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ABSTRACT

Recently, scaling images to high resolution has received much attention in multi-
modal large language models (MLLMs). Most existing practices adopt a sliding-
window-style cropping strategy to adapt to resolution increase. Such a cropping
strategy, however, can easily cut off objects and connected regions, which in-
troduces semantic discontinuity and therefore impedes MLLMs from recogniz-
ing small or irregularly shaped objects or text, leading to a phenomenon we call
the semantic sawtooth effect. This effect is particularly evident in lightweight
MLLMs. To address this issue, we introduce a Complementary Image Pyramid
(CIP), a simple, effective, and plug-and-play solution designed to mitigate se-
mantic discontinuity during high-resolution image processing. In particular, CIP
dynamically constructs an image pyramid to provide complementary semantic in-
formation for the cropping-based MLLMs, enabling them to richly acquire se-
mantics at all levels. Furthermore, we introduce a Scale Compression Mechanism
(SCM) to reduce the additional computational overhead by compressing the re-
dundant visual tokens. Our experiments demonstrate that CIP can consistently
enhance the performance across diverse architectures (e.g., MiniCPM-V-2, In-
ternVL2, and LLaVA-OneVision), various model capacity (1B→8B), and differ-
ent usage configurations (training-free and fine-tuning). Leveraging the proposed
CIP and SCM, we introduce a lightweight MLLM, Mini-Monkey, which achieves
remarkable performance in both general multimodal understanding and document
understanding. On the OCRBench, the 2B-version Mini-Monkey even surpasses
the 8B model InternVL2-8B by 12 score. Additionally, training Mini-Monkey is
cheap, requiring only eight RTX 3090 GPUs. Code and models are available at
https://github.com/Yuliang-Liu/Monkey.

1 INTRODUCTION

Recently, Large Language Models (LLMs) (Zhang et al., 2022; Brown et al., 2020; Touvron et al.,
2023; OpenAI, 2023) have received significant attention for their robust text understanding and
generation capabilities. Researchers are actively exploring ways to integrate vision encoders into
LLMs to upgrade them to multimodal large language models (MLLMs) (Li et al., 2023b; Liu et al.,
2023a; Bai et al., 2023). Some approaches employ a Q-former (Alayrac et al., 2022; Li et al.,
2023b), while others (Liu et al., 2024d; Wang et al., 2023a) use linear projection. Despite the
promising results, they are constrained to processing low-res images, which limits their ability to
execute detailed scene analysis.

To address this limitation, much recent effect aims to enable MLLMs to process high-res images.
One straightforward solution is to adopt a visual encoder that can tackle high-res images. However,
developing a high-quality visual encoder demands substantial training resources (Bai et al., 2023;
Chen et al., 2023). An alternative, more resource-efficient strategy is the non-overlapping crop-
∗Corresponding authors.
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Figure 1: Comparison of different image cropping strategies. (a) Input image; (b) Non-
overlapping cropping; (c) Overlapping cropping; (d) Ours: complementary image pyramid.

ping (Lin et al., 2023b; Liu et al., 2024c; Ye et al., 2023a; Li et al., 2024f; Chen et al., 2024b), which
splits a high-res image into a set of low-res sub-images.

While the non-overlapping cropping strategy has shown promising results, it inevitably cuts off ob-
jects and connected regions, rendering difficulty for the MLLM in recognizing small or irregularly
shaped objects due to semantic discontinuity, particularly in the context of document understanding.
This mainly leads to two types of consequences: i) semantic ambiguity: if an object or character is
divided, it may be misidentified; the nose of guinea pig in Fig. 1(b) looks much like a monkey after
cropping, for instance; 2) semantic damage: if a word or sentence is segmented, the meanings of the
segmented word will be changed completely; if the word ‘breakdown’ is divided into ‘break’ and
‘down’, the segmented words will have nothing to do with the original one (Liu et al., 2024f; Zhang
et al., 2024). For simplicity, we call these phenomena the semantic sawtooth effect in this paper. To
alleviate this effect, a rather straightforward idea is to adopt overlapping cropping. However, this
strategy will result in the processing of much duplicate information, as presented in Fig. 1(c). This
redundancy could potentially cause hallucinations in MLLMs. Moreover, it can even deteriorate per-
formance according to our ablation studies in Sec. 4.3. Additionally, the semantic sawtooth effect
can be observed more evidently in lightweight MLLMs. Larger MLLMs with enhanced compre-
hension capabilities and feature extraction capabilities often can alleviate this issue to some extent.
Even when the object is segmented, these models can understand the objects through their powerful
feature extraction.

To alleviate the semantic sawtooth effect more explicitly, we propose a plug-and-play approach,
termed Complementary Image Pyramid (CIP). CIP can be easily integrated into a variety of
cropping-based MLLMs, allowing them to tackle high-res images with reduced semantic sawtooth
effect. CIP dynamically constructs an image pyramid that provides complementary semantic fea-
tures for the MLLMs, enabling it rich acquire semantics at all levels. If object semantics are lost at
one scale, they can be compensated by those from another scale. Different from previous work (Liu
et al., 2024f; Huang et al., 2024) that addresses this issue by modifying the architecture of the model,
our approach focuses on enriching the image semantics per se. Consequently, CIP can be easily in-
tegrated into a variety of MLLMs, allowing them to tackle high-res images with reduced semantic
sawtooth effect. Considering that the CIP introduces some additional computational overheads, we
further propose a Scale Compression Mechanism (SCM) for use in situations with limited compu-
tational resources. The SCM is both training-free and parameter-free. It leverages the well-trained
attention layers of the LLM and the multi-scale information to generate attention weights, which in
turn are used to compress redundant tokens. Utilizing the proposed CIP and SCM, we introduce a
lightweight MLLM, Mini-Monkey.

Our experiments demonstrate the effectiveness of the proposed method: 1) 2B-parameter Mini-
Monkey outperforms the InternVL2-2B by an average of 2.4% across 17 benchmarks in terms of
evaluation metrics; 2) Mini-Monkey achieves a score of 806 on the OCRBench, outperforming the
8B-parameter model InternVL2-8B by 12 score. Moreover, we observe that directly fine-tuning
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well-performing pre-trained MLLM does not enhance, but rather degrades its performance. In con-
trast, fine-tuning with CIP can facilitate the training process to improve performance. In conclusion,
the contributions of this work can be summarized as follows:

• CIP: a plug-and-play complementary image pyramid designed to alleviate the semantic
sawtooth effect for multimodal large language models;

• Mini-Monkey: a lightweight, effective, and training-efficient multimodal large language
model that integrates the complementary image pyramid and the scale compression mech-
anism;

• Our method achieves promising results on 8 general multimodal understanding benchmarks
and 9 document understanding benchmarks, demonstrating the benefits of alleviating the
semantic sawtooth effect.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Low-Resolution Input. In recent years, Large Language Models (LLMs) have made significant
progress (Zhang et al., 2022; Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023). Drawing
from this advancement, many efforts have been made to integrate a vision encoder into Large Lan-
guage Models for vision-language understanding. A commonly employed approach is the linear
projector method(Liu et al., 2024d; Wang et al., 2023a), which maps the output of the vision en-
coder to the same feature space as the text features of the Large Language Models. Some methods,
such as Q-Former (Li et al., 2023b), Perceiver Resampler (Alayrac et al., 2022), or Abstractor (Ye
et al., 2023b), introduce a set of learnable queries to facilitate this integration. Despite these notable
advances, previous methods often struggle with detailed scene understanding due to limitations in
resolution.

Naı̈ve High-Resolution Strategy vs. Cropping Strategy To address this issue, recent research
has adopted two primary strategies: 1) Naı̈ve High-Resolution Strategy. This Strategy leverages the
vanilla ViT to handle images of any resolution and aspect ratio (Wang et al., 2024; Liu et al., 2024g).
However, these methods require additional training data and parameters, or processing attention over
high-res images significantly increases computational demands. 2) An alternative, more resource-
efficient method is the cropping strategy, which divides the high-res image into multiple lower-
resolution sub-images for processing (Li et al., 2024f; Lin et al., 2023b; Ye et al., 2023a; Chen et al.,
2024b; Dubey et al., 2024). At a resolution of 2240x2240, the Naı̈ve High-Resolution Strategy
requires around 50GB of GPU memory, whereas the cropping strategy needs only about 16GB.
These results demonstrate the cropping strategy’s efficiency in managing high-resolution images,
making it a more practical choice for resource-constrained environments.

Although the cropping strategy achieves promising results on several multimodal benchmarks, it
will inevitably result in a semantic sawtooth effect: 1) If an object or character is divided, it may
not be recognized; 2) If the word or sentence is segmented, the semantic damage of the segmented
word will be caused. For example, the word ‘Breakdown’ may be divided into ‘Break’ and ‘down’,
causing semantic damage to the segmented word. This will limit the model’s ability to understand
the detailed scene. Although some methods (Liu et al., 2024f; Huang et al., 2024) attempt to address
this issue by introducing new modules, they introduce additional parameters to the original model
and require training this module from scratch. In contrast, the proposed CIP is designed to be
seamlessly integrated without introducing additional parameters, offering a plug-and-play solution.

2.2 LIGHTWEIGHT MULTIMODAL LARGE LANGUAGE MODELS

Due to the substantial computational costs associated with multimodal large language models
(MLLMs), some recent efforts have focused on developing more efficient models for rapid devel-
opment and real-world applications. For instance, LLaVA-Phi (Zhu et al., 2024) and Imp (Shao
et al., 2024) integrate a lightweight large language model with a vision encoder to develop a pow-
erful multimodal system. MobileVLM (Chu et al., 2023) further conserves resources by integrating
a lightweight downsampling projector that reduces the number of visual tokens. Bunny (He et al.,
2024) advances efficiency through an effective data compression technique, which minimizes the
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Figure 2: Overall architecture of Mini-Monkey. H-Attn represents high attention weights. L-Attn
represents low attention weights. The tokens with low attention weights will be filtered. The shared
LLM’s Layer represents using the block layer from LLM in SCM. The pixel shuffle operation is
utilized to reduce the number of visual tokens to one-quarter of the original.

required pretraining dataset. TinyGPT-V (Yuan et al., 2023) adopts a multi-stage training process
specifically designed for lightweight multimodal models. The above models support only low-res
input. To improve detailed scene understanding, one of the most commonly used methods is the
cropping strategy. For instance, InternVL2-2B (Chen et al., 2024b) enhances the performance of
lightweight MLLMs by adopting a dynamic high-res cropping strategy. Despite these advance-
ments, the cropping strategy will introduce a semantic sawtooth effect, which significantly limits
the performance of lightweight multimodal large language models. Larger MLLMs with enhanced
comprehension capabilities can alleviate this issue to some extent, as discussed in Sec. 4.4.

3 MINI-MONKEY

The overall architecture is illustrated in Fig. 2. Mini-Monkey consists of a CIP, a vision encoder, an
MLP layer, a Scale Compression Mechanism, and a Large Language Model (LLM). Initially, CIP
dynamically generates an image pyramid based on the resolution of input images. Then, we divide
these images into a set of sub-images. These sub-images are then processed by the vision encoder
and MLP layer to extract image tokens. The Scale Compression Mechanism adjusts these image
tokens and forwards them to the LLM, which subsequently generates the final answers.

3.1 COMPLEMENTARY IMAGE PYRAMID

Existing cropping strategy (Li et al., 2024f; Chen et al., 2024b) directly divides the high-res images
into a set of sub-images that will lead to a semantic sawtooth effect. To address this issue, we
propose a plug-and-play method, termed complementary image pyramid (CIP), to promote synergy
among images at varying scales to alleviate the semantic sawtooth effect. The process of CIP is
shown in Fig. 2 (b).

Grouping Operation. We begin by generating a set of pre-defined aspect ratios, which we define as
follows: {g = (nh × nw)|Nmin ≤ nh · nw ≤ Nmax, nh ∈ N, nw ∈ N}. The nh and nw represent
the number of height and width of the grid g. Nmax is the maximum number of tiles. Nmin is
the minimum number of tiles. These aspect ratios are then categorized into three groups through a
grouping operation, including a detailed group Dg , an adaptive group Ag , and a global group Gg .
The classification is based on the following criteria: (1) Aspect ratios that are between 1

3 ∗ Nmax

and Nmax tiles being allocated to the detailed group, enabling the largest possible image size and
thus a clearer depiction of the objects within. (2) For aspect ratios producing between 1

8 ∗ Nmax

and 1
3 ∗ Nmax tiles, we classify them into the adaptive group, which is responsible for enhancing

the fine details at the borders of the crops. (3) The 1:1 aspect ratio is designated to the global group,
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providing a low-res, comprehensive view of the whole image. The grouping operation generates
three groups of different aspect ratios for generating the image.

Dynamically Generating Images. After the grouping operation, we will generate three images
from each group. First, we calculate the absolute differences between the aspect ratio of the input
image and the aspect ratios within the detailed group. Then, the ratio that has the smallest absolute
difference from the input image’s aspect ratio is selected as the matched ratio, denoted as Dh, Dw.
Dh is the number of height tiles and Dw is the number of width tiles. Once a matched aspect ratio is
determined, the image is resized to the corresponding resolution. For example, a 1288×1257 image
would be resized to 1344×1344. The resized image is then divided into tiles of 448×448 pixels. After
obtaining the detailed image, the adaptive group will dynamically generate an aspect ratio based on
Dh, Dw, ensuring that the cropping lines on the detailed group and those on the adaptive group do
not overlap. First, we eliminate any aspect ratios in the adaptive group that are exact multiples of
Dh, Dw. When the Ah is 1, it means that there is no required cropping. Therefore, they can be
integer multiples in such cases. This process can be formulated as follows:

∀k ∈ Z, ∀i ∈ {h,w},
{
Di = k ·Ai, if Ai = 1,

Di ̸= k ·Ai, otherwise.
(1)

where Ah and Aw denote the height and width components of the aspect ratios in the adaptive group,
respectively. Then, we will resize the image by selecting the ratio closest to the aspect ratio of the
original image from the remaining aspect ratio.

Because the vision encoder processes each tile independently, existing cropping-based MLLMs fail
to capture feature interactions between different tiles. In our method, the adaptive group employs
a distinct aspect ratio to partitioning windows compared to the detailed group, thereby simulat-
ing cross-tile interaction features and providing the cropping positions information for the detailed
group. Similarly, the global group provides the cross-tile interaction features and the cropping po-
sitions information for the adaptive component. Three groups provide complementary semantic
information and multi-scale information for the model, enabling the model to better capture finer
details and handle objects of different sizes in images. Different from the previous method (Liu
et al., 2024f; Huang et al., 2024), the proposed CIP alleviates the semantic sawtooth effect from
the perspective of the image, bringing several advantages: (i) it is plug-and-play, requiring no addi-
tional parameters; (ii) it seamlessly integrates with existing MLLMs that utilize cropping strategies,
leading to consistent performance improvements; and (iii) it can be utilized without training and its
effectiveness can be further improved through fine-tuning.

3.2 SCALE COMPRESSION MECHANISM

Although the proposed CIP significantly enhances model performance, certain scenarios may restrict
the level of computational resources available. To tackle this challenge, we introduce a parameter-
free token compression method called the Scale Compression Mechanism (SCM), which is used to
reduce the visual tokens, as shown in Fig. 2 (c). The detailed group provides tokens with lower
information density, whereas the adaptive and global groups yield tokens that are more information-
dense. Therefore, we primarily focus on compressing the tokens from the detailed group. Previous
work demonstrates that a well-trained LLM from MLLM can effectively select the necessary visual
features based on the input question (Chen et al., 2024a). Consequently, SCM utilizes the layers
of the LLM from a well-trained MLLM to select visual tokens without generating any additional
parameters. The input visual token including Vd ∈ RL1×C , Va ∈ RL2×C , and Vg ∈ RL3×C , and
the textual token Tt ∈ RT×C will be sent into an LLM’s Layer. Vd represents the tokens from
the detailed group. Va represents the tokens from the adaptive group. Vg represents the tokens
from the global group. We utilize the first and second layers of LLM to compress the tokens. The
LLM’s Layer will output an attention map. We use the visual token from the adaptive group, global
group, and textual token to attend to the visual token from the detailed group. The calculation of the
attention can be formulated as follows:

Q = cat(Va,Vg,Tt) , (2)

Attnw = softmax(
Q+ PE(Q))(Vd + PE(Vd))

T

√
D

) . (3)
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Table 1: Comparison with SoTA models on 8 multimodal benchmarks. General multimodal bench-
marks encompass: MME (Fu et al., 2023), RealWorldQA (X.ai, 2024), AI2D test (Kembhavi et al.,
2016), CCBench (Liu et al., 2023b), SEED Image (Li et al., 2023a), HallusionBench (Guan et al.,
2023), and POPE (Li et al., 2023c). Additionally, the math dataset includes MathVista testmini (Lu
et al., 2023). The MME results we report are the sum of the perception and cognition scores. §

represents the results from the OpenCompass leaderboard (Contributors, 2023).
General Multimodal Benchmarks Math

model #param
MME RWQA AI2D CCB SEED HallB POPE MathVista

QWEN-VL (Bai et al., 2023) 7B 1848.3 49.3§ 63§ 65.7§ 52.5§ 29.9§ 70§ 34.9§

Mini-Gemini (Li et al., 2024e) 35B 2141.0 − − − − − − 43.3
LLaVA-NeXT (Liu et al., 2024c) 35B 2028.0 − 74.9 49.2 75.9 34.8 89.6§ 46.5
InternVL 1.2 (Chen et al., 2024c) 40B 2175.4 67.5 79.0 59.2 75.6 47.6 88.0 47.7
InternVL 1.5 (Chen et al., 2024b) 26B 2187.8 66.0 80.7 69.8 76.0 49.3 88.3 53.5
DeepSeek-VL (Lu et al., 2024) 1.7B 1531.6 49.7§ 51.5§ 37.6§ 43.7§ 27.6§ 85.9§ 29.4
Mini-Gemini (Li et al., 2024e) 2.2B 1653.0 - - - - - - 29.4
Bunny-StableLM-2 (He et al., 2024) 2B 1602.9 - - - 58.8 - 85.9 -
MiniCPM-V-2 (Yao et al., 2024) 2.8B 1808.6 55.8§ 62.9§ 48.0§ - 36.1§ 86.3§ 38.7
InternVL 2 (Chen et al., 2024b) 2B 1876.8 57.3 74.1 74.7 70.9§ 37.9 85.2§ 46.3
Mini-Monkey (ours) 2B 1884.2 57.9 74.8 75.5 71.3 38.8 88.0 47.3

where PE represents the position encoding and D denotes the dimension of the LLM. Cat() rep-
resents the sequence concatenation operation. After computing the attention mechanism, we aver-
age the first dimension of the attention map Attnw ∈ R(L2+L3+T )×L1 to obtain a weight vector
Wa ∈ RL1 . Subsequently, we select the top K visual features from detailed layers based on this
weight vector Wa. These selected tokens, along with tokens from the adaptive group, global group,
and textual token, are input into the LLM to generate the results. Compared to FastV (Chen et al.,
2024a), SCM works in conjunction with the CIP and is more targeted by using tokens with high
relative information density to compress tokens with low information density.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We use InternVL2-2B (Chen et al., 2024b) as the Baseline to develop the Mini-Monkey. Following
previous work (Chen et al., 2024c), we use the (448, 448) as the input resolution of InternViT. The
training datasets used to train the model include DocVQA (Mathew et al., 2021), ChartQA (Masry
et al., 2022), DVQA (Kafle et al., 2018), AI2D (Kembhavi et al., 2016), GeoQA+ (Cao & Xiao,
2022), and LLaVA-150K (zh) (Liu et al., 2024d). We use the AdamW (Loshchilov & Hutter, 2017)
as the optimizer. The base learning rate is 4e-8. We limit the maximum number Nmax to 24 and the
minimum number Nmin is 1.

Evaluation. Following the previous work (He et al., 2024; Chen et al., 2024b), we evaluate Mini-
Monkey on eleven general multimodal understanding benchmarks, including MathVista testmini (Lu
et al., 2023), SEED Image (Li et al., 2023a), RealWorldQA (X.ai, 2024), AI2D test (Kembhavi et al.,
2016), POPE (Li et al., 2023c), CCBench (Liu et al., 2023b), MME (Fu et al., 2023), and Hallu-
sionBench (Guan et al., 2023). For document understanding, following the previous work (Liu
et al., 2024f), we employ two distinct types of metrics to verify the performance of Mini-Monkey.
Initially, we leverage the standard metrics provided by the benchmarks to evaluate Mini-Monkey.
We utilize benchmarks such as ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021),
InfoVQA (Mathew et al., 2022), TextVQA (Singh et al., 2019), STVQA (Biten et al., 2019),
FUNSD (Jaume et al., 2019), SROIE (Huang et al., 2019), POIE (Kuang et al., 2023) and OCR-
Bench (Liu et al., 2023c). We also apply the accuracy metric to verify the performance. Further
details on this metric and the used benchmarks can be referenced in appendix A.8.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

General Multimodal Understanding. We evaluate Mini-Monkey on general multimodal under-
standing following (He et al., 2024; Chen et al., 2024b). The results are shown in Tab. 1. Mini-
Monkey surpasses other 2B-parameter models on 8 benchmarks. The results indicate that CIP en-
hances Mini-Monkey’s perception ability, thereby improving its capability to handle general multi-
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Table 2: Comparison to state-of-the-art MLLMs on OCR-related Tasks. Mini-Monkey achieves
the best results among the 2B-parameter MLLMs. § represents the results from the OpenCompass
leaderboard (Contributors, 2023).

Model Model Size DocVQATest ChartQATest InfoVQATest TextVQAV al OCRBench

TextMonkey (Liu et al., 2024f) 9B 73.0 66.9 28.6 65.6 558
TextHawk (Yu et al., 2024) 7B 76.4 66.6 50.6 — —
DocKylin (Zhang et al., 2024) 7B 77.3 46.6 66.8 — —
HiRes-LLaVA (Huang et al., 2024) 7B 74.7 61.5 48.0 65.4 —
LLaVA-UHD (Xu et al., 2024) 13B — — — 67.7 —
CogAgent (Hong et al., 2024) 17B 81.6 68.4 44.5 76.1 590
UReader (Ye et al., 2023a) 7B 65.4 59.3 42.2 57.6 —
DocOwl 1.5 (Hu et al., 2024a) 8B 82.2 70.2 50.7 68.6 —
HRVDA (Liu et al., 2024a) 7B 72.1 67.6 43.5 — —
TextSquare (Tang et al., 2024) 7B 84.3 79.4 51.5 66.8 622
IXC2-4KHD (Dong et al., 2024b) 8B 90.0 81.0 68.6 77.2 675
InternVL 1.5 (Chen et al., 2024b) 26B 90.9 83.8 72.5 80.6 724
InternVL 2 (Chen et al., 2024b) 8B 91.6 83.3 74.8 77.4 794
GLM4-V (GLM et al., 2024) 9B - - - - 786

Vary-toy (Wei et al., 2024) 1.8B 65.6 59.1 - - -
MiniCPM-V 2.0 (Yao et al., 2024) 2.8B 71.9 55.6§ - 74.1 605
InternVL 2 (Chen et al., 2024b) 2B 86.9 76.2 58.9 73.4 784
Mini-Monkey (Ours) 2B 87.4 76.5 60.1 76.0 806

Table 3: Quantitative accuracy (%) comparison of our model with existing multimodal large lan-
guage models (MLLMs) on several benchmarks. Following TextMonkey (Liu et al., 2024f), we use
the accuracy metrics to evaluate our method.

Method Scene Text-Centric VQA Document-Oriented VQA KIE
STVQA TextVQA DocVQA InfoVQA ChartQA FUNSD SROIE POIE

BLIP2-OPT-6.7B (Li et al., 2023b) 20.9 23.5 3.2 11.3 3.4 0.2 0.1 0.3
mPLUG-Owl (Ye et al., 2023b) 30.5 34.0 7.4 20.0 7.9 0.5 1.7 2.5
InstructBLIP (Dai et al., 2023) 27.4 29.1 4.5 16.4 5.3 0.2 0.6 1.0
LLaVAR (Zhang et al., 2023) 39.2 41.8 12.3 16.5 12.2 0.5 5.2 5.9

BLIVA (Hu et al., 2024b) 32.1 33.3 5.8 23.6 8.7 0.2 0.7 2.1
mPLUG-Owl2-8 (Ye et al., 2024) 49.8 53.9 17.9 18.9 19.4 1.4 3.2 9.9
LLaVA1.5-7B (Liu et al., 2024b) 38.1 38.7 8.5 14.7 9.3 0.2 1.7 2.5

TGDoc (Wang et al., 2023b) 36.3 46.2 9.0 12.8 12.7 1.4 3.0 22.2
UniDoc (Feng et al., 2023b) 35.2 46.2 7.7 14.7 10.9 1.0 2.9 5.1

DocPedia (Feng et al., 2023a) 45.5 60.2 47.1 15.2 46.9 29.9 21.4 39.9
Monkey-8B (Li et al., 2024f) 54.7 64.3 50.1 25.8 54.0 24.1 41.9 19.9

InternVL-8B (Chen et al., 2024c) 62.2 59.8 28.7 23.6 45.6 6.5 26.4 25.9
InternLM-XComposer2-7B (Dong et al., 2024a) 59.6 62.2 39.7 28.6 51.6 15.3 34.2 49.3

TextMonkey-9B (Liu et al., 2024f) 61.8 65.9 64.3 28.2 58.2 32.3 47.0 27.9
InternVL2-2B (Chen et al., 2024b) 65.6 66.2 76.7 46.8 67.6 42.0 68.0 66.8

Mini-Monkey-2B (Ours) 67.2 68.8 78.4 50.0 67.3 43.2 70.5 71.2

modal understanding tasks. Additionally, on the POPE benchmark, which evaluates hallucinations
in MLLMs, Mini-Monkey outperforms the Baseline InternVL2-2B by 2.8%, demonstrating that CIP
can also mitigate hallucinations in MLLMs.

Document Understanding. For the first type of metric, the results are presented in Tab. 2. Com-
pared to Baseline InternVL2-2B, our method outperforms it by 2.6%, 1.2%, and 22 for TextVQA,
InfoVQA, and OCRBench, respectively. The CIP provides the model with complementary semantic
and multi-scale information, enhancing its ability to perceive fine-grained and varying-sized text.
Due to the small original resolution of ChartQA, it is less impacted by cropping operations, result-
ing in a minor improvement from our method. With these complementary semantic and multi-scale
information, on the OCRBench, Mini-Monkey even surpasses the 8B-parameter Large Multimodal
Model InternVL2-8B and the 9B-parameter Large Multimodal Model GLM4-V by 12 and 20, re-
spectively. For the accuracy metric, the results are shown in Tab. 3. Mini-Monkey outperforms the
InternVL2-2B by 2.6%, 3.2%, and 4.4% on TextVQA, InfoVQA, and POIE, respectively. OCR-
related tasks are utilized to evaluate the fine-grained recognition capabilities of the MLLM. The
results from these tasks demonstrate the effectiveness of CIP in enhancing such capabilities.

4.3 ABLATION STUDY

In this section, we perform ablation studies on both general multimodal understanding and doc-
ument understanding benchmarks to validate the effectiveness of our method. We adopt the
TextVQA (Singh et al., 2019), OCRBench (Liu et al., 2023c), HallusionBench (Guan et al., 2023),
MME (Fu et al., 2023), and POPE (Li et al., 2023c) to conduct ablation studies.

Complementary Image Pyramid. We conducted ablation studies to investigate the effectiveness of
the CIP. We compared our method with several alternatives: The dynamic high-res strategy (Chen
et al., 2024b), which maintains aspect ratios to increase resolution. The fixed-size high-res strat-
egy (Li et al., 2024f), which uses a fixed size to increase resolution. The overlapping cropping
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Table 4: Ablation study of Complementary Image Pyramid. We compare our method with the
existing cropping strategy and the overlay cropping strategy.

Model Resolution Strategy TextVQA OCRBench MME HallB POPE Flops(B) Latency/Example

Baseline Dynamic high-res Strategy (Chen et al., 2024b) 73.4 784 1876.8 37.9 85.2 349.4 1.0s
Baseline Fixed Size high-res Strategy (Li et al., 2024f) 74.2 772 1824.5 37.6 85.0 510.9 1.1s
Baseline Overlapping Cropping Strategy 70.6 758 1874.1 36.8 83.5 393.1 1.1s
Baseline Multi-Scale Strategy (Shi et al., 2024) 74.8 776 1846.8 38.1 85.3 559.2 1.6s
Mini-Monkey (Ours) Complementary Image Pyramid 76.0 806 1884.2 38.8 88.0 531.3 1.3s

Table 5: Ablation study of the impact of different components in CIP.
Model Detailed Component Global Component Adaptive Component TextVQA OCRBench MME HallB POPE

r1 InternVL2-2B ✓ 62.5 385 1686.2 34.8 81.8
r2 InternVL2-2B ✓ ✓ 70.5 473 1806.1 37.4 86.0
r3 InternVL2-2B ✓ 60.8 624 1842.3 37.4 85.3
r4 InternVL2-2B ✓ ✓ 74.8 782 1874.2 39.0 87.5
r5 InternVL2-2B ✓ ✓ 74.6 785 1853.5 37.6 87.6
r6 InternVL2-2B ✓ ✓ ✓ 76.0 806 1884.2 38.8 88.0

Table 6: Ablation study of the different compression rates of SCM.
Compression Rate 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.9

MME 1884.2 1884.7 1879.8 1878.5 1876.3 1886.0 1871.7 1870.2
Flops (B) 446.9 414.9 383.6 353.0 323.0 293.7 237.0 171.4
Latency/Example 0.83s 0.78s 0.73s 0.67s 0.63s 0.59s 0.51s 0.49s

strategy uses a high-res approach but crops with overlay. The multi-scale strategy (Shi et al., 2024),
which introduces a multi-scale strategy to the MLLM. As presented in Tab. 4, the proposed CIP
achieved the best results on both general multimodal understanding and document understanding
without significantly increasing latency or computational load. The over-overlay cropping strategy,
instead of improving the model’s performance, actually degraded it.

Various Model Capacity. We performed ablation studies to assess the impact of CIP on models
with varying model capacities. As illustrated in Table 8, CIP consistently improves the performance
of varying model capacities, illustrating the general applicability of our approach.

Different Usage Configurations. To further validate the improvements introduced by CIP, we
performed experiments on usage configurations: a training-free configuration and a fine-tuning con-
figuration. As shown in Tab. 7, CIP demonstrates improvements in performance even when applied
without training. The performance can be further improved with fine-tuning. Additionally, we sur-
prisingly find that CIP can even facilitate the model fine-tuning process. As presented in the second
line in Tab. 7, direct fine-tuning of the Baseline model not only failed to improve performance but,
in some cases, led to a decline. Conversely, incorporating CIP during the fine-tuning of the Base-
line resulted in substantial improvements in both general multimodal understanding and document
understanding, as evidenced in the fourth line of Tab. 7.

Incorporating CIP to various MLLMs. The proposed CIP can be seamlessly integrated into crop-
based MLLMs. To demonstrate its effectiveness, we incorporated CIP into various structures of
MLLM, such as MiniCPM-V-2 (Yao et al., 2024), InternVL 2 (Chen et al., 2024b), LLaVA-OV (Li
et al., 2024b). The results shown in Tab. 8 show that ClP can be seamlessly integrated into various
MLLMs and consistently improves their performance.

The Number of Sub-Images. To investigate whether the performance enhancement is attributed to
an increase in the number of sub-images, we performed an experiment by incrementally raising the
sub-image count for the Baseline. The findings, summarized in Tab.10, indicate that increasing the
number of sub-images does not lead to better performance; instead, it may result in a decline. In
contrast, CIP can effectively improve the performance of the model, demonstrating its effectiveness.

The impact of different components in CIP. To evaluate the importance of each component in
the CIP, we performed ablation studies using the InternVL2-2B. As presented in Tab. 5, the results
indicate that using only the global component or only the detailed component results in a significant
performance drop, as shown in r1 and r3 of Tab. 5. By comparing the r1 and r2, as well as r3 and r4,
in Tab. 5, we find that adding an Adaptive component significantly improves the performance. When
using both the detailed component and the global component, adding the adaptive component leads
to further improvements, as shown in r5 and r6 of Tab. 5. Furthermore, the removal of any one of the
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Table 7: Exploring different usage configurations of CIP. Train represents fine-tuning the model.
Model CIP Train TextVQA OCRBench MME HallB POPE

InternVL2-2B × × 73.4 784 1876.8 37.9 85.2
InternVL2-2B × ✓ 73.3 (-0.1) 787 (+3) 1858.3 (-18.5) 37.3 (-0.6) 85.3 (+0.1)
InternVL2-2B ✓ × 75.2 (+1.8) 800 (+17) 1881.9 (+5.1) 38.7 (+0.8) 86.7 (+1.5)
InternVL2-2B ✓ ✓ 76.0 (+2.6) 806 (+22) 1884.2 (+7.4) 38.8 (+0.9) 88.0 (+2.8)

Table 8: Ablation study of incorporating complementary image pyramid (CIP) to other MLLMs. §

represents the results from the OpenCompass leaderboard (Contributors, 2023).
Model CIP TextVQA OCRBench MME HallB POPE

MiniCPM-V-2-2.8B × 74.1 605 1808.6 36.1§ 86.3§

MiniCPM-V-2-2.8B ✓ 76.0 (+1.9) 627 (+22) 1819.5 (+10.9) 36.5 (+0.4) 87.1 (+0.8)
LLaVA-OV-0.5B × 65.3 577 1478.0 28.1 86.7
LLaVA-OV-0.5B ✓ 66.2 (+0.9) 600 (+23) 1482.6 (+4.6) 28.8 (+0.7) 87.7 (+1.0)
InternVL2-1B × 70.5 754 1794.4 33.4 84.9§

InternVL2-1B ✓ 72.3 (+1.8) 772 (+18) 1801.5 (+7.1) 34.3 (+0.9) 85.7 (+0.8)
InternVL2-2B × 73.4 784 1876.8 37.9 85.2
InternVL2-2B ✓ 76.0 (+2.6) 806 (+22) 1884.2 (+7.4) 38.8 (+0.9) 88.0 (+2.8)
InternVL2-8B × 77.4 794 2210.3 45.0§ 84.2§

InternVL2-8B ✓ 79.3 (+1.9) 809 (+15) 2226.4 (+16.1) 45.4 (+0.4) 84.8 (+0.6)

Table 9: Ablation study of the scale compression mechanism. We used different compression ratios
to compare with FastV (Chen et al., 2024a). (0.5) represents 50% compression and (0.9) represents
90% compression.

Model Compression Strategy TextVQA OCRBench MME HallB POPE

Mini-Monkey Pooling (0.5) 47.6 256 1765.2 31.5 84.5
Mini-Monkey Random (0.5) 63.5 503 1805.5 36.2 85.9
Mini-Monkey FastV (Chen et al., 2024a) (0.5) 73.4 781 1848.0 38.3 83.9
Mini-Monkey FastV (Chen et al., 2024a) (0.9) 73.9 792 1866.1 37.5 85.8
Mini-Monkey SCM (0.5) 74.7 794 1886.0 38.7 86.1
Mini-Monkey SCM (0.9) 75.2 801 1884.7 38.6 86.2

three components leads to a decline in performance (r2, r4, r5, and r6). The removal of the global
component results in the most significant performance drop (r2 and r6). This is because InternVL2-
2B was pretrained with both the detailed and global components. Removing the global component
or detailed component will result in a significant performance drop. The adaptive component can
to some extent compensate for the information provided by the detailed group, thus the impact
of removing the detailed component is less significant than the global component. However, to
achieve optimal performance, the synergy among all three components is indispensable. These
results demonstrate the effectiveness of our method.

Scale Compression Mechanism (SCM). We compared SCM with the related work FastV (Chen
et al., 2024a). For different methods, we compress the number of visual tokens by 50%. For our
method and FastV, we further conduct an experiment with 90% compression. Following FastV’s
paper, we set the K in FastV as 2. As illustrated in Tab. 9, when using 50% compression and
90% compression, our method outperformed FastV by 21.5% and 4.4%, respectively, demonstrating
its effectiveness. FastV compresses input tokens, including both visual and textual tokens, within
Transformer blocks. In contrast, our method works in conjunction with the CIP and more target by
using tokens with high relative information density to compress tokens with low information density.

The different compression rates of SCM. We conduct an ablation experiment on the MME to show
how the compression rates of SCM influence the acceleration and computational cost. Following
FastV (Chen et al., 2024a), we consider the computation of multi-head attention (MHA) and feed-
forward network (FFN) modules in the FLOPs estimation. The total FLOPs are estimated by L ∗
(4 ∗ n ∗ d2 + 2 ∗ n2 ∗ d + 2 ∗ n ∗ d ∗ m) where n is the token number, d is the hidden state size,
m is the intermediate size of FFN, L is the number of transformer layer. The latency experiments
are conducted on A6000 GPU. As presented in Tab. 6, we can find that as the compression ratio
increases, the computational load continues to decrease, and the speed keeps improving, without a
significant drop in performance. More ablation studies about the selection of hyperparameters are
presented in appendix A.

9



Published as a conference paper at ICLR 2025

Table 10: Ablation study on the number of sub-images. The number denotes the sub-image count.
Model Number TextVQA OCRBench MME HallB POPE

Baseline 18 74.2 782 1851.7 37.0 85.8
Baseline 24 74.4 783 1857.6 36.9 85.8
Baseline 32 74.3 782 1845.0 36.9 85.9
Baseline 48 74.0 767 1841.6 36.2 85.7
CIP 32 76.0 806 1884.2 38.8 88.0
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InternVL2-2B: The words located below 
the words 'to children' are 'Curriculum-
based Field Trips'.

What words are located below the words 'to 
children'?

GT: classrooms home school groups 

InternVL2-26B: The words located 
below 'to children' are "classrooms home 
school groups".

Ours: The words located below the 
words 'to children' are 'classrooms' and 
'home school groups'.

(a) Input Image (b) The results of OCS

(c) The results of InternVL2-2B and 26B (d) The results of Mini-Monkey

Adaptive Select

InternVL2-2B + OCS: The words 
located below the words to 'children' 
are 'school groups'.

Figure 3: Qualitative results of Mini-Monkey. (a) Input Image and Ground Truth. (b) The results
of using overlapping cropping strategy. OSC represents the overlapping cropping strategy. (c) The
results of InternVL2-2B and InternVL2-26B. (d) The results of Mini-Monkey.

4.4 QUALITATIVE RESULTS

In this section, we provide some qualitative results to demonstrate the effectiveness of our method.
First, we verify that the semantic sawtooth effect is particularly evident in lightweight MLLMs,
which adopt InternVL2-2B and InternVL2-26B. As shown in Fig. 3(c), InternVL2-26B can an-
swer the questions correctly. However, due to the word ‘classrooms’ and ‘school’ being cropped,
InternVL2-2B gives a wrong answer that addresses the text in the bottom left corner of the original
image. Mini-Monkey can overcome this semantic sawtooth effect and provide the correct answer, as
presented in Fig. 3(d). Comparing Fig. 3(b) and Fig. 3(d), we can see that the overlapping cropping
strategy introduces some hallucinations and cannot answer questions accurately based on the image,
whereas our methods can effectively address the semantic sawtooth effect. More qualitative results
are presented in appendix A.7.

5 CONCLUSION

In this study, we introduce a Complementary Image Pyramid (CIP) designed to alleviate the seman-
tic sawtooth effect for MLLMs, thereby enhancing their capability to process high-resolution images
effectively. CIP is plug-and-play and can be seamlessly integrated into various multimodal large lan-
guage models at a low cost. We demonstrate the effectiveness of the proposed CIP across diverse
architectures, various parameters, and different usage configurations, leading to consistent perfor-
mance improvements. Besides, we present a Scale Compression Mechanism (SCM) to compress
the visual tokens for computational efficiency. CIP not only enhances the general multimodal un-
derstanding performance but also shows consistent improvements in document understanding tasks.
Furthermore, our experimental results demonstrate that 2B-parameter MLLM equipped with CIP
even surpasses larger 8B-parameter state-of-the-art models like InternVL2-8B on the OCRBench.
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A APPENDIX

A.1 ABLATION STUDY OF THE MAXIMUM NUMBER OF TILES.

We conduct an experiment to explore the effect of varying the number of tiles in CIP. The results
are presented in Table 11. Our findings indicate that overall performance initially improves with an
increase in the number of tiles but begins to decline after reaching a certain point. Optimal perfor-
mance is achieved when the maximum number of tiles is set to 24. Therefore, we choose 24 as the
default maximum number of tiles. Additionally, we perform K-means clustering on the resolution
ratios of images and use the clustering results as the predefined aspect ratios. We found that using
the clustering results as predefined aspect ratios provides a slight improvement over manually preset
them.

Table 11: Ablation study of the maximum number of tiles.
maximum number of tiles TextVQA OCRBench MME HallB POPE

48 75.4 782 1837.2 39.0 87.5
36 75.7 784 1814.5 39.1 87.3
24 76.0 806 1884.2 38.8 88.0
12 75.5 796 1874.1 38.8 87.4
6 74.1 788 1879.2 37.9 87.2
K-means 76.2 806 1891.5 39.1 88.1

A.2 ABLATION STUDY OF DIFFERENT SETTINGS OF GROUPING OPERATION.

We conduct experiments to investigate different pre-defined aspect ratio settings for the CIP. All
experiments are performed using 24 as the maximum number of tiles Ntile. The pre-defined aspect
ratios are determined according to the following formula:

{g = (nh × nw)|Nmin ≤ nh · nw ≤ Nmax, nh ∈ N, nw ∈ N}.

where nh and nw represent the height and width of the grid g, respectively. the results are shown
in the Tab. 12. 1

2 < i < 1 represents the Nmin is set to 1
2 ∗ Ntile and the Nmax is set to 1 ∗ Ntile.

According to the results of the experiment, we chose 1
3 < i < 1 for detailed group and 1

8 < i < 1
3

for adaptive group. In contrast, the global group employs a fixed 1:1 aspect ratio.
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Table 12: Ablation study of the different settings of grouping operation.

Detailed Group Adaptive Group TextVQA OCRBench MME HallB POPE

1
2
< i < 1 1

4
< i < 1

2
76.0 800 1886.7 38.7 87.7

1
3
< i < 1 1

4
< i < 1

3
76.1 804 1882.0 38.1 87.8

1
3
< i < 1 1

8
< i < 1

3
76.0 806 1884.2 38.8 88.0

1
4
< i < 1 1

8
< i < 1

4
75.7 801 1873.7 38.0 87.9

3
4
< i < 1 1

8
< i < 3

4
75.6 798 1860.6 38.6 87.3

Table 13: Ablation study on the impact of different numbers of LLM layers in SCM.
The number of LLM layers TextVQA OCRBench MME HallB POPE Flops (B) Latency/Example

6 75.3 798 1890.8 37.6 88.1 489.7 1.1s
4 75.0 795 1881.2 38.6 86.1 457.0 0.99s
2 74.7 794 1886.0 38.7 86.1 424.4 0.92s
1 74.5 789 1878.2 38.3 86.0 408.6 0.89s

Figure 4: Qualitative results of CIP. The green box indicates the text that needs to be recognized.

A.3 ABLATION STUDY OF THE DIFFERENT NUMBERS OF LLM LAYERS IN SCM.

To further investigate the effect of varying the number of layers in LLMs on the compression of
visual tokens, we conducted a series of experiments. All experiments are conducted in using 0.5
compression rate. The results are detailed in Tab. 13. Our findings indicate that increasing the
number of layers leads to enhanced model performance. Nevertheless, this improvement comes
at the cost of increased computational demands and higher latency. Balancing these factors, we
decided to adopt a two-layer LLM as our standard configuration, optimizing for both efficiency and
performance.

A.4 EFFECTIVENESS OF ADAPTIVE GROUP

To more intuitively demonstrate the role of the adaptive group, we present a visualization case,
as shown in Fig. 4. We can find that the texts are severely corrupted and are hard to read in the
detailed image. The global image is used to help retain some of the overall context. However,
due to the low-resolution of global images, the texts are blurry. The adaptive group is capable
of dynamically adjusting based on the needs of the detailed group and provides more fine-grained
feature representations. MLLMs can easily read the texts from the adaptive image.
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Figure 5: The process of selecting the optimal ratio. First, we generate a set of pre-defined aspect
ratios. Next, for a given input image, we calculate its aspect ratio. Then, we calculate the absolute
differences between the image’s aspect ratio and each of the pre-defined ratios. Lastly, we select the
pre-defined aspect ratio that has the smallest difference as the optimal match.

A.5 THE PROCESS OF SELECTING THE OPTIMAL RATIO

Given an input image, we first compute the absolute differences between its aspect ratio and those
within the detailed group: |a − b|. The aspect ratio with the smallest absolute difference to that of
the input image is then selected as the matched ratio. The overall process is shown in Fig. 5.

A.6 EXPERIMENT ON VIDEO TASKS.

We also conduct experiments on video tasks, using MMBench-Video (Fang et al., 2024) and Video-
MME (Fu et al., 2024). The results are presented in Tab. 14 and Tab. 15. We found that CIP offers
only marginal improvements on these two datasets. The primary reason for this is that these video
datasets require relatively low-resolution inputs; they typically require small images without the
need for resolution enhancement techniques, such as cropping strategies. Therefore, the enhance-
ment brought by CIP on these datasets is limited.

Table 14: Comparison of different methods on MMBench-Video.
Method Overall Mean CP FP-S FP-C HL Mean LR AR RR CSR TR Mean
LLaMA-VID (Li et al., 2024d) 1.08 1.30 1.09 0.93 0.42 1.09 0.71 1.21 1.08 0.83 1.04 1.02
VideoStreaming (Qian et al., 2024) 1.12 1.38 1.13 0.8 0.32 1.13 0.77 1.27 1.11 1.01 1.10 1.09
LLaVA-NeXT-Video (Li et al., 2024a) 1.14 1.35 1.15 0.97 0.58 1.14 0.64 1.38 1.30 1.27 1.03 1.13
InternVL2-2B (Baseline) 1.19 1.47 1.20 1.0 0.79 1.21 0.91 1.20 1.33 1.17 1.05 1.15
Mini-Monkey-2B (Ours) 1.20 1.45 1.22 1.06 0.74 1.22 0.89 1.19 1.42 1.17 1.05 1.16

Table 15: Performance of MLLMs on Video-MME with short, medium, and long durations, under
the setting of “without subtitles”.

Models LLM
Params

Without Subtitles (%) Overall (%)
Short Medium Long

Open-source Video MLLMs
Video-LLaVA (Lin et al., 2023a) 7B 45.3 38.0 36.2 39.9
ST-LLM (Liu et al., 2024e) 7B 45.7 36.8 31.3 37.9
VideoChat2-Mistral (Li et al., 2024c) 7B 48.3 37.0 33.2 39.5
Chat-UniVi-V1.5 (Jin et al., 2024) 7B 45.7 40.3 35.8 40.6

Open & Closed-source Image MLLMs
Qwen-VL-Chat (Wang et al., 2024) 7B 46.9 38.7 37.8 41.1
Qwen-VL-Max (Wang et al., 2024) - 55.8 49.2 48.9 51.3
InternVL-Chat-V1.5 (Chen et al., 2024b) 20B 60.2 46.4 45.6 50.7
InternVL2 (Chen et al., 2024b) 2B 55.4 40.6 35.4 43.8
Mini-Monkey 2B 54.6 40.1 35.1 43.3
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Table 16: Quantitative accuracy (%) comparison of our model with existing multimodal large lan-
guage models (MLLMs) on several benchmarks. Following TextMonkey Liu et al. (2024f), we use
the accuracy metrics to evaluate our method.

Method CIP Scene Text-Centric VQA Document-Oriented VQA KIE OCRBenchSTVQA TextVQA DocVQA InfoVQA ChartQA FUNSD SROIE POIE

MiniCPM-V-2.6-8B 63.8 73.4 82.0 53.7 69.2 42.9 62.1 80.4 852
MiniCPM-V-2.6-8B ✓ 65.3 73.1 81.7 55.3 70.6 43.4 62.5 81.1 858

A.7 MORE QUANTITATIVE RESULTS

We present several visualization results from Mini-Monkey, as illustrated in Figure 6. In Figure 6(a),
we evaluate the model’s performance on general multimodal comprehension. When asked about the
characters depicted in the image, Mini-Monkey demonstrated its capability by accurately identifying
multiple characters from the Avengers.

In Figure 6(b), we tested the model’s understanding of contextual scenarios. By posing questions
related to the swimming pool setting, Mini-Monkey not only correctly identified the activities taking
place but also provided an insightful analysis of potential hazards associated with the environment,
showcasing its ability to infer beyond the visible elements.

Figure 6(c) highlights Mini-Monkey’s proficiency in extracting structured information from images.
We tasked the model with converting the visual data into a JSON format, and it successfully pro-
duced a detailed and accurate representation, indicating its strong capacity for data organization and
structure.

Finally, in Figure 6(d), we assessed the model’s ability to process and analyze menu-related infor-
mation. Mini-Monkey was not only able to precisely recognize and read the text within the image
but also effectively understood the context of the questions posed and performed the required math-
ematical calculations, thereby demonstrating its comprehensive skill set in combining visual and
textual analysis.

A.8 THE ACCURACY METRIC.

In this section, we detail the metric described in (Liu et al., 2023c), which establishes a uni-
form and comprehensible standard for assessing text-focused benchmarks. We utilize benchmarks
such as ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021), InfoVQA (Mathew et al.,
2022), TextVQA (Singh et al., 2019), STVQA (Biten et al., 2019), FUNSD (Jaume et al., 2019),
SROIE (Huang et al., 2019), and POIE (Kuang et al., 2023). This metric evaluates outcomes by
confirming the presence of the ground truth (GT) within the model’s output while excluding any
responses that are less than four characters in length. To further validate the effectiveness of our pro-
posed CIP, we have also conducted experiments using this metric with the state-of-the-art method,
MiniCPM-V-2.6-8B (Yao et al., 2024). As presented in Tab. 16, our findings reveal that even when
applied to a leading multimodal large language model like MiniCPM-V-2.6-8B, the proposed CIP
can enhance performance. These results further indicate the effectiveness of the proposed CIP.

A.9 LIMITATIONS.

To ensure the seamless application of our method across various architectures, we adopt an image-
centric approach to construct an image pyramid without introducing additional parameters. In future
work, we will explore the use of trainable Feature Pyramid Network (FPN) for MLLMs, aiming to
more efficiently leverage multi-scale features.
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{"title": "Plastic Can Take 500 Years 

To Bio-Degrade In The Ocean", 

"subtitle": "Estimated number of years 

for selected items to bio-degrade in a 

marine environment", "items": 

[{"name": "Cigarette Butt", "estimate": 

10}, {"name": "Plastic Grocery Bag", 

"estimate": 20}, {"name": "Styrofoam 

Cup", "estimate": 50}, {"name": 

"Aluminum Cans", "estimate": 200}, 

{"name": "Plastic Beverage Holder", 

"estimate": 400}, {"name": 

"Disposable Diaper", "estimate": 450}, 

{"name": "Plastic Bottle", "estimate": 

450}, {"name": "Fishing Line", 

"estimate": 600}], "note": "*Exact time 

varies by product type and marine 

conditions. Cigarette butts and grocery 

bags are an upper estimate."}

Convert to json format.

The products in the bottom right 

corner of the image are desserts.

What products are in the bottom 

right corner of the image?

The specific categories of 

desserts in the bottom right 

corner of the image are: 1. 

Cheesecake; 2. 7 Layer Cake; 3. 

Apple Strudle; 4. Chocolate 

Brownie; 5. Rice Pudding; 6. 

Coffee Cake; 7. Raspberry Joy 

Bar; 8. Halvah Bar; 9. Chocolate 

Covered; 10. Almond Halvah Bar

What are the specific categories 

of desserts?

How much does it cost to buy two 7 Layer Cakes? Please provide the 

calculation process.

There are six characters in the picture.

How many characters are there in the 

picture?

The characters in the picture are from 

the Avengers. From left to right, they 

are: 1. Thor; 2. Hulk; 3. Iron Man; 4. 

Captain America; 5. Black Widow; 6. 

Hawkeye

Who are they?

To calculate the cost of buying two 7 Layer Cakes, we need to look at 

the price listed for a single 7 Layer Cake in the "Desserts" section of 

the menu. The price for a 7 Layer Cake is $3.99. 

To find the cost of two 7 Layer Cakes, we multiply the price of one 7 

Layer Cake by 2: $3.99 * 2 = $7.98

Therefore, it would cost $7.98 to buy two 7 Layer Cakes.

You can play swimming 

and diving in this pool.

What kind of sport can I 

play here?

To prepare for diving in this pool, you should first check the diving board's 

height and ensure that it is within your skill level. Next, make sure you are 

wearing appropriate swimwear and have a towel nearby to dry off. Finally, 

practice your diving technique to ensure safety and efficiency in the water.

What preparations are 

needed for diving? Please 

provide a concise 

introduction. 

What is the danger of this sport?

The danger of diving in this pool includes the risk of injury from hitting 

the water or colliding with other swimmers. Additionally, there is a risk of 

drowning if you are not a strong swimmer or if you do not know how to 

perform a proper dive. It is important to always follow safety guidelines 

and use proper diving techniques to minimize these risks.

(a) (b)

(c) (d)

Figure 6: Qualitative results of Mini-Monkey. Figures (a) and (b) pertain to general multimodal
understanding. Figures (c) and (d) relate to document understanding.

20


	Introduction
	Related Work
	Multimodal Large Language Models
	Lightweight Multimodal Large Language Models

	Mini-Monkey
	Complementary Image Pyramid
	Scale Compression Mechanism

	Experiments
	Implementation Details
	Comparison with State-of-the-art Methods
	Ablation Study
	Qualitative Results

	Conclusion
	Appendix
	Ablation study of the maximum number of tiles.
	Ablation study of different settings of grouping operation.
	Ablation study of the different numbers of LLM layers in SCM.
	Effectiveness of Adaptive group
	The Process of Selecting The Optimal Ratio
	Experiment on Video Tasks.
	More Quantitative Results
	The Accuracy Metric.
	Limitations.


