Completed gene-
cancer, gene-gene, and cancer-cancer matrices with
high-confidence approximations by solving Eq. 1.

Oncogenetics articles were retrieved from
OMIM, PubMed Central, and ClinicalTrials.gov.
We developed a pipeline to extract relevant enti-
ties and relationships. We performed named entity
recognition (NER) using a fine-tuned BioBERT
model with a BIO scheme to label each token as
beginning (B-), inside (I-), or outside (O) an entity.
To enhance coverage, we also employed PubTa-
tor 3.0 for extraction. Since PubTator only tags
“DISEASE” entities, we additionally extracted spe-
cific MESH IDs for different cancer type mentions.
PubTator 3.0 has been updated to use AIONER for
NER and GNorm?2 for gene normalization. While
using our own NER module, we allowed partial
matching of predicted mentions to fully leverage
PubTator 3.0’s normalization. We further fine-
tuned BioBERT to extract gene-cancer, gene-gene,
and cancer-cancer relations (see pipeline in Figure
2), which are converted into numerical representa-
tions that form the basis of the relationship matrices
used in subsequent computations (see Figure 3).

3.2 The Objective Function

Processed oncogenomics data first forms a gene-
cancer matrix My, € R™*", where m is the num-
ber of genes and 7 is the number of cancer types.
Each entry Mg.[i, j] quantifies the strength or pres-
ence of the association between gene ¢ and cancer
type j. However, many entries are missing, posing
significant challenges for downstream analysis.

To address this, we develop a sparse matrix com-
pletion algorithm to infer missing entries in Mg,



Notation [[ Definition
m Number of gene types
n Number of cancer types
ik Gene indices
7,1 Cancer type indices
Mg € R™*" Observed gene-cancer matrix
Mgy, € RT™>™ Reasoned gene-gene matrix
M. € R™*" Reasoned cancer-cancer matrix
Mg e R™*" Completed gene-cancer matrix
Po,. () Observed-entry projection
P () Confidence-mask projection
X" Binary confidence mask
Aij Annotated association scores
Cij Propagated association scores
J(Aij, Ciz (Mg™)) || Confidence score
T Threshold for x”
e High confidence score for f (-, )
w Weight for A;;
A1 Regularization weight
TopX(4) Top X related cancers for gene 4

Table 1: Notations used in the objective function.

by integrating observed relationships from oncoge-
nomics literature and high-confidence auxiliary in-
formation. Specifically, we solve the following
convex optimization problem (Kilmer and Martin,
2011; Candes and Recht, 2012; Davis et al., 2021):

P, (Mge — MZ™)|[2

min
Mgglﬂ

+ A [P (M)

S.t. V(Z,j) € TOpX(i)  f (Aij, Cij (Mgcgm)) > Q.
(D

Here, M;2™ € R™*™ represents the completed

gene-cancer matrix. The objective function bal-

ances fidelity to the observed data, enforcement of

a low-rank structure, alignment with prior knowl-

edge, and statistically robust relationships.

The first term of Eq. 1 preserves the observed
entries in the original matrix Mg, within M ™.
Specifically, the projection operator P, (-) re-
stricts the optimization to the observed entries,
which prevents inferred values from overwriting
known data and ensures consistency with available
observations.

The second term enforces a low-rank structure
on Mg2™, which facilitates the discovery of funda-
mental biological patterns and reduces noise. This
regularization is applied only to confidence entries,
as determined by the projection operator Py (-)
and the binary mask x7 € {0, 1}™*". This mask
is generated by applying a threshold 7 to the confi-
dence score f (Az-j, Cij (M ggm) ), which integrates
the annotated association score A;; from M. with

the propagated association score Cj; from Mgo™:

1, lf f(AU,Cw(Mggm)) Z T
0, otherwise

XT[ivj] = ()

where
f(Aij, Cij (Mge™) ) = |w - Aij 4+ Cil,  (3)

with w a weight parameter. The use of absolute val-
ues in Eq. 3 mitigates errors from the text mining-
derived A;; and captures both positive and negative
contributions, which enhance robustness. By ap-
plying the low-rank constraint, scaled by A; > 0,
exclusively to these high-confidence entries, the
model retains flexibility in those entries where the
available data do not provide sufficient confidence
for reliable prediction.

The constraint of the confidence score 7 in Eq. 2
retains gene-cancer associations deemed significant
for consideration. A stricter threshold o > 7 in
Eq. 1 further ensures that the top X probable can-
cer types related to gene 7, denote as TopX(i) and
measured in confidence score in Mg™, where X is
a positive integer, satisfies an even more rigorous
criterion:

TOpX(i) = {CZJ S tOpX({Cil, - ,Cm})}, 4

where top y (-) denotes the X highest values in the
set. Specifically, the propagated correlation score
C;; is derived from the reasoned gene-gene correla-
tion matrix Mgy, € R™>™ and cancer-cancer corre-
lation matrix M., € R™*", which encode pairwise
relationships based on association patterns in M.
The propagated correlation score Cj; is derived by
summing over genes k and cancers [:

m

Cij =

Mggli, k] - Mge™ [k, j
k=1

(5)
+ Mcc[j7 l] : Mggm[i7l]7
1

n

l

thus enabling indirect gene-gene relationships to
inform the gene-cancer matrix. To construct M,
we treat each row of M. as a vector and compute
the Pearson correlation coefficient (PCC) between
rows ¢ and k (Schober et al., 2018):

Mygli, k] = PCC(Mye[i, ], Myelk,:]).  (6)

Similarly, M. is built by treating each column of
My as a vector and computing the PCC between
columns j and I:

Meo[j, 1] = PCC(Myel:, j], Myel: 1)) (1)



Collectively, the objective function ensures that
M ;gm preserves observed data, uncovers under-
lying biological structure through low-rank con-
straints, and integrates both direct and propagated
information, yielding a robust and interpretable
completed gene-cancer matrix.

3.3 Sparse Matrix Completion

To solve the objective function in Eq. 1, we
employ the Projected Proximal Method. We de-
compose the objective function in Eq. 1 into two
parts: a smooth component and a non-smooth com-
ponent. The smooth component is defined as:

F(Mge™) = || Pa,. (Mge — M™%, (8)

which is differentiable with respect to M 2™ and
is well-suited to gradient-based optimization. The
non-smooth component is given by:

R(Mgc™) = M| Pr (Mge™) - ©

Additionally, we impose the following linear con-
straints:

S = {M;gm e R™™ | f(Aij, Cij(Mge™)) > a

V(i) € TopX(i) },

(10)
where f(A;;, Cyj (Mggm)) is linear in Mgc™. Con-
sequently, the feasible set S forms a convex
polyhedron—an intersection of half-spaces—which
can be efficiently handled with quadratic program-
ming. Due to the convexity of both F (Eq. 8) and
R (Eq. 9), the Projected Proximal Method itera-
tively updates the completed matrix Mg2™ through
gradient descent on F, proximal updates on R, and
projection onto S until convergence.

Gradient Descent Step on F'(M2™): We com-
pute the gradient VF (M™) of F(M som) with
respect to Mgc™ and update the matrix as follows:

com,(t+%)

Mye = Mge™ O =V F (Mgz™ ), (11)

where 1 > 0 is the step size. We set n = 1073,
Proximal Step on R(M go): Given the intermedi-

ate matrix Mgc m(t+3) from Eq. 11, we apply the
confidence-mask projection P+ (-) as defined in
Eq. 2 to retain only high-confidence entries:

X' = P (M2, (12)

We then perform Singular Value Decomposition
(SVD) on X’ € R™*" and reconstruct the ma-
trix using the thresholded singular values to obtain

X € R™" the thresholded matrix. The proxi-

com, (4% 3,Svt)

mal operator, M. , is thus expressed as

the combination of X and the entries excluded by
Py~ (-) in the intermediate matrix:

com,(t—)—%,svt)

com, (t+3)
My 2

=X+ (I - Pr) (Mg )
(13)
where (I — P+ ) () denotes the element-wise com-
plement of the confidence-mask projection.

Projection Step on S: We define the projection

step as finding the matrix Z € S that minimizes

t+3
the Frobenius norm distance to Mgc ™ ).

com, (t+1 5 ,svt)

z* —argmin Z — Myge , (14

F

where the feasible set S is defined as in Eq. 10:

s={zerme

f(Ay, Cij(2)) = o,

15)
(i) € TopX (i) },
with f(Ay;, Ci;(Z)) linear in Z. Given the large
dimensions m and n are large, we reformulate this
projection step in Eq. 14 as a quadratic program-
ming problem. The optimal solution Z* is then
used to update Mgo™:
Mg+ = 7%, (16)
Convergence Check: The Projected Proximal
Method iterates through gradient descent, proximal
updates, and projection until convergence. With
e = 107 the preset tolerance,

|| Mcom (t+1)

MmO <o (7)

Computational and Space Complexity: With T’
iterations until convergence, the total time com-
plexity is O(T - (m + n)?). The space complexity
is O(mn + m? + n?).

4 Experiments

4.1 Experimental Settings

Datasets: The datasets consist of oncogenomics
articles extracted from OMIM and PubMed us-
ing a consistent query (e.g., for sarcoma cancer,
a rare cancer: “(Sarcoma, Ewing[MESH] AND
gene[title/abstract])”). For well-studied cancers
(prostate, cervical, breast, and lung), we fixed the
number of articles at 10,000 to evaluate our model
under limited data conditions, whereas only 1,061



Test TopX(i), X =3 TopX(i),X =5 TopX(i), X =7 TopX(i),X =9 TopX(i), X =11
Drop(%) p Recal Fos | P Recal Fos | P Recall Fo5 | P Recall Fo5 | P Recall Fgjs
Prostate Cancer Data (10,000 oncogenomics articles, 25,524 relevant lines, 2,965 annotated genes, and 990 cancer types.)
10% 9227 47.87 77.83|91.92 4573 7647|9249 4937 7874|9217 53.13 80.36  92.08 46.73 77.11
30% 91.88 4548 7631|9146 39.89 72.67 |91.91 4229 7444|9149 4575 7624 |92.00 42.82 74.81
50% 89.43 3344 6699 |90.15 36.17 69.42 |89.13 37.39 69.81 | 8897 39.21 70.96 | 89.21 37.69 70.06
70 % 87.85 31.65 64.83 | 88.18 32.66 65.81 | 87.07 34.01 66.36|86.99 36.03 67.81 | 86.96 33.67 66.50
Cervical Cancer Data (10,000 oncogenomics articles, 17,115 relevant lines, 2,407 annotated genes, and 692 cancer types.)
10% 91.95 42.55 74.63 | 9091 41.67 73.53|91.36 3854 71.71 | 8791 41.67 7194|8093 46.51 70.49
30% 91.03 39.01 71.86|90.48 33.33 67.37|90.81 41.15 73.15|86.75 38.71 69.50 | 80.36 42.56 68.24
50% 90.32 3294 66.99 | 89.47 3129 6522 |87.88 33.53 66.36 | 85.51 34.10 65.70 | 77.31 40.07 65.19
70% 89.29 30.68 64.60 | 88.31 31.10 64.56 | 87.93 30.72 64.07 | 85.25 31.33 63.41 | 73.00 32.44 58.40
Breast Cancer Data (10,000 oncogenomics articles, 38,620 relevant lines, 3,641 annotated genes, and 829 cancer types.)
10% 87.54 42.12 72.01 | 87.17 42.55 72.06 | 84.94 42.29 70.68 | 84.81 41.88 70.38 | 84.87 42.08 70.53
30% 87.22 4125 71.32 (8694 41.69 7143|8517 41.88 70.58 | 83.51 3584 6596 |83.59 36.06 66.15
50% 87.33 30.05 63.22|85.80 34.63 66.23 | 83.42 3451 65.00 8293 3254 63.31|82.64 33.01 63.54
70% 86.08 27.30 60.17 | 85.25 27.23 59.77 | 83.69 30.10 61.72 | 83.56 31.12 62.50 | 83.55 32.40 63.50
Lung Cancer Data (10,000 oncogenomics articles, 60,532 relevant lines, 6,242 annotated genes, and 1,716 cancer types.)
10% 86.21 40.32 70.23 | 84.85 45.16 72.16 | 84.38 43.55 71.05 | 83.87 4194 69.89 | 84.00 36.21 66.46
30% 85.71 38.76 69.00 | 84.38 43.55 71.05| 83.33 40.32 68.68 | 82.76 38.71 67.41 | 83.03 35.71 65.64
50% 85.16 31.58 63.59 | 81.82 3277 6297 |82.61 33.33 63.76 | 83.36 35.01 6537|8192 32.14 62.55
70 % 85.00 28.33 60.71 | 80.95 30.00 60.43 | 80.00 30.53 60.41|77.27 2833 5743 |82.61 31.67 62.50
Sarcoma Cancer Data (1,061 oncogenomics literature articles, 5,679 relevant lines, 679 annotated genes, and 283 cancer types.)
10% 80.00 41.03 67.23 8095 4359 69.11 | 81.40 4428 69.71 | 80.65 44.87 69.55|78.57 52.38 71.43
30% 82.76 3429 64.52|80.65 3571 64.43|80.00 42.11 67.80 | 81.82 3857 66.83|73.81 41.33 63.79
50% 7222 2241 50.00 | 73.68 24.14 5224 | 75.00 2586 5435|7143 28.28 54.73|71.05 38.03 60.54
70 % 66.67 20.34 45.80 | 6842 22.03 48.15|70.00 23.73 50.36|71.04 2542 52.28 |67.63 34.85 56.93

Table 2: Performance of LILY in predicting cancer-related genes for prostate, cervical, breast, lung, and sarcoma
cancers under varying data availability, controlled by Test Drop (%), and varying influence of available data,
controlled by TopX(i), evaluated by Precision (P), Recall, and F 5-score. For each cancer type and experimental
condition (i.e., Test Drop (%) and TopX(i)), the best and second-best results are bolded and underlined, respectively.
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Figure 4: Lung cancer-related gene predictions by
LILY: Precision and Fy 5-score for various 7 and w
values, with 50% data dropped and X = 7 in TopX(%).

articles were available for sarcoma cancer due to its
rarity. Data quality was ensured via preprocessing
and filtering, employing named entity recognition
(NER) to extract relevant entities and relation ex-
traction (RE) to classify relationships as associa-
tion, positive correlation, or negative correlation.
Relations are then categorized into three types, can-
cer—gene, gene—gene, and cancer—cancer.

Each relationship was scored (1 for association,
2 for positive correlation, and —1 for negative cor-

(a) Precision

(b) Fo.5-score

Figure 5: Sarcoma cancer-related gene predictions by
LILY: Precision and Fy 5-score for various 7 and w
values, with 50% data dropped and X = 7 in TopX(%).

relation) and aggregated as a weighted average
across identical relationships to enhance robust-
ness. These scores, quantifying the strength of
each association, serve as inputs to our model for
predicting novel cancer-related genes.

Hyperparameters and Evaluation Metrics: Un-
less otherwise noted, the hyperparameters in Eq. 1
are set as follows: w = 0.2, 7 = 0.2, « = 0.8, and
A1 = 0.1, values at which performance peaks. w,
7, and « are tunable within the interval [0, 1]. The



Models Test Drop 10% Data | Test Drop 30% Data | Test Drop 50% Data | Test Drop 70% Data
P Recall Fy5 P Recall Fys P Recall Fys P Recall Fqs
Prostate Cancer Data & TopX(7), X = 5.
LILY Baseline! 6121 82.69 64.56 | 54.11 7023 56.72 | 4628 62.14 4877 | 1333 60.00 15.79
LILY Baseline’ 80.27 46.98 7031 | 77.17 40.46 6532|7292 33.55 59.06 | 69.23 28.62 53.93
LILY 91.92 45.73 76.47 | 91.46 39.89 72.67 | 90.15 36.17 69.42 | 88.18 32.66 65.81
Breast Cancer Data & TopX(i), X = 5.
LILY Baseline! 60.45 81.03 63.69 | 56.55 7295 59.22|39.55 54.04 41.79| 1471 7143 17.48
LILY Baseline’ 77.52 4040 65.49 | 77.14 3575 62.63 | 63.16 2547 4874 |57.90 22.62 44.13
LILY 87.17 42.55 72.06 | 86.94 41.69 71.43 | 8580 34.63 66.23 | 85.25 27.23 59.77
Sarcoma Cancer Data & TopX(i), X = 5.
LILY Baseline! 57.53 87.50 61.76 | 50.79 72.73 54.05 | 48.08 71.43 5144 | 9.68 42.86 11.45
LILY Baseline’ 74.58 51.77 68.54 | 68.63 4321 61.40 | 68.18 41.67 60.48 | 65.00 38.81 57.27
LILY 80.95 4359 69.11 | 80.65 35.71 64.43 | 73.68 24.14 5224|6842 2203 48.15

Table 3: Performance of LILY Baseline', LILY Baseline?, and LILY in predicting cancer-related genes for prostate,
breast, and sarcoma cancers under varying data availability with fixed influence of available data, evaluated by
Precision (P), Recall, and Fy 5-score. The best results are bolded, and the second-best are underlined.

parameter X in TopX(7), which regulates the num-
ber of top-related cancers per gene, modulates the
influence of available data; higher X corresponds
to greater influence. Performance is assessed us-
ing precision (P), recall, and the Fg-score, with
B = 0.5 to prioritize precision over recall due to
our goal of identifying the most probable cancer-
related genes among numerous potential linkages
for efficient experimental resource allocation.
Relevant Models: Our work is inspired by prior ef-
forts leveraging BioLLMs to extract association
information among genes and diseases, includ-
ing DISEASES (Pletscher-Frankild et al., 2015),
GeneSemantics (Miller et al., 2022), GatorTron
(Yang et al., 2022a), MSK-CHORD (Jee et al.,
2024), and Teacher-Student Framework (Kehl
et al., 2024). However, no previous study has at-
tempted a BioLLMs-enabled approach to predict
cancer genes by integrating fragmented informa-
tion. Therefore, we propose two baseline methods:
LILY Baseline' adopts the computational frame-
work of LILY without confidence-score threshold
for predictions. LILY Baseline® uses only the
gene-cancer associations extracted by BioLLMs
on the same computational framework and omits
gene-gene and cancer-cancer associations.

4.2 Experimental Results

Table 2 presents the prediction results of cancer-
related genes by LILY. We assess its performance
under varying data availability by dropping 10%,
30%, 50%, and 70% of the original dataset (Test
Drop %) and adjusting X in TopX(%) to modulate

data influence, verifying the predictions against the
ground-truth. The results demonstrate:
1. Under 10% data drop, LILY yields high preci-
sion on well-studied cancers: prostate (92.49%),
cervical (91.95%), breast (87.54%), and lung
(86.21%). The under-researched sarcoma cancer
achieves 81.40%. Under 70% data drop, fixing
X = 7in TopX(i), the precision declines by 5.86%
(prostate), 3.75% (cervical), 1.47% (breast), 5.19%
(lung), and 14.00% (sarcoma), indicating that lim-
ited data affects less-studied cancers more severely.
2. Recall decreases with less data availability but
is partially offset if available data exerts greater in-
fluence. In breast cancer, recall declines by 32.74%
with X = 3 and by 23.00% with X = 11 as the
data drop increases from 10% to 70%; in sarcoma
cancer, recall declines by 50.43% with X = 3 and
by 33.47% with X = 11. It is suggested that in-
creased data availability enhances the detection of
true cancer-related genes while amplifying the im-
pact of available data can mitigate recall reduction.
3. For prostate, cervical, breast, and lung cancers,
the Fg-score remains between 60% and 80% with
minimal variance across different X settings in
TopX(i) at a fixed data drop. In contrast, pre-
dictions on sarcoma cancer exhibits substantial
variability, with Fg-score ranging from 50.00% to
60.54% at a 50% data drop and from 45.80% to
56.93% at a 70% drop, indicating that limited data
impairs the balance between precision and recall.
Table 3 compares the performance of LILY
with the two baseline models. LILY consistently
achieves the highest precision, while LILY Base-
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Figure 6: Prediction of breast cancer-related genes by
LILY and LILY Baseline! evaluated under various w,
with 30% data drop, and X = 5 in TopX(3).

line' shows the lowest precision and Fg-score yet
the highest recall. In contrast, LILY Baseline’
attains slightly lower precision but higher recall
than LILY, resulting in a superior Fg-score on
resource-scarce sarcoma data under low data avail-
ability. These results indicate: (1) This computa-
tional framework covers a broad range of potential
gene candidates, but applying a high-confidence
threshold is necessary for reliable predictions. (2)
Directly using gene-cancer associations from Bi-
oLLMs is effective; however, incorporating com-
puted gene-gene and cancer-cancer correlations
bridges fragmented information and significantly
enhances performance. (3) As data availability
decreases (from a 10% to a 70% drop), both base-
line models exhibit dramatic performance declines,
whereas LILY experiences only a mild decrease
(3.74% in prostate, 1.92% in breast, and 12.53%
in sarcoma). This suggests that even with incom-
plete direct gene-cancer data, reasoned gene-cancer
relationships help sustain the model’s performance.
Robustness Analysis and Ablation Studies: Fig-
ures 4 and 5 show that LILY demonstrates stable
performance across various w and 7 combinations,
except at 7 = 0.8, where precision and Fg 5-score
fluctuate due to an overly high confidence threshold.
Figures 6 and 7 further demonstrate that LILY con-
sistently outperforms LILY Baseline' and LILY
Baseline?, confirming that both the confidence-
score threshold and the reasoning component for
gene-gene and cancer—cancer associations are indis-
pensable. Notably, LILY achieves peak precision
and Fy 5-score at 7 = 0.2 and w = 0.2, which we
adopt as the optimal settings of parameters.

4.3 Novel Predictions

Table 4 lists the top 15 predicted breast cancer-
related genes ranked by confidence score. Trained
only on data collected from 10,000 oncogenomics
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Figure 7: Prediction of prostate cancer-related genes by
LILY and LILY Baseline? evaluated under various 7,
30% data drop, and X = 5 in TopX(3).

Gene Score | Relation Information Source
PDK1 1.013 (Peng et al., 2018)
RBBPS 0.969 (Zarrizi et al., 2020)

BCL3 0.965 (Turnham et al., 2024)
STC2 0.868 (Qie et al., 2024)
TFF1 0.868 ? (Buache et al., 2011)
TFF3 0.868 (Yang et al., 2022b)
MDM?2 0.862 (Wang et al., 2014)
RADS54L 0.855 (Gonzalez et al., 1999)
MIR23AHG | 0.855 ? (Entezari et al., 2024)
ATF1 0.855 (Huang et al., 2016)
MTND6P4 0.855 ] (Pangeni et al., 2022)
MIR3193 0.840 ? Not Found.
NCAN 0.840 ? (Williams et al., 2024)
TBXS5 0.840 (Network, 2012)
CTHRC1 0.840 (Lee et al., 2016)

Table 4: Prediction of novel breast cancer-related genes
with data extracted from 10,000 oncogenomics articles.

articles, LILY identifies novel cancer-related genes,
some experimentally validated and others only
peripherally noted, and covers protein-coding
(e.g., TFF1) and even non-coding genes (e.g.,
MIR23AHG). Since the training data comprise
only a small fraction of potential gene—cancer as-
sociations, LILY’s accurate inference with limited
data demonstrates its efficacy and suggests that
incorporating more data and expanding the gene-
cancer database will further enhance performance.

5 Conclusion

In this paper, we propose a novel computa-
tional model empowered by BioLLMs for inte-
grating gene-cancer networks and predicting novel
relations. Trained exclusively on data processed
from oncogenomics literature, the model generates
highly precise predictions even with limited data
and demonstrates the potential for enhanced per-
formance through scalability to larger datasets. It
underscores the need for enhanced collaboration
with biomedical labs and offers new insights into
addressing limitations in current BioLLMs.



Limitations

One limitation arises from the data collection
process. To ensure reproducibility and optimize
model robustness, we standardize data collec-
tion from oncogenomics articles extracted from
PubMed and OMIM using a consistent query (e.g.,
for sarcoma cancer: “(Sarcoma, Ewing[MESH]
AND geneftitle/abstract])”’). This query selects rel-
evant, up-to-date oncogenomics articles, making
the data susceptible to bias due to temporal shifts
in research focus and search engine dynamics. An-
other limitation is that, although our model pre-
dicts highly probable cancer-related genes, these
predictions serve solely as suggestions for rigorous
biomedical laboratory testing rather than conclu-
sive identifications. Finally, the model is currently
limited to predicting genes for one cancer type at a
time, requiring separate data extraction and train-
ing for each cancer type, as it does not yet support
simultaneous multi-cancer predictions.

Ethics Statement

Our method for extracting gene-cancer associ-
ation data from oncogenomics literature, sourced
from PubMed and OMIM and processed using Bi-
oLLMs, adheres to the ethical framework estab-
lished by the National Library of Medicine (NLM)
and the National Center for Biotechnology Informa-
tion (NCBI). The disclaimers emphasize that these
platforms function as aggregators of scientific re-
search rather than publishers and do not provide di-
rect medical advice or endorsements. By using the
data strictly for research purposes and not for clini-
cal decision-making or commercial advertising, we
strictly follow the stipulation that users should con-
sult qualified healthcare professionals for personal
medical issues. Furthermore, we acknowledge the
importance of upholding copyright and intellectual
property rights in accordance with NCBI’s policies.
We ensure that all data usage complies with fair use
and legal guidelines while providing appropriate
attribution to the data providers. Throughout our
research, we adhere to rigorous scientific standards,
maintain transparency, and responsibly manage po-
tentially sensitive oncogenomics information in ac-
cordance with the ethical guidelines outlined by
the NLM and NCBI.
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A Computational and Space Complexity

The overall computational complexity of LILY
is primarily determined by the sparse matrix
completion algorithm via the projected proximal
method. The gradient descent step requires O(mn)
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for matrix operations, while the proximal step
performs SVD in O(min(mn?, nm?)) time. The
projection step, reformulated as a sparse convex
quadratic programming problem, requires O((m +
n)?) time per iteration and dominates the cost.
With T iterations until convergence, the total time
complexity is O(T - (m + n)?). The space com-
plexity is O(mn + m? + n?) , accounting for
the observed gene-cancer matrix M. and the
reasoned gene-gene correlation matrix Mg, and
cancer-cancer correlation matrix M.

B Quadratic Programming Solution to
Projection Step

We need to enforce, for each TopX gene-cancer
pair (i, 7) in Eq. 1,

|w- A+ Ci5(Z)| > a, (18)

where w - A;; is the annotated text-mined score,
and

Cij(Z)

Mggli, k] - Mge™ [k, j

NE

e
Il

! (19)

+

M=

Mcc[j> ” ’ Mgcgm[ia l]

=1

To remove the absolute value, introduce an auxil-
iary variable s;; > 0. Then Eq. 18 becomes:
> we Ay +Y_Mggli, k] Z[k, j]

Sij

k
+> Me[5,1] Z1i, 1],
l

Y

Sij — <w . Aij —i—ZMgg[i, k] Z[k‘,j] (20)

k
M3, 1 Z161)),
l

> 0.

Sij = o, Sij =

These inequalities ensure | w - A;; + Cy(Z)| < sy
and s;; > o thus, |w - A + Cy5(Z)] > o

After the gradient and proximal updates, let X =
com, (t+ % ,SVt)

My . The next iterate Z is found by solv-
ing:
. = 2
min > (Z[p.q] — X[p.q])
Z s} pq
s.t. Inequalities in Eq. 20, V (4, j) € TopX(4).
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Since || Z — X |2 is a standard least-squares ob-

jective, and Eq. 20 is linear, Eq. 21 is a standard

Quadratic Program (QP) suitable for widely avail-

able solvers. The solution Z* exactly satisfies Eq.

18 and is thus used to update M;gm’(t+1).

C Proof of Guaranteed Convergence of
the Objection Function

As addressed in Section 3.3 Sparse Matrix Com-
pletion, we decompose the objective into a smooth
component F'(Mge™), Eq. 8, and a non-smooth
component R(Mgg™), Eq. 9. The smooth part is

F(Mge™) = || Payo (Mge = Mgc™)

15, (2

whose gradient satisfies

VF(MS™) = —2 Py, (Mgc - Mggm> . (23)

Because Po,, is a linear (masking) operator, VF(-)

is Lipschitz continuous. Formally, there exists L >

0 such that

IVE(X) = VF{Y)|lr < LI|X =Y|p VX,V
(24)

This L-smoothness property is fundamental for an-

alyzing the convergence of proximal gradient-type

methods.

The non-smooth part is
(25)

%)

R(Mg2™) = Au || P (M) |

where || - ||« denotes the nuclear norm. The nu-
clear norm is convex, with its proximal opera-
tor given by Singular Value Thresholding (SVT).
Since Py~ is an elementwise mask, the operator
Mge™ v Pyr (Mgg™) remains linear and contrac-
tive, and thus the composition HPXT (+) H* is like-
wise convex and admits a closed-form proximal op-
erator. This ensures that the non-smooth term R(-)
is efficiently handled within a forward-backward
splitting scheme.

In addition to the proximal step, we impose
the linear constraints f(A;j, Cy;(M™)) > a,

9
V(i,7) € TopX(i), which define the set

§ = {Mgm e R

f(Aij, Cij (Mge™)) > a

V(i j) € TopX(i)},
(26)
Because these constraints are linear in the entries
of Mg 2™, the set S is a closed, convex polyhedron.
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Cancer Data Time (in sec) | Time (GPU hours)
Prostate Cancer 358.70 0.099638889
Cervical Cancer 183.30 0.050916667

Breast Cancer 360.07 0.100019444

Lung Cancer 1521.37 0.4226027778
Sarcoma Cancer 14.10 0.003916667

Table 5: Training time of LILY on datasets collected
for each cancer type.

After each proximal update, we project the interme-
diate estimate onto S by solving a convex quadratic
program, which maintains feasibility of the iterates.
From classical results in convex analysis (Beck
and Teboulle, 2009; Combettes and Pesquet, 2011;
Bauschke and Combettes, 2017), it follows that
if F'(+) is convex with an L-Lipschitz continuous
gradient and R(-) is convex, the forward-backward
splitting method converges to a global minimizer of
F'+ R. When combined with a projection step onto
a closed, convex set S, one can view the projec-
tion as the proximal operator of the indicator func-
tion ds(+), which preserves the global convergence
guarantees. Consequently, under mild assumptions
(e.g., finite entries and bounded parameters), the
sequence {M;’Sm’(”} converges to a global opti-
mum of Eq. 1. Thus, the proposed method is not
only computationally tractable but also theoreti-
cally sound, which ensures convergence to a robust
and interpretable completed gene-cancer matrix.

D Training Time Analysis

We trained our model on a single Tesla V-100
GPU with 16GB of CUDA memory. Table 5 details
the training time for data collected by each can-
cer type. Specifically, the prostate cancer dataset
comprises data from 10,000 oncogenomics articles,
25,524 relevant lines, 2,965 annotated genes, and
990 cancer types; the cervical cancer dataset in-
cludes 10,000 articles, 17,115 relevant lines, 2,407
annotated genes, and 692 cancer types; the breast
cancer dataset is based on 10,000 articles, 38,620
relevant lines, 3,641 annotated genes, and 829 can-
cer types; the lung cancer dataset consists of 10,000
articles, 60,532 relevant lines, 6,242 annotated
genes, and 1,716 cancer types; and the sarcoma
cancer dataset is derived from 1,061 articles, 5,679
relevant lines, 679 annotated genes, and 283 cancer

types.
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