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ABSTRACT

The deployment of reinforcement learning (RL) agents in real-world tasks is
frequently hampered by performance degradation caused by mismatches between
the training and target environments. Distributionally Robust RL (DR-RL) offers a
principled framework to mitigate this issue by learning a policy that maximizes
worst-case performance over a specified uncertainty set of transition dynamics.
Despite its potential, existing DR-RL research faces two key limitations: reliance
on prior knowledge of the environment – typically access to a generative model
or a large offline dataset – and a primary focus on tabular methods that do not
scale to complex problems. In this paper, we bridge these gaps by introducing an
online DR-RL algorithm compatible with general function approximation. Our
method learns an optimal robust policy directly from environmental interactions,
eliminating the need for prior models and enabling application to complex,
high-dimensional tasks. Furthermore, our theoretical analysis establishes a
near-optimal sublinear regret for the algorithm under the total variation uncertainty
set, demonstrating that our approach is both sample-efficient and effective.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful paradigm for solving sequential
decision-making problems. A central paradigm of RL is online learning, where an agent learns an
optimal policy through direct trial-and-error interactions with an unknown environment, without
relying on pre-collected datasets or high-fidelity simulators. This learning scheme has fueled
significant achievements in complex simulator-based tasks, including video games (Silver et al., 2016;
Zha et al., 2021; Berner et al., 2019; Vinyals et al., 2017) and generative AI (Ouyang et al., 2022;
Cao et al., 2023; Black et al., 2023; Uehara et al., 2024; Zhang et al., 2024; Du et al., 2023; Cao
et al., 2024). However, a critical vulnerability lies at the heart of conventional online RL algorithms.
Vanilla RL typically optimizes an agent’s policy under the implicit assumption that the environment’s
dynamics, while stochastic, are fixed and unchanging. In other words, the environment encountered
during training is presumed identical to the one at deployment – an assumption often violated in
practice and risky for real-world applications. An agent trained in this manner can become highly
specialized to the exact conditions experienced during training, leading to a brittle policy that is
dangerously unprepared for even minor variations. When deployed in dynamic settings such as
autonomous driving (Kiran et al., 2021) or healthcare (Wang et al., 2018), an agent may confront
unforeseen shifts, like a sudden change in road friction due to weather. A standard RL agent, never
having been trained to consider such possibilities, may suffer a catastrophic drop in performance,
leading to unsafe or costly outcomes.

The core of this issue is that vanilla online RL merely optimizes for expected performance within
the training environment, but fails to account for potential perturbations or model mismatch upon
deployment. Distributionally robust RL (DR-RL) (Iyengar, 2005; Pinto et al., 2017; Hu et al.,
2022) offers a promising solution by instead optimizing for the worst-case performance over a
pre-defined uncertainty set that captures potential model mismatches. By doing so, DR-RL can learn
policies that are inherently resilient to environmental shifts, achieving reliable and safe performance
even when encountering new conditions post-deployment (Goodfellow et al., 2014; Vinitsky et al.,
2020; Abdullah et al., 2019; Hou et al., 2020; Rajeswaran et al., 2017; Atkeson & Morimoto, 2003;
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Morimoto & Doya, 2005; Huang et al., 2017; Kos & Song, 2017; Lin et al., 2017; Pattanaik et al.,
2018; Mandlekar et al., 2017). Online DR-RL (He et al., 2025; Liu et al., 2024; Liu & Xu, 2024b; Lu
et al., 2024; Ghosh et al., 2025), where the agent directly interacts with the unknown environment
but optimizes for the worst-case over some uncertainty set, hence provides a promising approach to
overcome the aforementioned issues of online RL and enhance robustness against model mismatches.

Despite its potential, online DR-RL faces two theoretical challenges. The first is due to the off-target
nature of the objective: training data are generated by nominal dynamics, while robustness is evaluated
against worst-case dynamics. The targeted worst-case environment generally differs from the training
environment, hence the agent must solve an off-dynamic learning problem (Eysenbach et al., 2020;
Liu & Xu, 2024a; Holla, 2021). This can result in an information bottleneck, as samples critical for
the target environment may never be observed under the dynamics with which the agent interacts
(Lu et al., 2024; Ghosh et al., 2025). Moreover, because the online agent interacts directly with
the world, naive exploration that could lead to severe, undesirable consequences is forbidden. This
imposes a crucial constraint: the agent must maintain safe and satisfactory performance, even under
its worst cases, throughout the entire learning process. Due to these challenges, existing DR-RL
mostly assume access to additional data sources, such as a generative model that can freely generate
samples (Panaganti & Kalathil, 2022; Xu et al., 2023; Shi et al., 2023), or a comprehensive offline
dataset covering the relevant dynamics (Blanchet et al., 2023; Shi & Chi, 2024; Tang et al., 2024;
Wang et al., 2024c; Liu & Xu, 2024a; Panaganti et al., 2022; Wang et al., 2024a). Yet in many
practical scenarios, such simulators or datasets are unavailable or prohibitively expensive to create,
necessitating online DR-RL.

The second challenge is its poor scalability. Most existing DR-RL algorithms are designed for
small-scale, tabular problems. Real-world applications, however, often involve vast state-action
spaces that render these methods impractical. In standard RL, function approximation techniques
(Mnih et al., 2013; Silver et al., 2016; Kober et al., 2013; Li et al., 2016), where a low-dimensional
function class is used to approximate the value functions, is the key technique for scaling up to large
problems. Yet, its application to DR-RL raises significant theoretical challenges. Due to the inherent
model mismatch, the existence of an accurate, low-dimensional approximation of the worst-case
value function is not guaranteed. For instance, there may not exist a linear function that properly
approximates the worst-case value function (Tamar et al., 2014). Existing attempts to bridge this gap
often rely on strong, unverifiable assumptions, such as a small discount factor (Xu & Mannor, 2010;
Zhou et al., 2024; Badrinath & Kalathil, 2021) or the environment being modeled as a linear MDP
(Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024; Wang et al., 2024a).

These two gaps naturally lead to one fundamental question: Can we develop a sample-efficient
online DR-RL algorithm scaling up to large problems, under minimal structural assumptions?

In this paper, we answer this question by developing an online DR-RL with general function
approximations, and deriving convergence guarantees. Our contributions are summarized as follows.

Efficient algorithm design. We develop Robust Fitted Learning with TV-Divergence Uncertainty
Set (RFL-TV), the first algorithm for online DR-RL with general function approximation under
the total-variation uncertainty set. Our algorithm integrates the optimism principle for efficient
exploration within a fitted learning framework. To overcome the challenges of off-dynamic sampling,
we introduce a novel functional optimization that reformulates the robust Bellman update. Critically,
to manage estimation errors from limited data, we depart from the standard state-action-wise error
quantification of tabular UCB methods. Instead, we design a global uncertainty quantifier tailored
to our functional optimization, which more effectively captures the aggregate error and guides
exploration. This design results in a computationally efficient algorithm suitable for large-scale
problems.

Robust coverability. We introduce Crcov (see Definition 3), a new structural measure that captures
the inherent statistical difficulty of online DR-RL. This measure quantifies the “information deficit”
challenge, namely, how hard it is to optimize for the worst-case model from data generated by a
different, potentially more benign, training model. We show that online DR-RL is efficiently learnable
if and only if Crcov is finite, establishing it as a fundamental condition for the problem’s tractability
and a key element in quantifying sample complexity.
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Theoretical guarantee. We prove that our RFL-TV finds an ε-optimal robust policy with sample
complexity Õ

(
H2 min{H,σ−1}Crcov

ε2

)
up to logarithmic factors, where H is the horizon length and σ

the uncertainty level. This bound is independent of the state and action space sizes (S,A), confirming
our algorithm’s scalability beyond tabular methods. The explicit dependence on Crcov further
validates our coverability measure as essential for characterizing the complexity of online DR-RL.

2 RELATED WORK

We discuss most related DR-RL works here, and defer the discussion of non-robust RL to Appendix.

Tabular DR-RL: DR-RL is mostly studied under the tabular setting. A substantial body of DR-RL
has been developed under the generative-model setting (Clavier et al., 2023; Liu et al., 2022; Panaganti
& Kalathil, 2022; Ramesh et al., 2024; Shi et al., 2023; Wang et al., 2023a;b; 2024b; Xu et al., 2023;
Yang et al., 2022; 2023; Badrinath & Kalathil, 2021; Li et al., 2022b; Liang et al., 2023), where the
agent is assumed to have access to a simulator or with a comprehensive offline dataset (Blanchet
et al., 2023; Shi & Chi, 2024; Zhang et al., 2023; Liu & Xu, 2024a; Wang et al., 2024c; Blanchet
et al., 2023; Wang et al., 2024a). Recently, limited online DR-RL studies are developed (Dong et al.,
2022; Wang & Zou, 2021; Lu et al., 2024; He et al., 2025; Ghosh et al., 2025). The information
bottleneck discussed is addressed through adopting some technical assumptions, and sample efficient
algorithms are derived. However, all of these works are model-based or value-based, suffering from
poor scalability to large-scale problems.

DR-RL with Function Approximation: Existing theoretical DR-RL studies mostly utilize linear
function approximation. As discussed, the linear function class may not be complete under the
robust Bellman operator, hence no approximation guarantee can be achieved. To address this issue,
most studies adopt strong assumptions on the underlying robust MDP, including small discount
factor (Xu & Mannor, 2010; Tamar et al., 2014; Xu & Mannor, 2010; Zhou et al., 2024), or that the
underlying robust MDP has a linear structure (known as the linear robust MDP) Ma et al. (2022); Liu
& Xu (2024b;a); Liu et al. (2024); Wang et al. (2024a); Ma et al. (2022). However, neither of these
assumptions can be easily verified in practice. Hence, in this paper, we instead consider a broader
function class to bypass these restrictive assumptions. The only work considering general function
approximation is Panaganti et al. (2022); however, they consider the offline setting with a globally
covered dataset, which is free of the exploration challenge inherent to the online setting.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 DISTRIBUTIONALLY ROBUST MARKOV DECISION PROCESS (RMDPS).

Distributionally robust RL can be formulated as an episodic finite-horizon RMDP (Iyengar, 2005),
represented by M := (S,A, H,P, r), where the set S = {1, . . . , S} is the finite state space,
A = {1, . . . , A} is the finite action space, H is the horizon length, r = {rh : S ×A → [0, 1]}Hh=1 is
the collection of reward functions, and P = {Ph}Hh=1 is an uncertainty set of transition kernels. At
step h, the agent is at state sh and takes an action ah, receives the reward rh(sh, ah), and is transited
to the next state sh+1 following an arbitrary transition kernel Ph(·|sh, ah) ∈ Ph.

We consider the standard (s, a)-rectangular uncertainty set with divergence ball-structure (Wiesemann
et al., 2013). Specifically, there is a nominal transition kernel P ⋆ = {P ⋆

h}Hh=1, where each P ⋆
h :

S ×A → ∆(S)1. The uncertainty set, centered around the nominal transition kernel, is defined as
P = Uσ(P ⋆) =

⊗
(h,s,a)∈[H]×S×A Uσ

h (s, a), and Uσ
h (s, a) ≜

{
P ∈ ∆(S) : D(P, P ⋆

h (·|s, a)) ≤
σ
}

, containing all the transition kernels that differ from P ⋆ up to some uncertainty level σ ≥ 0,
under some probability divergence functions (Iyengar, 2005; Panaganti & Kalathil, 2022; Yang et al.,
2022). Specifically, in this paper, we mainly consider uncertainty sets specified by total-variation
(TV) (Sason & Verdú, 2016), as defined below, and refer to the RMDP defined as an TV-RMDP.
Definition 1 (TV-Divergence Uncertainty Set). For each (s, a) pair, the uncertainty set is defined as:

Uσ
h (s, a) ≜

{
P ∈ ∆(S) : DTV

(
P, P ⋆

h (·|s, a)
)
≤ σ

}
, (1)

1∆(·) denotes the probability simplex over the space.
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where for p, q ∈ ∆(S), DTV

(
p, q
)
= 1

2

∑
s′∈S
|p(s′)− q(s′)| is the TV-divergence.

3.2 POLICY AND ROBUST VALUE FUNCTION

The agent’s strategy of taking actions is captured by a Markov policy π := {πh}Hh=1, with πh : S →
∆(A) for each step h ∈ [H], where πh(·|s) is the probability of taking actions at the state s in step h.
In RMDPs, the performance of a policy is captured by the worst-case performance, defined as the
robust value functions. Specifically, given any policy π and for each step h ∈ [H], the robust value
function and the robust state-action value function are defined as the expected accumulative reward
under the worst possible transition kernel within the uncertainty set:

V π,σ
h (s) ≜ inf

P∈Uσ(s,a)
Eπ,P

[ H∑
t=h

rt(st, at)
∣∣∣sh = s

]
, (2)

Qπ,σ
h (s, a) ≜ inf

P∈Uσ(s,a)
Eπ,P

[ H∑
t=h

rt(st, at)
∣∣∣sh = s, ah = a

]
,

where the expectation is taken with respect to the state-action trajectories induced by policy π under
the transition P .

The goal of DR-RL is to find the optimal robust policy π⋆ := {π⋆
h} that maximizes the robust value

function, for some initial state s1:

π⋆ ≜ argmax
π∈Π

V π,σ
1 (s1), (3)

where Π is the set of policies. Such an optimal policy exists and can be obtained as a deterministic
policy Iyengar (2005); Blanchet et al. (2023). Moreover, the optimal robust value functions (denoted
by Q⋆,σ

h , V ⋆,σ
h ), which are the corresponding robust value functions of the optimal policy π⋆, are

shown to be the unique solution to the robust Bellman equations:

Q⋆,σ
h (s, a) = rh(s, a) + EUσ

h (s,a)

[
V ⋆,σ
h+1

]
, V ⋆,σ

h (s) = max
a∈A

Q⋆,σ
h (s, a), (4)

where EUσ
h (s,a)

[
V ⋆,σ
h+1

]
≜ infPh∈Uσ

h (s,a) Es′∼Ph(·|s,a)
[
V ⋆,σ
h+1(s

′)
]
.

On the other hand, for any policy π, the corresponding robust value functions also satisfy the following
robust Bellman equation for π ((Blanchet et al., 2023, Proposition 2.3)):

Qπ,σ
h (s, a) = rh(s, a) + EUσ

h (s,a)

[
V π,σ
h+1

]
, V π,σ

h (s) = Ea∼πh(·|s) [Q
π,σ
h (s, a)] . (5)

3.3 ONLINE DISTRIBUTIONALLY ROBUST RL

In this work, we study distributionally robust RL in an online setting, where the agent’s goal is to
learn the robust-optimal policy π⋆ defined in eq. 3 by interacting with the nominal environment P ⋆

over K ∈ N episodes. At the start of episode k, the agent observes the initial state sk1 , selects a policy
πk based on its history, executes πk in P ⋆ to collect a trajectory, and then updates its policy for the
next episode. In the online setting, agents cannot freely explore, but instead need to minimize the risk
of consequences (under the worst-case) during learning. Hence, the goal to minimize the cumulative
robust regret over K episodes, defined as

Regret(K) ≜
K∑

k=1

[
V ⋆,σ
1 (sk1)− V

πk,σ
1 (sk1)

]
. (6)

Note that this robust regret extends the regret in standard MDP (Auer et al., 2008) by measuring the
cumulative robust value gap between the optimal policy π⋆ and the learner’s policies {πk}Kk=1.

We also evaluate performance through sample complexity, defined as the minimum number of samples
T = KH needed to learn an ε-optimal robust policy π̂ that satisfies

V ⋆,σ
1 (s1)− V π̂,σ

1 (s1) ≤ ε. (7)
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4 ROBUST BELLMAN OPERATOR WITH FUNCTION APPROXIMATION

In this section, we highlight the challenges of online RL and give a step-by-step approach to overcome
these challenges.

Functional approximation. When the state–action space is large, learning robust policies from
interaction alone is computationally challenging. To address this, we adopt the function approximation
technique, where we use a general function class F = {Fh}Hh=1 where Fh contains some functions
f : S × A → [0, H], to approximate the robust value function Q⋆,σ

h . This function class can be
a parametric class with low-dimension parameters, e.g., neural network, to significantly reduce
the computation and improve sample efficiency. To ensure effective learning with these function
classes, prior work has identified structural conditions that they must satisfy (Russo & Van Roy,
2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b; Jin et al., 2021; Panaganti et al., 2022).
These conditions regulate how the functional class F interacts with the RMDP dynamics. The most
commonly used assumptions are the representation conditions, which require that F is expressive
enough to capture the robust value functions of interest. More specifically, the optimal robust
Q-function Q⋆,σ ∈ F (known as realizability) and closure under the robust Bellman operator, namely
T σ
h Fh+1 ⊆ Fh (known as completeness). Following standard studies of function approximation

in RL (Jin et al., 2021; Xie et al., 2022; Panaganti et al., 2022; Wang et al., 2019), we adopt the
following completeness assumption.
Assumption 1 (Completeness). For all h ∈ [H], we have T σ

h fh+1 ∈ Fh for all fh+1 ∈ Fh+1.

Per Assumption 1, F is closed under the robust Bellman operator T σ. Note that, different from
standard function approximation RL studies, we do not assume the realizability (Q⋆,σ ∈ F). We
highlight that realizability may be restricted in RMDPs, for instance, when F is a linear function
class, since the optimal robust value function may not be linear, additional assumptions like linear
RMDPs are needed to ensure realizability (Ma et al., 2022; Liu & Xu, 2024b;a; Liu et al., 2024;
Wang et al., 2024a; Ma et al., 2022).

Support shifting issue. In RMDPs with a TV-divergence uncertainty set, we face a unique support
shifting issue. When the worst-case transition kernel Pω and the nominal kernel P ⋆ have different
support, states that will be visited under the worst-case may never be visited under the nominal kernel,
thus the agent cannot get samples from these states, resulting in an information bottleneck. Notably,
the sample complexity of RMDPs with this issue can be exponentially large (Lu et al., 2024). To
overcome this challenge, we follow prior work and adopt a standard fail-states assumption (Lu et al.,
2024; Liu et al., 2024; Liu & Xu, 2024b; Panaganti et al., 2022) to enable sample-efficient robust RL
through interactive data collection.
Assumption 2 (Failure States). For a TV-RMDP, there exists a set of failure states SF ⊆ S, such
that rh(s, a) = 0, and P ⋆

h (s
′|s, a) = 0, ∀a ∈ A,∀s ∈ SF ,∀s′ /∈ SF .

Note that this issue does not exist in offline or generative model settings, as the coverage assumption
directly ensures the inclusion of the worst-case kernel support.

To better understand the necessity of this assumption, we introduce an intrinsic metric based on
visitation measures in both the nominal and the worst-case environments as follows.
Definition 2 (Visitation measure (He et al., 2025)). Under TV-RMDP, for any policy π, we denote
the worst transition kernel by Pω,π

h (·|s, a) ≜ argminPh∈Uσ
h (s,a) EPh

[V π,σ
h+1](s, a). Furthermore, at

step h ∈ [H], we define dπh(·) as the visitation measure on S induced by the policy π under Pω,π,
and µπ

h(·) as the visitation measure on S induced by the policy π under P ⋆.

Inspired by offline learning (Agarwal et al., 2019; Chen & Jiang, 2019; Wang et al., 2020a; Xie et al.,
2021), we further introduce a term to capture the ratio of the visitation measure between the nominal
and worst-transition kernels.
Definition 3 (Robust Coverability). Under Definition 2, we define

Crcov := sup
π∈Π,h∈[H]

∥∥∥∥ dπhµπ
h

∥∥∥∥
∞
,

as the maximum ratio between the worst-case visitation measure and the nominal visitation measure.
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When Crcov =∞, there exists some state that is visited under the worst-case kernel, but not under the
nominal kernel. Thus no data can be obtained for that state, resulting in the support shifting issue. As
illustrated in (He et al., 2025), online learning algorithm is efficient only if the coverability measure
Crcov <∞, which, however, does not generally hold in TV cases. However, we show that the failure
state Assumption 2 guarantees the finiteness of the robust coverability, thereby providing a necessary
condition for efficient online learning algorithms.

Empirical robust Bellman operator and functional optimization. Given the fact that the robust
value function is the fixed point of the robust Bellman operator in equation 5, finding the optimal
robust policy can be reduced to finding the fixed point of the robust Bellman operator. Since the
operator involves an optimization over the S-dimensional uncertainty set which can be inefficient, it
is shown that the worst-case operator EUσ

h (s,a)[·] has an equivalent duality:

Proposition 1. Consider an TV-RMDP with TV-uncertainty set Uσ(P ⋆) as specified in eq. 1. Let
Th denote the Bellman operator for layer h. Then, for any f : S ×A → [0, H], the robust Bellman
operator T can be equivalently written as

[T σf ](s, a) = r(s, a)− inf
η∈[0,2H/σ]

{
Es′∈P⋆

h (s,a)

[(
η −max

a′
f(s′, a′)

)
+

]
+

(
σ

2
− 1

)
η

}
. (8)

Note that the inner optimization problem in eq. 8 is convex in η and only depends on the nominal
kernel, hence it can be solved efficiently and empirically. Thus one straightforward approach is to
empirically estimate the operator based on this duality and find the fixed point. In fact, all tabular
approaches follow this direction. However, this approach becomes infeasible under the large-scale
problem with function approximation.

The main difficulty is that Eq. 8 is defined over all (s, a) pairs, with each requiring a separate
optimization. Solving all of these to estimate the operator is clearly infeasible, even for moderately
sized state–action spaces. Another challenge is that, even if we want to empirically solve the
optimization in eq. 8 for some (s, a)-pair, the direct plug-in estimator will be biased. Specifically,
E[inf{EP̂ [·]}] ̸= inf{EP [·]}, due to the non-linearity. To construct an unbiased estimator, techniques
like Multi-level Monte-Carlo are introduced (Liu et al., 2022; Wang et al., 2023c), which are also
inefficient for large-scale problems.

To address these issues and construct an efficient empirical solution, inspired by (Panaganti et al.,
2022), we reformulate the state-action wise optimization as a functional optimization problem as
follows. We consider the probability space (S × A,Σ(S × A), µ) and let L1(µ) be the set of all
absolutely integrable functions defined on this space.2. Under Assumption 2, for any given function
f : S ×A → [0, H], we define a dual loss function Dualloss(·; f) based on the duality in eq. 8 as

Dualloss(g; f) = E(s,a)∼µ

[
Es′∼P⋆

s,a
[(g(s, a)−max

a′
f(s′, a′))+]− (1− σ)g(s, a)

]
,∀g ∈ L1. (9)

In the following lemma, we show that the scalar optimization over η for each (s, a) pair in eq. 8 can
be replaced by a single functional optimization w.r.t. the loss function Dualloss.
Lemma 1 (Equivalence Between Pointwise and Functional Minimization of the Dual Loss (Panaganti
et al., 2022)). Let Dualloss be the dual loss function defined in eq. 9. Then, for any function
f : S ×A → [0, H], we have that

inf
g∈L1(µ)

Dualloss(g; f) = E(s,a)∼µ

[
inf

η∈[0,2H/σ]

{
Es′∼P⋆

s,a

[(
η −max

a′
f(s′, a′)

)
+

]
− (1− σ)η

}]
.

On the right-hand side of the equation in Lemma 1, the minimization over η is performed pointwise
for each (s, a) and minimization is inside the expectation E(s,a)∼µ[·], whereas, on the left-hand side,
there is a single minimization over a function g ∈ L1 taken outside the expectation. The equivalence
follows from the interchange rule for integral functionals by following the result of (Rockafellar &
Wets, 1998, Theorem 14.60). Moreover, we consider L1 as a decomposable space, which allows us to
assemble pointwise minimizers into a measurable, integrable selector g that attains the same objective
value, thereby justifying the move from pointwise to functional optimization. This interchange is
standard in distributionally robust optimization (Shapiro, 2017; Duchi & Namkoong, 2021).

2In other words, L1(µ) is the set of all functions g : S ×A → [0, 2H/σ] ⊂ R, such that ∥g∥1,µ is finite.
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A related result was first derived in (Panaganti et al., 2022, Lemma 1) for an offline setting under a
global coverage assumption. In contrast, our algorithm sets this distribution to be the visitation
measure induced by updated policies during interactions, making it inherently non-stationary.
Whereas the offline case assumes a fixed dataset distribution, our setting introduces a key analytical
challenge: handling this time-varying equivalence.

We then construct our empirical operator based on this functional optimization. Given any dataset D,
we define the empirical dual loss function D̂ualloss corresponding to the true dual loss Dualloss as

D̂ualloss(g; f) =
∑

(s,a,s′)∼D

(
(g(s, a)−max

a′
f(s′, a′))+ − (1− σ)g(s, a

)
, (10)

which is an empirical estimation of Dualloss(g; f). For a fixed f , we can find an approximately
optimal dual function by minimizing the empirical dual loss, i.e., infg∈L1 D̂ualloss(g; f). Note that
the solution to this empirical loss can be biased (due to the non-linearity), however, we will show
later that this bias and the overall error can be controlled.

Instead of optimizing over L1, we follow (Panaganti et al., 2022) and use another function class
G = {g : S ×A → [0, 2H/σ]} to approximate the dual variable functions. Thus, in the optimization
problem, instead of taking the infimum over L1, we will take the infimum over all G. For this to
be meaningful, G should have sufficient representation power. In particular, the result in Lemma 1
should hold approximately even if we replace the infimum over L1 with infimum over G. We thus
further make the following assumption on realizability of G:
Assumption 3. (Panaganti et al., 2022) For all f ∈ F and any π, there exists a uniform constant
ξdual such that infg∈G Dualloss(g; f)− infg∈L1(µπ) Dualloss(g; f) ≤ ξdual.

With this assumption, we can then find an approximate value of T σ(f) by first minimizing the
empirical loss D̂ualloss(g; f) over G:

ĝf = argmin
g∈G

D̂ualloss(g; f), (11)

and applying the operator T σ
ĝf

to f , where

(T σ
g f)(s, a) ≜ r(s, a)− Es′∼P⋆

s,a
[(g(s, a)−max

a′
f(s′, a′))+]

)
− (1− σ)g(s, a). (12)

We then show that our construct results in a small approximation error.
Lemma 2. For a policy π, let µπ

h(·) be the visitation measure on S × A induced by the policy π
under P ⋆. Then, given a dataset D collected by π, with probability at least 1− δ, it holds that

sup
f∈F
∥T σf − T σ

ĝf
f∥1,µπ = O

(
Hmin{H, 1/σ}

√
2 log(8|G||F|/δ)

|D|
+ ξdual

)
. (13)

Our result hence implies that the error of our empirical functional optimization can be controlled.
Moreover, the error bound we obtained is w.r.t. ∥ · ∥1,µπ -norm, instead of state-action pair wise,
which will later be used to construct our global error quantification term in our algorithm design.

5 ROBUST FITTING LEARNING ALGORITHM

In this section, we utilize our previous constructions and propose our Robust Fitted Learning (RFL)
algorithm in Algorithm 1.

Our algorithm follows the standard fitting learning structure. In each step h, we will construct a
confidence set F (k) (Line 9) based on the fitted error under the robust Bellman operator to ensure the
inclusion of Q⋆,σ ∈ F (k). As discussed, we utilize our functional optimization based loss function
and the error bound in Lemma 2 to construct the set. Namely, given a function f , we first solve the
dual-variable approximation through the empirical functional optimization loss as

ĝf ≜ argmin
g∈G

∑
(s,a,s′)∈D(k)

h

(
g(s, a)−max

a′∈A
f(s′, a′)

)
+
− (1− σ)g(s, a). (14)
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Algorithm 1: Robust Fitted Learning with TV-Divergence Uncertainty Set (RFL-TV)

1: Input: Function class F , Dual Function class G, confidence width β > 0, uncertainty level
σ > 0.

2: Initialize: F (0) ← F , D(0)
h ← ∅ ∀h ∈ [H]

3: for episode k = 1, 2, . . . ,K do
4: Set f (k) ← argmaxf∈F(k−1) f(s1, π

f
1 (s1)) and π(k) ← πf(k)

5: Execute π(k) and obtain a trajectory (s
(k)
1 , a

(k)
1 , r

(k)
1 ), . . . , (s

(k)
H , a

(k)
H , r

(k)
H )

6: Update dataset: D(k)
h ← D(k−1)

h ∪ {(s(k)h , a
(k)
h , s

(k)
h+1)} ∀h ∈ [H]

7: F (k)
H ← {0}

8: for h = H − 1, ..., 1 do
9: Update the confidence set, with notations defined in equation 14 and equation 15:

F (k)
h ←

{
f ∈ Fh : L

(k)
h (fh, fh+1, ĝfh+1

)− min
f ′
h∈Fh

L
(k)
h (f ′h, fh+1, ĝfh+1

) ≤ β,∀fh+1 ∈ F (k)
h+1

}
10: end for
11: end for
12: Output: π̄ = unif(π(1:K)). For PAC guarantee only.

We further capture the empirical robust Bellman error through our functional optimization as:

L
(k)
h (f ′, f, g) (15)

≜
∑

(s,a,r,s′)∈D(k)
h

{
f ′(s, a)− r −

(
g(s, a)−max

a′∈A
f(s′, a′)

)
+
+ (1− σ)g(s, a)

}2

.

Notably, due to the large-scale of the problem, we construct the confidence set of function classes
in a global fashion that entails optimizing over fh for all steps h ∈ [H] simultaneously (Zanette
et al., 2020), instead of constructing error qualifications for each state-action pair as in tabular UCB
approaches. More specifically, the confidence set is constructed by considering all the functions that
not only minimize the squared robust Bellman error on the collected transition data D(k)

h in terms of
the dual variable function, but also any function whose loss is only slightly larger than the optimal
loss over the functional class Fh. We will later design an error quantification error β, to ensure that
Q⋆,σ ∈ F (k) with high probability. With the function confidence set which contains Q⋆,σ, we then
adopt the optimism principle and choose π(k) = πf(k)

based on the robust value function f (k) ∈ F (k)

with the most optimistic estimate f1(s1, π
(k)
1 (s1)) for the total reward. This will ensure the optimism

of our algorithm, and balance the exploration and exploitation.

We highlight that our dataset D(k)
h is collected under different policies over episodes, thus there does

not exist any single policy π such that D(k)
h ∼ µπ. Hence the error quantification we derived in

Lemma 2 cannot be directly applied in our analysis. However, as we will show in the next section,
we can derive an error quantification and the associated analysis utilizing the robust coverability term
defined in Definition 3. Note that this issue does not exist in the offline robust RL setting (Panaganti
et al., 2022), as the offline dataset therein is generated by a fixed distribution, whereas our dataset is
non-stationary and time-varying, thus the offline analysis is not applicable in our setting.

6 THEORETICAL GUARANTEES

We then develop the theoretical guarantees of our algorithm.

Theorem 1. For any δ ∈ (0, 1], we set β = O
((
Hmin{H, 1/σ}

)
log
(

KH |F||G|
δ

))
in RFL-TV.

Then under Assumption 1, 2, and 3, there exists an absolute constant c such that with probability at

8
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least 1− δ, it holds that3

Regret(K) ≤ O
(
H

√
Crcov ·Hmin{H, 1/σ} log

(
KH |F||G|

δ

)
K logK + Crcovξdual

)
. (16)

As mentioned, analysis of offline robust RL with function approximation (Panaganti et al., 2022) relies
on a static distribution which enjoys a global concentratability that covers all distributions induced by
all policies and kernels in the uncertainty set. Such an assumption is significantly strong and enables
the analysis of the functional error and sample complexity based on this single distribution. However,
in our online setting, we do not have such a dataset and we need to explore the environment while
maintaining a low regret. We also need to tackle the updated data distribution µπk over episodes and
the mismatch between the worst-case and nominal kernels, which invalidates the global coverage
assumption and requires an episode-specific analysis. To address these issues, we utilize the robust
coverability Crcov as a uniform bound of the distribution ratio over episodes, and use it to capture the
functional optimization errors and regret bound. Notably, our robust coverability is strictly weaker
than the global concentratability in (Panaganti et al., 2022), and our analysis reveals that such a local
concentratability quantity is sufficient for sample-efficient exploration.

As an immediate corollary, we obtain the sample complexity for learning an ε-optimal policy with
RFL-TV by applying a standard online-to-batch conversion (Cesa-Bianchi et al., 2001).
Corollary 1 (Sample Complexity). Under the same setup in Theorem 1, with probability at least
1− δ, the sample-complexity of RFL-TV to obtain an ε-optimal robust policy is

T = KH = O
(H2 min{H,σ−1}Crcov log

(
T |F||G|

δ

)
log
(

T
H

)
ε2

+
Crcovξdual

ε

)
(17)

Our result implies that, RFL-TV finds an ε-optimal robust policy within polynomial interactive
samples in H and ε−1, with logarithmic dependence on the functional class cardinality. The
dependence of these terms match or improve the ones under the tabular setting (He et al., 2025), and
hence our algorithm is sample efficient. Moreover, the result does not depend on S,A, implying
enhanced scalability to large-scale problems. We note that an algorithm for online DR-RL without
function approximation was recently proposed in (Shazman et al., 2025). However, its complexity
scales as H3, quadratically in σ, and linearly in the action number A. In contrast, our analysis
accommodates general function classes, replacing the bound from quadratic to linear dependence
on σ via min{H, 1/σ}, and shifts the dependence from action space to the structural term Crcov,
yielding a better bound and enhanced scalability to large problems.
Remark 1. We developed our results in terms of robust coverability, a notion also used and studied
in non-robust learning (Xie et al., 2022). There is also a line of work in online RL that employs
complexity measures such as Bellman rank (Jiang et al., 2017; Du et al., 2021) and BE dimension
(Jin et al., 2021), and we expect our analysis could similarly be adapted to these notions. However,
as in non-robust RL, robust coverability measure provides a more faithful and often strictly weaker
condition for sample efficiency than the BE dimension or Bellman/Bilinear rank. For example, there
exist MDPs with Ccov = O(1) but large BE dimension or Bellman/Bilinear ranks (Xie et al., 2022).
Hence, we adopt robust coverability as our complexity measure to obtain a tighter regret bound.

7 CONCLUSION

In this work, we introduced RFL-TV, an online DR-RL algorithm with general function approximation
under TV-divergence uncertainty set. The algorithm implements a fitted robust Bellman update via a
functional optimization and replaces state-action bonuses with a global uncertainty quantifier that
more effectively guides exploration. We also identified robust coverability Crocv as the structural
condition that governs learnability, yielding sharp, scalable sample-efficiency guarantees. We further
developed a regret bound of our algorithm that does not scale with problem scales, implying the
efficiency and scalability of our method. Our algorithm hence stands for the first online DR-RL
algorithm for large scale problems, with minimum structural assumptions. A future direction will be
to extend our functional optimization and algorithm design to other general f -divergence (Yang et al.,
2022) uncertainty sets.

3We assume for simplicity that |F|, |G| < ∞, but our result can be directly extended to the general infinite
case with a standard finite coverage technique (Xie et al., 2022; Panaganti et al., 2022).
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A USE OF LARGE LANGUAGE MODELS

We used ChatGPT strictly as a general-purpose assist tool for typesetting and language polishing. In
particular, it helped with (i) grammar, style, and readability improvements, and (ii) LaTeX formatting
tasks such as managing algorithm placement, cleaning BibTEX entries and citation styles, and
resolving compile issues (e.g., Type-3 font warnings and package conflicts).

All ideas, derivations, and final claims were developed, verified, and validated by the authors. The
authors take full responsibility for the content of this paper.

B RELATED WORKS: NON-ROBUST RL WITH FUNCTIONAL APPROXIMATION

Function approximation has been widely studied in non-robust RL. While extensive studies are
developed for offline RL with general function approximation, e.g., (Zhan et al., 2022; Jiang & Xie,
2024; Wang et al., 2020a), we mainly discuss online RL here, which requires the agent to explore
while learning actively.

A foundational direction is the development of complexity measures that capture when online RL
with function approximation is tractable. The Eluder dimension (Li et al., 2022a; Russo & Van Roy,
2013) provides a measure of the sequential complexity of a function class. Online RL algorithms have
been developed that use optimism based on confidence sets constructed around the true value function,
and the size of these confidence sets and the magnitude of the exploration bonus are constructed
based on the Eluder dimension (Wang et al., 2020b).

Since the Eluder dimension merely captures the complexity of the function class in isolation, other
measures have been proposed that capture the interaction betweenF and the MDP dynamics. Bellman
rank (Jiang et al., 2017) and Witness rank (Sun et al., 2019) are later then developed to capture these
interactions, and are later unified by the Bellman–Eluder dimension Jin et al. (2021). It directly
measures the complexity relevant to value-based RL, i.e., the difficulty of learning to minimize
Bellman errors.

More recently, attention has turned to coverage conditions as the key lens for understanding
learnability in online RL. Xie et al. (2022) introduced the notion of coverability, which provides a
sharp characterization of when exploration with function approximation is sample-efficient. Their
results demonstrate that coverability is both necessary and sufficient, thereby subsuming earlier
assumptions such as concentrability or bounded Bellman rank. Complementary hardness results
(Foster et al., 2021; Du et al., 2021) show that, without such structural or coverage conditions, online
RL in rich-observation environments may require exponentially many samples, highlighting the limits
of tractability.

Our work situates itself in this online regime, explicitly addressing exploration rather than assuming
exploratory data. However, the non-robust guarantees above do not transfer directly to our robust
setting. Robust RL replaces a single nominal kernel with an uncertainty set and a worst-case Bellman
operator, which breaks several conveniences used by non-robust analyses: (i) Bellman errors are
non-linear and invalidates the usual variance-style error accounting: In non-robust RL, the kernel is
fixed so the Bellman error can be captured through standard concentration inequalities; However, in
robust case, the error propagation requires “functional transfer” between value functions and the dual
variables to be quantified; (ii) Confidence sets and bonuses must control both sampling noise and
adversarial model shift induced by the worst-case kernel: In non-robust RL, the confidence set only
considers data limitations, whereas we additionally consider the uncertainties from the uncertainty
set; (iii) Since the mismatch between the nominal and the worst-case kernels, our analysis requires
additional structural notions (e.g., coverability) to capture such mismatches. We thus develop new
concentration arguments that commute with the supremum over models, and new pessimism/optimism
couplings to control duality gaps. In short, our robust online RL introduces adversarial model coupling
and functional transfer effects that require genuinely different analysis and algorithmic design, which
are not directly achievable from the non-robust studies.
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C PROOF OF THEOREM 1

Proof. We will now prove Theorem 1. To prove this, we first highlight the role of robust coverability,
as defined in Definition 3, in limiting the complexity of exploration.

• Equivalence between robust coverability and cumulative visitation. A key idea
underlying the proof of Theorem 1 is the equivalence between robust coverability and
a quantity we term cumulative visitation under the worst-transition kernel Pω as defined in
Definition 2. We define the cumulative visitation as given below:

Definition 4 (Cumulative Visitation). We define the cumulative visitation at step h as

Ccv
h :=

∑
(s,a)∈S×A

sup
π∈Π

dπ,P
ω

h (s, a). (18)

The cumulative visitation Ccv
h reflects the variation in visitation probabilities under the

worst-kernel for policies in the class Π. More specifically, it captures the total worst-case
probability mass that policies in Π can allocate across the state-action space, under all
admissible transition kernels. When this quantity is low, it indicates that policies in Π largely
overlap in the regions they visit, limiting exploration complexity. Conversely, a high value
implies that policies can spread mass across disjoint state-action pairs, making exploration
harder. By Lemma T.3, we have

Crcov = max
h∈[H]

Ccv
h . (19)

• Relate Regret to Robust Average Bellman Error: According to Assumption 1, we can
guarantee f (k) is optimistic. Based on this optimistic algorithm, we will now relate the
regret to the robust average Bellman error under the learner’s sequence of policies.

For any Markov kernel Q = {Qh(· | s, a)}Hh=1 ∈ P and by the definition of the occupancy

measure of (sh, ah) as dπ
f ,Q

h induced by πf and Q, we define the robust average Bellman
error at level h by

εσTV (f, π
f , h;Q) := E

(sh,ah)∼dπf ,Q
h

[
fh(sh, ah)− [T σ

h fh+1](sh, ah)

]
. (20)

By applying Lemma K.1 and by denoting dπ
f(k)

,Pω

:= d(k),P
ω

, we can relate regret to the
robust average Bellman error as

Regret(K) ≤
K∑

k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
,

=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)−

[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)

+

[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
,

=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)−

[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)

]

+

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[ [
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
= I + II, (21)
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where we denote

I :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
f
(k)
h (sh, ah)−

[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)

]
. (22)

II :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[ [
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(sh, ah)− [T σ

h f
(k)
h+1](sh, ah)

]
. (23)

• Bound of II via Robust Coverability: To bound II, let us define ∆k,h as

∆k,h(s, a) :=
[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(s, a)−

[
T σ
h f

(k)
h+1

]
(s, a).

Then, II can be written as

II :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[∆k,h(sh, ah)] . (24)

To bound the term II, we follow the following steps:

Step 1: Density ratio control. By Holder’s inequality and using hte fact that E[X] ≤ E[|X|],
for any µπ

h ∈ ∆(S ×A), we get

E
d
(k),Pω

h

[∆k,h] ≤
∥∥∥∥d

(k),Pω

h

µπ
h

∥∥∥∥
∞
∥∆k,h∥1,µπ

h
, (25)

where ∥ϕ∥1,µπ :=
∑

s,a µ
π(s, a)|ϕ(s, a)|. According to Definition 3, we have∥∥∥∥d

(k),Pω

h

µπ
h

∥∥∥∥
∞
≤ Crcov. (26)

Step 2: Apply Lemma K.3. By Lemma K.3, applied with µπ
h and f = f

(k)
h+1 and by the

choice of ξdual as ξdual/KH , and using a union bound over (k, h), we obtain

∥∆k,h∥1,µπ
h
= O

H
σ

√√√√2 log
(
8|G||F|KH/δ

)
|D(k)

h |
+
ξdual
KH

 . (27)

Step 3: Combine bounds. Hence, by combining eq. 25, eq. 26 and eq. 27, we get

E
d
(k),Pω

h

[∆k,h] = O

Crcov
H

σ

√√√√2 log
(
8|G||F|KH/δ

)
|D(k)

h |
+ Crcov

ξdual
KH

 . (28)

Step 4: Summing over k, h ∈ [K]× [H]. Summing the bound in eq. 28 over k ∈ [K] and
h ∈ [H] yields the desired result:

II = O

Crcov
H

σ

√
2 log

(
8|G||F|KH

δ

) K∑
k=1

H∑
h=1

1√
|D(k)

h |
+ Crcovξdual

 . (29)

Step 5: Final Bound of II. By the update rule of RFL-TV, we have

D(k)
h ← D(k−1)

h ∪ {(s(k)h , a
(k)
h , s

(k)
h+1)} ∀h ∈ [H].

Therefore, in each episode k, exactly one sample appended to each step h in the dataset,
hence |D(k)

h | = |D
(0)
h |+ k = k.
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Since, f(k) = k−1/2 is decreasing on [1,∞) and f(1) = 1, the term
∑K

k=1

∑H
h=1

1√
|D(k)

h |
in eq. 29 can be bounded by the following intergral, as

K∑
k=1

H∑
h=1

1√
|D(k)

h |
=

K∑
k=1

H∑
h=1

1√
k
≤ H

(
1 +

∫ K

1

dx√
x

)
= 2H

√
K −H ≤ 2H

√
K.

(30)

Applying eq. 30 in eq. 29, we get the final bound as

II = O

(
Crcov

H2

σ

√
2K log

(
8|G||F|KH

δ

)
+ Crcovξdual

)
. (31)

• Bound of I via Robust Coverability: Before we bound I, we first define the robust Bellman
error w.r.t. T σ

g f as

δ
(k)
h (·, ·) := f

(k)
h (·, ·)−

[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(·, ·). (32)

Then, I can be written as

I :=

K∑
k=1

H∑
h=1

E
(sh,ah)∼d

(k),Pω

h

[
δ
(k)
h (sh, ah)

]
. (33)

We denote the expected number of times of visiting (s, a) before episode k under the

worst-transition kernel Pω as d̃(k)h ≡ dπf(k)

h , and is defined as

d̃
(k)
h (s, a) :=

k−1∑
i=1

d
(i),Pω

h (s, a). (34)

That is, d̃(k)h is the unnormalized average of all state visitations encountered prior to episode
k, and µπ

h is the visitation measure under nominal-kernel P ⋆ for step h. Throughout the
proof, we perform a slight abuse of notation and write

E
d̃
(k)
h

[f ] :=

k−1∑
i=1

E
d
(i),Pω

h

[f ] for any function f : X ×A → R.

Step 1: Robust optimism. Under the Assumption 1 and the construction of the confidence
set F (k), the following Lemma K.2, will guarantee that with probability at least 1− δ, for
all k ∈ [K]:

Q⋆,σ ∈ F (k) and
∑
(s,a)

d̃
(k)
h (s, a)

(
δ
(k)
h (s, a)

)2 ≤ O(β). (35)

Step 1: Conservative Burn-in Phase Construction. We introduce the notion of a “burn-in”
phase for each state–action pair (s, a) ∈ S ×A by defining

τh(s, a) = min
{
t
∣∣ d̃(t)h (s, a) ≥ Crcov · µπ

h(s, a)
}
, (36)

which captures the earliest time at which (s, a) has been explored sufficiently; we refer to
k < τh(s, a) as the burn-in phase for (s, a). In other words, τh(s, a) guarantees that no
matter which kernel in the uncertainty set we are facing, the state–action pair (s, a) has
received enough coverage.

Going forward, let h ∈ [H] be fixed. We decompose regret into contributions from the
burn-in phase for each state–action pair, and contributions from pairs which have been
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explored sufficiently and reached a stable phase “stable phase”:

I =

K∑
k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k < τh(s, a)}

]
︸ ︷︷ ︸

conservative burn-in phase

(37)

+

K∑
k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

]
︸ ︷︷ ︸

stable phase

. (38)

We will not show that every state–action pair leaves the conservative burn-in phase. Instead,
we use robust coverability to argue that the contribution from pairs that have not left this
phase is small on average. In particular, we use that |δ(k)h | ≤ [0, c3H/σ] to bound the factor,
as follows

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k < τh(s, a)}

]
≤ c3

H

σ

∑
s,a

d
(k),Pω

h (s, a)I{k < τh(s, a)}.

(39)

Plugging eq. 39 in the conservative burn-in phase term of eq. 37, we get

K∑
k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k < τh(s, a)}

]
(a)

≤ c3
H

σ

K∑
k=1

H∑
h=1

d
(k),Pω

h (s, a)I{k < τh(s, a)}

= c3
H

σ

H∑
h=1

∑
s,a

∑
k<τh(s,a)

d
(k),Pω

h (s, a)

(b)
= c3

H

σ

H∑
h=1

∑
s,a

d̃
τh(s,a)
h (s, a)

= c3
H

σ

H∑
h=1

∑
s,a

{
d̃
τh(s,a)−1
h (s, a) + d

τh(s,a)−1,Pω

h (s, a)

}
(c)

≤ c3
H

σ

H∑
h=1

∑
s,a

{
2Crcov µ

π
h(s, a)

}
(d)
= c3

H2

σ
Crcov. (40)

The ineq. (a) is due to the fact supP
∑

x gx(P ) ≤
∑

x supP gx(P ); the equality (b) is
by the definition of d̃ τh(s,a)

h (s, a) by eq. 34; ineq. (c) is due to eq. 36 and by the fact
d
τh(s,a)−1,Pω

h (s, a) ≤ Crcov µ
π
h(s, a).
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For the stable phase, we apply change-of-measure as follows:
K∑

k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

]
=

K∑
k=1

H∑
h=1

∑
s,a

d
(k),Pω

h (s, a)
( d̃(k)h (s, a)

d̃
(k)
h (s, a)

)1/2
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

≤
K∑

k=1

H∑
h=1

∑
s,a

d
(k),Pω

h (s, a)
( d̃(k)h (s, a)

d̃
(k)
h (s, a)

)1/2
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

≤
H∑

h=1

(
K∑

k=1

∑
s,a

(
I{t ≥ τh(x, a)}, d(k),P

ω

h (s, a)
)2

d̃
(k)
h (s, a)︸ ︷︷ ︸

(A): extrapolation error

)1/2( K∑
k=1

∑
s,a

d̃
(k)
h (s, a)

(
δ
(k)
h (s, a)

)2
︸ ︷︷ ︸

(B): in-sample squared Bellman error

)1/2

,

(41)

where the last inequality is Cauchy–Schwarz.

Using part (b) of Lemma K.2, we bound the in-sample error (B) by

(B) ≤ O(
√
βK). (42)

Bounding the extrapolation error using robust coverability. We control the
extrapolation error (A) via robust coverability. We use the following scalar variant of
the elliptic potential lemma of (Lattimore & Szepesvári, 2020) (proved in (Xie et al., 2022,
Lemma 4)).

We bound (A) on a per-state basis and invoke robust coverability (and the equivalence to
cumulative visitation) so that potentials from different (s, a) pairs aggregate well. From the
definition of τh in eq. 36, for all t ≥ τh(s, a) we have d̃(k)h (s, a) ≥ Crcovµ

π
h(s, a), which

implies d̃(k)h (s, a) ≥ 1
2

(
d̃
(k)
h (s, a) + Crcovµ

π
h(s, a)

)
. Thus,

(A) =

√√√√ K∑
k=1

∑
s,a

(
I{k ≥ τh(s, a)}d(k),P

ω

h (s, a)
)2

d̃
(k)
h (s, a)

≤

√√√√2

K∑
k=1

∑
s,a

d
(k),Pω

h (s, a) · d(k),P
ω

h (s, a)

d̃
(k)
h (s, a) + Crcov · µπ

h(s, a)

≤

√√√√2

K∑
k=1

∑
s,a

max
ℓ∈[K]

d
(l),Pω

h (s, a)
d
(k),Pω

h (s, a)

d̃
(k)
h (s, a) + Crcov · µπ

h(s, a)

≤

√√√√2

(
max

(s,a)∈S×A

K∑
k=1

d
(k),Pω

h (s, a)

d̃
(k)
h (s, a) + Crcov · µ⋆

h(s, a)

)(∑
s,a

max
l∈[K]

d
(l),Pω

h (s, a)

)
≤ O

(√
Crcov logK

)
, (43)

where the last line uses Lemma T.5 and Lemma T.3.

To conclude, substitute eq. 42 and eq. 43 into eq. 41 to obtain
K∑

k=1

H∑
h=1

E
(s,a)∼d

(k),Pω

h

[
δ
(k)
h (s, a) I{k ≥ τh(s, a)}

]
≤ O

(
H
√
Crcov · βK logK

)
. (44)

By applying eq. 40 and eq. 44 in eq. 37, we get

I ≤ O
(
H2

σ
Crcov +H

√
Crcov · βK logK

)
. (45)
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Therefore, by applying eq. 45 and eq. 31 in eq. 21, we get

Regret(K) ≤ O
(
H2

σ
Crcov +H

√
Crcov · βK logK + Crcov

H2

σ

√
2K log

(
8|G||F|KH

δ

)
+ Crcovξdual

)
.

This concludes the proof of Theorem 1.

C.1 KEY LEMMAS

Lemma K.1 (Robust Value function error decomposition). Consider an RMDP using the
TV-divergence uncertainty set as defined in eq. 1 where we define V f := E[f1(s1, πf

1 (s1))] and

V πf ,Q := Ea1:H∼πf ,sh+1∼Qh

[∑H
h=1 rh(sh, ah)

]
. Then, under Assumption 1 and Definition 2, we

define the robust average Bellman error εσTV (f, π
f , h;Pω) as given in eq. 20. Then, we can bound

the regret as given in eq. 6 as,

Regret(K) ≤
K∑

k=1

H∑
h=1

εσTV (f
(k), πf(k)

, h;Pω). (46)

Proof. Fix any kernel Q ∈ P . Let us denote ψf (s′) := maxa′∈A f(s
′, a′). By definition of T σ

h f in
eq. 8, we get

[T σ
h fh+1](s, a) = rh(s, a) + inf

P∈Uσ
h (s,a)

EP

[
ψf
h+1

]
≤ rh(s, a) + Es′∼Qh(·|s,a)[ψ

f
h+1(s

′)]. (47)

Thus, from eq. 47 we get

fh(s, a)− [T σ
h fh+1](s, a) ≥ fh(s, a)− rh(s, a)− Es′∼Qh

[ψf
h+1(s

′) ]. (48)

Taking expectation under dπ
f ,Q

h and summing over h gives
H∑

h=1

εσTV(f, π
f , h;Q) ≥

H∑
h=1

E
(sh,ah)∼dπf ,Q

h

[
fh(sh, ah)− rh(sh, ah)− EQh

[ψf
h+1]

]
. (49)

The right-hand side of eq. 49 follows the same proof-lines as in (Jiang et al., 2017, Lemma 1),
yielding

H∑
h=1

εσTV(f, π
f , h;Q) ≥ V f − V πf ,Q. (50)

Finally, if Q is a worst–case kernel for πf , i.e., Q ≡ Pω then for each (s, a, h),

Es′∼Pω
h (·|s,a)[ψ

f
h+1(s

′)] := Es′∼Qh(·|s,a)[ψ
f
h+1(s

′)] = inf
P∈Uh(s,a)

EP [ψ
f
h+1(s

′)],

so the inequality becomes equality. In this case,
H∑

h=1

εσTV(f, π
f , h;Q) = V f − V πf ,Pω

.

Now, under the worst-transition kernel Pω, we have V π(k),σ
1 (s1) = V π(k),Pω

1 (s1). Furthermore,
according to Assumption 1, we can guarantee that f (k) is optimistic in episode k. Using these fact,
we can say that V ⋆,σ

h (s) ≤ V f(k)

h (s). Therefore, we can write

Regret(K) =

K∑
k=1

V ⋆,σ
1 (s1)− V π(k),σ

1 (s1)

≤
K∑

k=1

V f(k)

1 (s1)− V π(k),Pω

1 (s1)

≤
K∑

k=1

H∑
h=1

εσTV(f
(k), πf(k)

, h;Pω) [By eq. 50].

This concludes the proof of Lemma K.1.
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Lemma K.2. Suppose Assumption 1 holds. Then if β > 0 is selected as in Theorem 1, then with
probability at least 1− δ, for all k ∈ [K], RFL-TV satisfies

(a) Q⋆,σ ∈ F (k).

(b)
∑
(s,a)

d̃
(k)
h (s, a)

(
δ
(t)
h (s, a)

)2 ≤ O(β).
Proof. The proof follows the same structure as the non-robust argument (Jin et al., 2021, Lemma
39 and 40) and (Xie et al., 2022, Lemma 15) (martingale concentration via Freedman’s inequality
plus a finite cover of the functional class), with two robust-specific ingredients: (i) the dual scalar
representation of the TV worst-case expectation and (ii) the use of the dual pointwise integrand as a
sample target. We derive the complete proof as follows.

☞ Proof of ineq. (b) To show ineq. (b), we will focus on the proof-lines of (Jin et al., 2021,
Lemma 39) and (Xie et al., 2022, Lemma 15 (2)). We first fix (k, h, f) tuple, where
an episode k we consider a function f (k) = {f (k)1 , . . . , f (k)H} ∈ F . Let us denote
ψk(s) := ψf

fk
h+1

(s) such that ψk(sh+1) := f
(k)
h+1(sh+1, π

(k)
h+1(sh+1)), and we assume

∥f∥∞, ∥ψf∥∞ ≤ H (this is the boundedness assumption used throughout). We consider
the filtration induced as

H(k)
h = {si1, ai1, ri1, . . . , siH}k−1

i=1

⋃
{sk1 , ak1 , rk1 , . . . , skh, akh}

as the filtration containing the history up to the episode k at step h.

We obtain ĝfh ∈ [0, 2H/σ] as a measurable minimizer of eq. 10 that satisfies Assumption 3.
For the trajectory of episode k, we define

Z
(k)
h (f, ĝf ) :=

(
ĝ
f
(k)
h+1

(skh, a
k
h)− ψ

f(k)

h+1(s
k
h, a

k
h)
)
+
− (1− σ)ĝ

f
(k)
h+1

(skh, a
k
h), (51)

such that
∣∣∣Z(k)

h (f, ĝf )
∣∣∣ ≤ 5H/σ and

E
[
Z

(k)
h (ĝf , f)

∣∣∣H(k)
h

]
=

[
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(skh, a

k
h)− r

(k)
h (skh, a

k
h). (52)

For each episode k and step h, we define the martingale difference as

X
(k)
h (f, ĝf ) :=

(
f
(k)
h (skh, a

k
h)− r

(k)
h (skh, a

k
h)− Z

(k)
h (f (k), ĝf(k))

)2

−
([
T σ
ĝ
f
(k)
h+1

,hf
(k)
h+1

]
(skh, a

k
h)− r

(k)
h (skh, a

k
h) + Z

(k)
h (f (k), ĝf(k))

)2

, (53)

such that we have
∣∣∣X(k)

h (f, ĝf )
∣∣∣ ≤ c1

(
Hmin{H, 1/σ}

)2
, where c1 > 0 is an absolute

constant. Moreover,

E
[
X

(k)
h (f, ĝf )

∣∣∣H(k)
h

]
=

(
δ
(k)
h (skh, a

k
h)

)2

Var

[
X

(k)
h (f, ĝf )

∣∣∣H(k)
h

]
≤ c2

(
Hmin{H, 1/σ}

)2
E
[
X

(k)
h (f, ĝf )

∣∣∣H(k)
h

]
, (54)

where c1, c2 > 0 are absolute constants.

Therefore, by Freedman’s inequality as given Lemma T.4, we can write∣∣∣∣∣
K∑

k=1

(
X

(k)
h (f, ĝf )− E

[
X

(k)
h (f, ĝf )

])∣∣H(k)
h

∣∣∣∣∣ ≤ O
(√√√√log(1/δ)

K∑
k=1

E
[
X

(k)
h (f, ĝf )

∣∣∣H(k)
h

]
+ log(1/δ)

)
.

(55)
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Now, let us consider Xρ be the ρ-cover of F
⋃
G. Now taking a union bound for all

(k, h, ϕ) ∈ [K] × [H] × Xρ, and following the same proof-lines as in (Jin et al., 2021,
Lemma 39), we get ∑

t<k

E
[(
δ
(t)
h (sh, ah)

)2∣∣∣H(t)
h

]
≤ O(β), (56)

where β = O
((

Hmin{H, 1/σ}
)
log
(

KH |F||G|
δ

))
.

Therefore, eq. 56 concludes that
∑

t<k E(s,a)∼d
(t),Pω

h (s,a)

[
δ
(t)
h (s, a)

)2 ≤ O(β).
By the definition of visitation measures, we have∑

(s,a)

d̃
(k)
h (s, a) δ

(t)
h (s, a)2

(a)
=
∑
t<k

∑
(s,a)

d
(t),Pω

h (s, a) δ
(t)
h (s, a)2

=
∑
t<k

E
(s,a)∼d

(t),Pω

h

[
δ
(t)
h (s, a)2

]
(b)

≤ O(β), (57)

where (a) is by the definition of d̃(k)h (s, a) given by equation 34, and (b) is using equation 56.

☞ Proof of ineq. (a) To show ineq. (a), we will focus on the proof-lines of (Jin et al., 2021,
Lemma 40) and (Xie et al., 2022, Lemma 15 (1)). Fix (k, h, f) and follow the same notation
as mentioned in the proof lines of the inequality (b), we define

W
(t)
h (f, ĝf ) :=

(
f
(t)
h (sth, a

t
h)− r

(t)
h (sth, a

t
h)− Z

(t)
h (f (t), ĝf(t))

)2

−
(
Q⋆,σ

h (sth, a
t
h)− r

(t)
h (sth, a

t
h) + Z

(t)
h (f (t), ĝf(t))

)2

, for 1 ≤ t ≤ k.

As in eq. 54, E
[
W

(t)
h (f, ĝf ) | H(t)

h

]
=
(
f
(t)
h (sth, a

t
h) − Q

⋆,σ
h (sth, a

t
h)
)2

where H(t)
h be

the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. Similarly, we

can verify that |W (t)
h (f, ĝf )| ≤ c1

(
Hmin{H, 1/σ}

)2
and Var

[
W

(t)
h (f, ĝf ) | H(t)

h

]
≤

c2

(
Hmin{H, 1/σ}

)2
E
[
W

(t)
h (f, ĝf ) | H(t)

h

]
. Now, following the proof-lines of (Jin et al.,

2021, Lemma 40), and applying Freedman’s ineq. (Lemma T.4 and a cover of G yields, w.p.
1− δ, we get

k−1∑
t=1

[
Q⋆,σ

h (sth, a
t
h)− rth(sth, ath)−Q

⋆,σ
h+1(s

t
h+1, π

Q⋆,σ

h+1 (s
t
h+1))

]2

≤
k−1∑
t=1

[
f
(t)
h (sth, a

t
h)− rth(sth, ath)−Q

⋆,σ
h+1(s

t
h+1, π

Q⋆,σ

h+1 (s
t
h+1))

]2
+O(β).

Finally, by recalling the definition of F (k), we conclude that with probability at least 1− δ,
Q⋆,σ ∈ F (k) for all k ∈ [K].

This concludes the proof of Lemma K.2.

Lemma K.3 (Dual Optimization Error Bound). Let ĝf be the dual optimization parameter obtained
from eq. 10 for the state-action value function f and let T σ

g be as defined in eq. 8. Then, under
Definition 2, with probability at least 1− δ, we have

sup
f∈F
∥T σf − T σ

ĝf
f∥1,µπ = O

(
Hmin{H, 1/σ}

√
2 log(8|G||F|/δ)

|D|
+ ξdual

)
. (58)
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Proof. Fix an f ∈ F . We will also invoke union bound for the supremum here. We recall from (8)
that ĝf = argming∈G D̂ualloss(g; f). From the robust Bellman equation, we directly obtain

∥T σf − T σ
ĝf
f∥1,µπ = E(s,a)∼µπ

[
Es′∼P⋆

s,a

[(
ĝf (s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)ĝf (s, a)

]

− inf
η∈[0,2H/σ]

(
Es′∼P⋆

s,a

[(
η −max

a′
f(s′, a′)

)
+
− (1− σ)η

])]
.

(a)

≤ E(s,a)∼µπEs′∼P⋆
s,a

[(
ĝf (s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)ĝf (s, a)

]
− E(s,a)∼µπ

[
inf

η∈[0,2H/σ]

(
Es′∼P⋆

s,a

[(
η −max

a′
f(s′, a′)

)
+
− (1− σ)η

])]
.

Moreover,

∥T σf − T σ
ĝf
f∥1,µπ

(b)

≤ E(s,a)∼µπ,s′∼P⋆
s,a

[(
ĝf (s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)ĝf (s, a)

]
− inf

g∈L1
E(s,a)∼µπ,s′∼P⋆

s,a

[(
g(s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)g(s, a)

])]
.

=

(
E(s,a)∼µπ,s′∼P⋆

s,a

[(
ĝf (s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)ĝf (s, a)

]

− inf
g∈G

E(s,a)∼µπ,s′∼P⋆
s,a

[(
g(s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)g(s, a)

])

+

(
inf
g∈G

E(s,a)∼µπ,s′∼P⋆
s,a

[(
g(s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)g(s, a)

]]

− inf
g∈L1

E(s,a)∼µπ,s′∼P⋆
s,a

[(
g(s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)g(s, a)

])
.

(c

≤

(
E(s,a)∼µπ,s′∼P⋆

s,a

[(
ĝf (s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)ĝf (s, a)

]

− inf
g∈G

E(s,a)∼µπ,s′∼P⋆
s,a

[(
g(s, a)−max

a′
f(s′, a′)

)
+
− (1− σ)g(s, a)

])
+ ξdual.

(d)

≤ 4H(2− σ)
σ

√
2 log(|G|)
|D|

+
25H

σ

√
2 log(8/δ)

|D|
+ ξdual.

The inequality (a) follows since infg h(g) ≤ h(ĝf ), wher we denote h(g) := Es′∼P⋆
s,a

(
(g −

maxa′ f(s′, a′))+ − (1− σ)g
)

; (b) follows from Lemma T.2; (c) follows from the approximate dual
realizability assumption (Assumption 3).

For (d), we consider the loss function l(g, (s, a, s′)) = (g(s, a)−maxa′ f(s′, a′))+− (1−σ)g(s, a)
and dataset D. Note that |l(g, (s, a, s′))| ≤ 5H/σ (since f ∈ F and g ∈ G). Now, we can apply
the empirical risk minimization result (11) in Lemma 3 to get (d), where R(·) is the Rademacher
complexity.

Finally, (e) follows from eq. 60 in Lemma T.1 when combined with the facts that l(g, (s, a, s′)) is
(2− σ)-Lipschitz in g and g(s, a) ≤ 2H/σ, since g ∈ G.
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With union bound, with probability at least 1− δ, we finally get

sup
f∈F
∥T σf − T σ

ĝf
f∥1,µπ ≤ 25(3− σ)H

σ

√
2 log(8|G||F|/δ)

|D|
+ ξdual

≤ CH
σ

√
2 log(8|G||F|/δ)

|D|
+ ξdual

which concludes the proof.

C.2 TECHNICAL LEMMAS

We now state a result for the generalization bounds on empirical risk minimization (ERM) problems.
This result is adapted from (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5, Lemma 26.8, Lemma
26.9).

Lemma T.1 (ERM generalization bound). Let P be the data generating distribution on the space
X and let H be a given hypothesis class of functions. Assume that for all x ∈ X and h ∈ H we
have that |l(h, x)| ≤ c1 for some positive constant c1 > 0. Given a dataset D = {Xi}Ni=1, generated
independently from P , denote ĥ as the ERM solution, i.e.

ĥ = argmin
h∈H

1

N

N∑
i=1

l(h,Xi).

For any fixed δ ∈ (0, 1) and h∗ ∈ argminh∈H EX∼P [l(h,X)], we have

EX∼P [l(ĥ, X)]− EX∼P [l(h
∗, X)] ≤ 2R(l ◦ H ◦ D) + 5c1

√
2 log(8/δ)

N
, (59)

with probability at least 1− δ, where R(·) is the Rademacher complexity of l ◦ H given by

R(l ◦ H ◦ D) = 1

N
E{σi}N

i=1

(
sup

g∈l◦H

N∑
i=1

σig(Xi)

)
,

in which σi’s are independent from Xi’s and are independently and identically distributed according
to the Rademacher random variable σ, i.e. P(σ = 1) = 0.5 = P(σ = −1).
Furthermore, if H is a finite hypothesis class, i.e. |H| < ∞, with |h ◦ x| ≤ c2 for all h ∈ H and
x ∈ X , and l(h, x) is c3-Lipschitz in h, then we have

EX∼P [l(ĥ, X)]− EX∼P [l(h
∗, X)] ≤ 2c2c3

√
2 log(|H|)

N
+ 5c1

√
2 log(8/δ)

N
, (60)

with probability at least 1− δ.

We now mention two important concepts from variational analysis (Rockafellar & Wets, 1998)
literature that is useful to relate minimization of integrals and the integrals of pointwise minimization
under special class of functions.

Definition 5 (Decomposable spaces and Normal integrands (Rockafellar & Wets, 1998)(Definition
14.59, Example 14.29)). A space X of measurable functions is a decomposable space relative to an
underlying measure space (Ω,A, µ), if for every function x0 ∈ X , every set A ∈ A with µ(A) <∞,
and any bounded measurable function x1 : A→ R, the function

x(ω) = x0(ω)1(ω /∈ A) + x1(ω)1(ω ∈ A)

belongs to X . A function f : Ω× R→ R (finite-valued) is a normal integrand, if and only if f(ω, x)
is A-measurable in ω for each x and is continuous in x for each ω.

Remark 2. A few examples of decomposable spaces are Lp(S × A,Σ(S × A), µ) for any p ≥ 1
andM(S ×A,Σ(S ×A)), the space of all Σ(S ×A)-measurable functions.
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Lemma T.2 ((Rockafellar & Wets, 1998), Theorem 14.60). Let X be a space of measurable functions
from Ω to R that is decomposable relative to a σ-finite measure µ on the σ-algebra A. Let f :
Ω× R→ R (finite-valued) be a normal integrand. Then, we have

inf
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω) =

∫
ω∈Ω

(
inf
x∈X

f(ω, x)

)
µ(dω).

Moreover, as long as the above infimum is not −∞, we have that

x′ ∈ argmin
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω),

if and only if x′(ω) ∈ argminx∈R f(ω, x)µ almost surely.

Lemma T.3 (Equivalence of robust coverability and cumulative visitation (Xie et al., 2022), Lemma
3). Recall the definition of Crcov as given in Definition 3 and the cumulative visitation for every layer
h ∈ [H] as given in Definition 4. Then

Crcov = max
h∈[H]

Ccv
h .

Lemma T.4 (Freedman’s inequality (e.g., (Agarwal et al., 2014))). Let {Mt}t≤T be a real-valued
martingale difference sequence w.r.t. filtration {Gt} with |Mt| ≤ b a.s. and let ST =

∑T
t=1 E[M2

t |
Gt−1]. Then for any δ ∈ (0, 1),

Pr
( T∑

t=1

Mt ≥
√

2ST ln(1/δ) + b
3 ln(1/δ)

)
≤ δ.

Lemma T.5 (Per-state-action elliptic potential lemma (Lattimore & Szepesvári, 2020)). Let
d(1), d(2), . . . , d(K) be an arbitrary sequence of distributions over a set Z (e.g., Z = S × A),
and let µ ∈ ∆(Z) be a distribution such that d(t)(z)/µ(z) ≤ C for all (z, t) ∈ Z × [K]. Then for
all z ∈ Z ,

K∑
k=1

d(k)(z)∑
i<t d

(k)(z) + C · µ(z)
≤ O(logK) .
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