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A PROOF OF DIFFERENTIAL PRIVACY

Proof of Theorem 3. Define the ℓ2 sensitivity of any function g to be ∆g = supS,S′ ∥g(S)−g(S′)∥2
where the supreme is over all neighboring (S, S′). Then the Gaussian mechanism ĝ(S) = g(S) +
σ∆g · N (0, I).

σ denotes the “Noise multiplier”, which corresponds to the noise-level when a Gaussian mechanism
is applied to a query with sensitivity 1.

Observe that automatic clipping (AUTO-V and AUTO-S (4.1)) ensures the bounded global-
sensitivity of the stochastic gradient as in Abadi’s clipping. Aligning the noise-multiplier (rather
than the noise-level itself) ensures that the the noise-to-sensitivity ratio σ∆g

∆g = σ is fixed regard-
less of ∆g. The Gaussian mechanism’s privacy guarantees are equivalent. Thus from the privacy
accountant perspective, DP-SGD with both Abadi’s clipping and our autoclipping method can be
equivalently represented as the adaptive composition of T Poisson sampled Gaussian Mechanism
with sampling probability B/n and noise multiplier σ.

B PROOF OF AUTOMATICITY

B.1 NON-ADAPTIVE DP OPTIMIZERS

Proof of Theorem 1. We prove Theorem 1 by showing that, DP-SGD using R-dependent AUTO-S
with learning rate η and weight decay λ is equivalent to R-independent AUTO-S with learning rate
ηR and weight decay λ/R. We claim other non-adaptive optimizers such as HeavyBall and NAG
can be easily shown in a similar manner.

Recall the standard SGD with weight decay is

wt+1 = wt − η

(∑
i∈Bt

∂li
∂wt

+ λwt

)

Replacing the standard gradient
∑

i
∂li
∂wt

with the private gradient, we write the R-dependent case
as

wt+1 = wt − η

(∑
i∈Bt

∂li
∂wt

·R/∥ ∂li
∂wt

∥2 + σR · N (0, I) + λwt

)

= wt − ηR

(∑
i∈Bt

∂li
∂wt

/∥ ∂li
∂wt

∥2 + σ · N (0, I)

)
− ηλwt

which is clearly equivalent to the R-independent case:

wt+1 = wt − η′

(∑
i∈Bt

∂li
∂wt

/∥ ∂li
∂wt

∥2 + σ · N (0, I) + λ′wt

)
if we use η′ = ηR and λ′ = λ/R.

B.2 ADAPTIVE DP OPTIMIZERS

Proof of Theorem 2. We prove Theorem 2 by showing that, DP-AdamW using R-dependent AUTO-
S with learning rate η and weight decay λ is equivalent to R-independent AUTO-S with the same
learning rate η and weight decay λ/R. This is the most complicated case. We claim other adaptive
optimizers such as AdaDelta, Adam with weight decay (not AdamW), and NAdam can be easily
shown in a similar manner.

Recall the standard AdamW is

wt+1 = wt − η

(
mt/(1− β1)√
vt/(1− β2)

+ λwt

)
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where β1, β2 are constants, gt :=
∑

i
∂li
∂wt

is the standard gradient,

mt = β1mt−1 + (1− β1)gt −→ mt =
∑
τ

βt−τ
1 (1− β1)gτ ,

vt = β2vt−1 + (1− β2)g
2
t −→ vt =

∑
τ

βt−τ
2 (1− β2)g

2
τ .

Replacing the standard gradient with the private gradient Rg̃t := R(
∑

i
∂li
∂wt

/∥ ∂li
∂wt

∥2+σ ·N (0, I)),
we write the R-dependent DP-AdamW as

wt+1 = wt − η

(
m̃t/(1− β1)√
ṽt/(1− β2)

+ λwt

)
where

m̃t = β1m̃t−1 + (1− β1)Rg̃t −→ m̃t =
∑
τ

βt−τ
1 (1− β1)Rg̃τ ,

ṽt = β2ṽt−1 + (1− β2)R
2g̃2

t −→ ṽt =
∑
τ

βt−τ
2 (1− β2)R

2g̃2
τ .

Clearly, the R factor in the numerator and denominator of m̃t/(1−β1)√
ṽt/(1−β2)

cancel each other. Therefore

we claim that the R-dependent DP-AdamW is in fact completely independent of R.

B.3 AUTOMATIC PER-LAYER CLIPPING

In some cases, the per-layer clipping is desired, where we use a clipping threshold vector R =
[R1, · · · , RL] and each layer uses a different clipping threshold. We claim that DP optimizers under
automatic clipping works with the per-layer clipping when R is tuned proportionally, e.g. R =
R · [a1, · · · , aL], but not entry-wise (see counter-example in Fact B.1). One special case is the
uniform per-layer clipping when R1 = · · · = RL = R/

√
L. This is widely applied as only one

norm R requires tuning, instead of L norms in R, particularly in the case of deep models with
hundreds of layers. The corresponding DP-SGD with AUTO-S in (3.3) gives

w
(l)
t+1 = w

(l)
t − η

(∑
i∈Bt

R√
L

g
(l)
t,i

||g(l)
t,i ||+ γ

+ σR · N (0, I)

)

Here the superscript (l) is the layer index. Clearly R couples with the learning rate η and the
same analysis as in Theorem 1 follows. The adaptive optimizers can be similarly analyzed from
Theorem 2.

Fact B.1. Changing one clipping threshold in the clipping threshold vector R (i.e. not proportion-
ally) can break the coupling with learning rate.

Proof of Fact B.1. We prove by a counter-example of R in R2. Consider DP-SGD with per-layer
clipping thresholds (R1, R2) = (9, 12):

w
(l)
t+1 = w

(l)
t − η

(∑
i∈B

Rlgt,i,l
||gt,i,l||

+ σ
√

R2
1 +R2

2 · N (0, I)

)
Increasing R1 from 9 to 16 changes the update for the first layer

η

(∑
i∈B

9gt,i,l
||gt,i,l||

+ 15σ · N (0, 1)

)
→ η

(∑
i∈B

16gt,i,l
||gt,i,l||

+ 20σ · N (0, I)

)
The noise-to-signal ratio decreases from 5/3 to 5/4 for this layer, and increases from 5/4 to 5/3 for
the second layer. This breaks the coupling with learning rate, since the coupling does not change the
noise-to-signal ratio.
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C MAIN RESULTS OF CONVERGENCE FOR DP-SGD WITH AUTOMATIC
CLIPPING

C.1 MAIN PROOF OF CONVERGENCE FOR DP-SGD (THE ENVELOPE VERSION)

Proof of Theorem 4. In this section, we prove two parts of Theorem 4.

The first part of Theorem 4 is the upper bound on mint E(∥gt∥), which is a direct result following
from Theorem 6, and we prove it in Appendix C.2.

Theorem 6. Under Assumption 5.1, 5.2, 5.3, running DP-SGD with automatic clipping for T iter-
ations gives

min
t

E(∥gt∥) ≤
ξ

r
+ F

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; r, ξ, γ

)
(C.1)

where

• for r < 1, γ = 0 and η ∝ 1/
√
T , F(x) = x

min0<c<1 f(c,r) and f(c, r) := (1+rc)√
r2+2rc+1

+
(1−rc)√
r2−2rc+1

; for r ≥ 1, γ = 0 and η ∝ 1/
√
T , F(x) = ∞;

• for r ≥ 1, γ > 0 and η ∝ 1/
√
T , F is the convex envelope of (C.8), and is strictly increasing.
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Figure 6: Visualization of upper bound ξ
r+F

(
O(1/

√
T ); r, ξ, γ

)
for gradient norm, with O(1/

√
T )

in (C.1). Here ξ = 1. The right plot is a zoom-in (with additional lines) of the left one.

Notice that, (C.1) holds for any r > 0. However, we have to consider an envelope curve over r in
(C.1) to reduce the upper bound: with AUTO-V clipping (γ = 0), the upper bound in (C.1) is always
larger than ξ as r < 1; we must use AUTO-S clipping (γ > 0) to reduce the upper bound to zero, as
can be seen from Figure 6. In fact, larger T needs larger r to reduce the upper bound.

All in all, we specifically focus on r ≥ 1 and γ > 0, which is the only scenario that (C.1) can
converge to zero. This scenario is also where we prove the second part of Theorem 4.

The second part of Theorem 4 is the asymptotic convergence rate O(T−1/4) of DP-SGD, only
possible under r ≥ 1 and γ > 0.

By (C.1) in Theorem 6, our upper bound G from Theorem 4 can be simplified to

min
r>0

ξ

r
+ (M−1)ccv

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
; r, ξ, γ

)

where the function M−1 is explicitly defined in (C.8) and the subscript ccv means the upper concave
envelope. Clearly, as T → ∞, M−1( 1√

T
) → 0. We will next show that the convergence rate of

M−1 is indeed O( 1√
T
) and the minimization over r makes the overall convergence rate O(T−1/4).
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Starting from (C.8), we denote x = 4√
T

√
(L0 − L∗)L

(
1 + σ2d

B2

)
and write

M−1(x; r, ξ, γ) =
− ξ

rγ + (r2 − 1) ξrx+ rγx+ γ
√
( ξr )

2 + 2ξx+ 2γx+ x2

2γ − (r2 − 1)x

=

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+ γ

√
(
ξ

r
)2 + 2ξx+ 2γx+ x2

)

·
1 + r2−1

2γ x+O(x2)

2γ

=
1

2γ

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+

γξ

r

√
1 +

2(ξ + γ)r2x

ξ2
+O(x2)

)

· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
−γξ

r
+ (r2 − 1)

ξ

r
x+ rγx+

γξ

r

(
1 +

(ξ + γ)r2x

ξ2
+O(x2)

))
· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
(r2 − 1)

ξ

r
x+ rγx+

γ(ξ + γ)rx

ξ
+O(x2)

)
· (1 + r2 − 1

2γ
x+O(x2))

=
1

2γ

(
(r2 − 1)

ξ

r
+ rγ +

γ(ξ + γ)r

ξ

)
· x+O(x2)

=
1

2γ

(
(ξ + γ)2

ξ
r − ξ

r

)
· x+O(x2)

Since M−1 is asymptotically linear as x → 0, we instead study

min
r>0

ξ

r
+M−1 (x; r, ξ, γ) ≡ min

r>0

ξ

r
+

1

2γ

(
(ξ + γ)2

ξ
r − ξ

r

)
· x+O(x2).

That is, ignoring the higher order term for the asymptotic analysis, the M−1 part converges as
O(x) = O(1/

√
T ), and we visualize this in Figure 8.

Although DP-SGD converges faster than SGD, the former converges to ξ/r and the latter converges
to 0. Thus, taking ξ/r into consideration, the objective reduces to a hyperbola(

ξ(1− x
2γ )
)

r
+

x(ξ + γ)2

2γξ
· r

whose minimum over r is obviously 2
√

ξ(1− x
2γ )

x(ξ+γ)2

2γξ = O(
√
x) = O(T−1/4).

To give more details about the upper bound in (5.2), we demonstrate its dependence on ξ and γ in
Figure 7.

C.2 MAIN PROOF OF CONVERGENCE FOR DP-SGD (THE NON-ENVELOPE VERSION)

Proof of Theorem 6. Consider DP-SGD with AUTO-S clipping

wt+1 = wt − η

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σN (0, I)

)
where g̃t,i is i.i.d. samples of g̃t, an unbiased estimate of gt, with a bounded variance as described
in Assumption 5.3.
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Figure 7: Dependence of the upper bound G on ξ (left) and γ (right). Here the O(1/
√
T ) term is set

to 10 and either γ = 0.01 (left) or ξ = 1 (right).
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Figure 8: Convergence with respect to T . Same setting as Figure 5.

By Lipschitz smoothness in Assumption 5.2, and denoting Z = N (0, I), we have

Lt+1 − Lt ≤ g⊤
t (wt+1 −wt) +

L

2
∥wt+1 −wt∥2

= −ηg⊤
t

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σZ

)
+

Lη2

2

∥∥∥∥∥∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σZ

∥∥∥∥∥
2

≤ −ηg⊤
t

(∑
i

g̃t,i
∥g̃t,i∥+ γ

+ σZ

)

+ Lη2

∥∥∥∥∥∑
i

g̃t,i
∥g̃t,i∥+ γ

∥∥∥∥∥
2

+ σ2∥Z∥2


where the last inequality follows from Cauchy Schwartz.

Given the fact that ∥g̃t,i/(∥g̃t,i∥+ γ)∥ ≤ 1, the expected improvement at one iteration is

E(Lt+1 − Lt|wt) ≤ −ηg⊤
t E

(∑
i

g̃t,i
∥g̃t,i∥+ γ

)
+ Lη2

(
B2 + σ2d

)
= −ηBg⊤

t E
(

g̃t
∥g̃t∥+ γ

)
+ Lη2

(
B2 + σ2d

) (C.2)

Now we want to lower bound g⊤
t E
(

g̃t

∥g̃t∥+γ

)
in (C.2).
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Write g̃t = gt +∆t where the gradient noise ∆t follows E∆t = 0,E∥∆t∥ < ξ by Assumption 5.3.
Then

g⊤
t E
(

g̃t
∥g̃t∥+ γ

)
= E

(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

)
=

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H+

)
+

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H−

)
=

1

2
E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ

∣∣∣∆t ∈ H+

)
+

1

2
E
(
∥gt∥2 − g⊤

t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
where we use the hyperplane perpendicular to gt to divide the support of ∆t into two half-spaces:

H+ := {v : g⊤
t v > 0}, H− := {v : g⊤

t v < 0}.

We use the symmetry assumption in Assumption 5.3 to get

P(∆t ∈ H+) = P(∆t ∈ H−) =
1

2

and notice that ∆t
D
= −∆t, i.e., if ∆t ∈ H+, then −∆t ∈ H− with the same distribution.

The next result further gives a lower bound for g⊤
t E
(

g̃t

∥g̃t∥+γ

)
using ∥gt∥.

Lemma C.1.

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
≥ min

0<c≤1
f(c, r;

γ

∥gt∥
) · (∥gt∥ − ξ/r)

for any r > 0 and f(c, r; Γ) = (1+rc)√
r2+2rc+1+Γ

+ (1−rc)√
r2−2rc+1+Γ

.

For the simplicity of notation, we denote the distance measure

M(∥gt∥ − ξ/r; r, ξ, γ) = min
0<c≤1

f

(
c, r;

γ

∥gt∥

)
· (∥gt∥ − ξ/r) (C.3)

and leave the fine-grained analysis (e.g. its explicit form in some scenarios) at the end of this section.

Using the lower bound from Lemma C.1, the expected improvement (C.2) becomes

E(Lt+1 − Lt|wt) ≤ −ηB

2
M(∥gt∥ − ξ/r) + Lη2B2

(
1 +

σ2d

B2

)
Now extend the expectation over randomness in the trajectory, and perform a telescoping sum over
the iterations

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1)

≥ ηB

2
E

(∑
t

M(∥gt∥ − ξ/r)

)
− TLη2B2

(
1 +

σ2d

B2

)

Substituting ηB = η0/
√
T where η0 is a base learning rate, we have

2(L0 − L∗) ≥
√
Tη0E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
− 2Lη20

(
1 +

σ2d

B2

)
and finally

E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
≤ 1√

T

[
2(L0 − L∗)

η0
+ 2Lη0

(
1 +

σ2d

B2

)]
(C.4)
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With η0 chosen properly at η0 =
√

L0−L∗

L
(
1+σ2d

B2

) , the hyperbola on the right hand side in (C.4) is

minimized to 4
√

(L0 − L∗)L
(
1 + σ2d

B2

)
, and we obtain

E

(
1

T

∑
t

M(∥gt∥ − ξ/r)

)
≤ 4√

T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
Since the minimum of a sequence is smaller than the average, we have

min
t

E(M(∥gt∥ − ξ/r)) ≤ 1

T

∑
t

E (M(∥gt∥ − ξ/r)) ≤ 4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
(C.5)

We claim that M may not be concave or convex. Therefore we use Mcvx to denote its lower convex
envelope, i.e. the largest convex function that is smaller than M. Then by Jensen’s inequality (C.5)
becomes

min
t

Mcvx(E(∥gt∥ − ξ/r)) ≤ min
t

E(Mcvx(∥gt∥ − ξ/r)) ≤ 4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
(C.6)

It is obvious that Mcvx is increasing as M is increasing by Theorem 8. Hence, (Mcvx)
−1 is also

increasing, as the inverse of Mcvx. We write (C.6) as

min
t

E(∥gt∥ − ξ/r) ≤ (Mcvx)
−1

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

))
and equivalently

min
t

E(∥gt∥) ≤
ξ

r
+ (Mcvx)

−1

(
4√
T

√
(L0 − L∗)L

(
1 +

σ2d

B2

))
(C.7)

Finally, we derive the explicit properties of M(∥gt∥ − ξ/r) in Theorem 8. These properties allow
us to further analyze on the convergence of M(∥gt∥ − ξ/r), based on AUTO-V and AUTO-S,
respectively.

1. DP-SGD with AUTO-V clipping. By Theorem 8, we write
M(x; r) = min

c∈(0,1]
f(c, r; 0) · x

This is a linear function and thus Mcvx = M = 1/M−1
cvx. As a result, we have

min
t

E(∥gt∥) ≤
ξ

r
+

1

minc∈(0,1] f(c, r; 0)
· 4√

T

√
(L0 − L∗)L

(
1 +

σ2d

B2

)
We note here r plays an important role under AUTO-V clipping: when r < 1, we spend more
iterations to converge to better and smaller gradient norm ξ/r; when r ≥ 1, minc f(c, r; 0) =
f(1, r; 0) = 0 and it takes forever to converge. This is demonstrated in the left plot of Figure 5.

2. DP-SGD with AUTO-S clipping. By Theorem 8 and for r > 1, we write

M(x; r, ξ, γ) =

(
γ

(r − 1)(x+ ξ/r) + γ
− γ

(r + 1)(x+ ξ/r) + γ

)
· x.

Notice that the inverse of a lower convex envelope is equivalent to the upper concave envelope
(denoted by the subscript ccv) of an inverse. Therefore we can derive (Mcvx)

−1 = (M−1)ccv with
the explicit form

M−1(x; r, ξ, γ) =
− ξ

rγ + (r2 − 1) ξrx+ rγx+ γ
√
( ξr )

2 + 2ξx+ 2γx+ x2

2γ − (r2 − 1)x
. (C.8)
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we can derive it based on r, ξ, γ and substitute back to (C.7).

Note that the domain of M−1 (or the image of M) is [0, γ
r−1 − γ

r+1 ).

In comparison to the AUTO-V clipping, M−1 takes a much more complicated form, as depicted in
the middle plot of Figure 5, where r > 1 plays an important role for the gradient norm to converge
to zero.

C.3 PROOF OF LEMMA C.1

Proof of Lemma C.1. We want to lower bound

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
(C.9)

To simplify the notation, we denote noise-to-signal ratio S := ∥∆t∥
∥gt∥ and c := cos θ =

g⊤
t ∆t

∥gt∥∥∆t∥ ,
with θ be the random angle between gt and ∆t. Note that 0 < c ≤ 1 when ∆t ∈ H+.

The term inside the conditional expectation in (C.9) can be written as

(1 + Sc)∥gt∥2√
S2 + 2Sc+ 1∥gt∥+ γ

+
(1− Sc)∥gt∥2√

S2 − 2Sc+ 1∥gt∥+ γ

=∥gt∥
(

(1 + Sc)√
S2 + 2Sc+ 1 + γ/∥gt∥

+
(1− Sc)√

S2 − 2Sc+ 1 + γ/∥gt∥

)

Defining Γ = γ/∥gt∥ and

f(c, S; Γ) :=
(1 + Sc)√

S2 + 2Sc+ 1 + Γ
+

(1− Sc)√
S2 − 2Sc+ 1 + Γ

, (C.10)

we turn the conditional expectation in (C.9) into

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥+ γ
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥+ γ

∣∣∣∆t ∈ H+

)
= ∥gt∥E(f(c, S; Γ)|∆t ∈ H+) (C.11)

for which we want to lower bound f(c, S; Γ) over 0 < c ≤ 1, S > 0,Γ > 0. We use the next
theorem to prepare some helpful properties. The proof can be found in Appendix E.1.

Theorem 7. For f defined in (C.10), we have

1. f(c, S; Γ) is strictly decreasing in S for all 0 < c < 1 and Γ > 0.

2. Consequently, minc∈(0,1) f(c, S; Γ) is strictly decreasing in S.

3. f(c, S; Γ) is strictly decreasing in c for all S > 1 and Γ > 0.

We consider a thresholding ratio r > 0 and we will focus on the regime that S < r. This r will turn
out to measure the minimum gradient norm at convergence: informally speaking, ∥gt∥ converges to
ξ/r.
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By the law of total expectation, (C.11) can be relaxed as follows.

∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+

)
=∥gt∥E

(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

+ ∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S > r
)
P(r∥gt∥ < ∥∆∥

∣∣∣∆ ∈ H+)

≥∥gt∥E
(
f(c, S; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

≥∥gt∥E
(
f(c, r; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥

∣∣∣∆ ∈ H+)

=∥gt∥E
(
f(c, r; Γ)

∣∣∣∆ ∈ H+, S < r
)
P(r∥gt∥ > ∥∆∥)

≥ min
c∈(0,1]

f(c, r; Γ) · ∥gt∥P(r∥gt∥ > ∥∆∥)︸ ︷︷ ︸
⋆⃝

(C.12)

where in the first inequality, the ignoring of last term is justified by f(c, S; Γ) ≥
minc∈(0,1] f(c, S; Γ) ≥ minc∈(0,1] f(c,∞; Γ) = 0, from the monotonicity (second statement) in
Theorem 7.

We first lower bound ⋆⃝ by applying the Markov’s inequality:

P(r∥gt∥ > ∥∆t∥) ≥ 1− E∥∆t∥
r∥gt∥

and hence by Assumption 5.3,

∥gt∥P(r∥gt∥ > ∥∆t∥) ≥ ∥gt∥ − E∥∆∥/r ≥ ∥gt∥ − ξ/r.

Finally, the conditional expectation of interest in (C.9) gives

E
(
∥gt∥2 + g⊤

t ∆t

∥gt +∆t∥
+

∥gt∥2 − g⊤
t ∆t

∥gt −∆t∥

∣∣∣∆t ∈ H+

)
≥ min

0<c≤1
f(c, r;

γ

∥gt∥
) · (∥gt∥ − ξ/r)

C.4 PROOF OF THEOREM 8

To derive some properties of minc f(c, r; Γ), we need to compute separately for AUTO-V (without
the stability constant, Γ = 0) and for AUTO-S (with the stability constant, Γ > 0), as shown in
Theorem 8. As we will show, as the number of training iterations T → ∞, DP-SGD with AUTO-V
clipping can only compress ∥gt∥ to ξ/r for r < 1. However, DP-SGD with AUTO-S clipping can
compress ∥gt∥ to ξ/r to any r > 1.
Theorem 8.

1. For 0 < r < 1 and Γ = 0, we have minc∈(0,1] f(c, r; 0) > 0. Then Equation (C.11) is lower
bounded by

min
c∈(0,1]

f(c, r; 0) · (∥gt∥ − ξ/r)

which is increasing in ∥g∥ − ξ/r.

2. For r ≥ 1 and Γ = 0, we have minc∈(0,1] f(c, r; Γ) = f(1, r; 0) = 0. In words, (C.9) has a
trivial lower bound and Theorem 6 cannot compress ∥gt∥ to ξ/r.

3. For r ≥ 1 and Γ > 0, we have minc∈(0,1] f(c, r; Γ) = f(1, r; Γ) =
(

Γ
r+Γ−1 − Γ

r+Γ+1

)
. Then

Equation (C.11) is lower bounded by(
γ

(r − 1)∥gt∥+ γ
− γ

(r + 1)∥gt∥+ γ

)
· (∥gt∥ − ξ/r)

which is increasing in ∥gt∥ − ξ/r.
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Proof. To prove statement 1, we use the second statement from Theorem 7 and show that
minc f(c, r; 0) > minc f(c,∞; 0) = 0. To prove statement 2 and 3, we use the third statement
from Theorem 7 and see that minc f(c, r; Γ) = f(1, r; Γ) with an explicit formula.

D CONVERGENCE RATE OF STANDARD SGD

Theorem 9. Under Assumption 5.1, 5.2, 5.3 (without the symmetry assumption), running the stan-
dard non-DP SGD for T iterations gives, for η ∝ 1/

√
T ,

min
t

E (∥gt∥) ≤
1

T 1/4

√
2(L0 − L∗)L+

ξ2

B

Proof of Theorem 9. Consider the standard SGD

wt+1 = wt − η

∑
i g̃t,i
B

where g̃t,i is i.i.d. unbiased estimate of gt, with a bounded variance as described in Assumption 5.3.

By Lipschitz smoothness assumption in Assumption 5.2,

Lt+1 − Lt ≤ g⊤
t (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 = −ηg⊤

t

(∑
i

1

B
g̃t,i

)
+

Lη2

2

∥∥∥∥∥∑
i

1

B
g̃t,i

∥∥∥∥∥
2

The expected improvement at one iteration is

E(Lt+1 − Lt|wt) ≤ −ηg⊤
t Eg̃t,i +

Lη2

2
E∥
∑
i

1

B
g̃t,i∥2

≤ −η∥gt∥2 +
Lη2

2

(
∥gt∥2 +

ξ2

B

) (D.1)

Now we extend the expectation over randomness in the trajectory, and perform a telescoping sum
over the iterations

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1) ≥
(
η − Lη2

2

)
E(
∑
t

∥gt∥2)−
TLη2ξ2

2B

Notice that we do not need the symmetry assumption in Assumption 5.3 in the non-DP SGD analy-
sis.

We apply the same learning rate as in Bernstein et al. (2018), η = 1
L
√
T

,

2(L0 − L∗) ≥
(

2

L
√
T

− 1

LT

)
E

(∑
t

∥gt∥2
)

− Tξ2

BLT
≥

√
T

L
E

(
1

T

∑
t

∥gt∥2
)

− ξ2

BL

and finally

min
t

E
(
∥gt∥2

)
≤ E

(
1

T

∑
t

∥gt∥2
)

≤ 1√
T

[
2(L0 − L∗)L+

ξ2

B

]
Using the Jensen’s inequality, we can have

min
t

E (∥gt∥) ≤
1

T 1/4

√
2(L0 − L∗)L+

ξ2

B
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E AUXILIARY PROOFS

E.1 PROOF OF THEOREM 7

Proof. We first show df(c,S;Γ)
dS < 0 for all 0 < c < 1,Γ > 0 and S > 0, as visualized in the left plot

of Figure 9. We can explicitly write down the derivative, by WolframAlpha

df(c, S; Γ)

dS
=

−(AΓ2 +BΓ + C)√
S2 − 2cS + 1

√
S2 + 2cS + 1(Γ +

√
S2 − 2cS + 1)2(Γ +

√
S2 + 2cS + 1)2

(E.1)

with

A(c, S) =
√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
B(c, S) = 4S

[
(S2 + 1)(1− c2) + c2

√
S2 + 2cS + 1

√
S2 − 2cS + 1

]
C(c, S) = (1− c2)S

[
(S2 − 2cS + 1)3/2 + (S2 + 2cS + 1)3/2

]
It is obvious that, since c < 1,

S2 ± 2cS + 1 > S2 ± 2cS + c2 = (S ± c)2 ≥ 0. (E.2)

From (E.2), the denominator in (E.1) is positive and it suffices to show AΓ2 + BΓ + C > 0 for all
0 < c < 1 and S > 0, in order to show df

dS < 0.

Also from (E.2), we can easily see B(c, S) > 0 and C(c, S) > 0. We will show that A(c, S) > 0 in
Lemma E.1, after very heavy algebraic computation.

Now we can claim that AΓ2+BΓ+C > 0 by Fact E.3, and complete the proof of the first statement.

To further see that minc f(c, S; Γ) is decreasing in S, let us denote c∗(x; Γ) :=
arg minc∈[0,1]f(c, x; Γ). Then considering S < S′, we prove the second statement by observing

min
c

f(c, S; Γ) = f(c∗(S; Γ), S; Γ) > f(c∗(S; Γ), S′; Γ) ≥ min
c

f(c, S′; Γ).

This statement is also visualized in the right plot of Figure 9.

We next show df(c,S;Γ)
dc < 0 for all 0 < c < 1,Γ > 0 and S > 1. We can explicitly write down the

derivative, by WolframAlpha

df(c, S; Γ)

dc
=

−S(A′Γ2 +B′Γ + C ′)√
S2 − 2cS + 1

√
S2 + 2cS + 1(Γ +

√
S2 − 2cS + 1)2(Γ +

√
S2 + 2cS + 1)2

(E.3)

with

A′(c, S) =
[
(S2 + 3cS + 2)

√
S2 − 2cS + 1− (S2 − 3cS + 2)

√
S2 + 2cS + 1

]
B′(c, S) = 4Sc

[√
S2 + 2cS + 1

√
S2 − 2cS + 1 + (S2 − 1)

]
C ′(c, S) = S

[
(c+ S)(S2 − 2cS + 1)3/2 + (c− S)(S2 + 2cS + 1)3/2

]
Clearly B′(c, S) > 0 and C ′(c, S) > 0, since S2+2cS+1 > S2− 2cS+ c2 = (S− c)2 ≥ 0. And
we will show A′(c, S) > 0 in Lemma E.2, after some algebra.

We again claim that A′Γ2+B′Γ+C ′ > 0 by Fact E.3, which guarantees that the numerator in (E.3)
is negative and that df

dc < 0. This is visualized in Figure 10.
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Figure 9: Visualization of f(0.5, S,Γ) (left) and min0≤c≤1 f(c, S,Γ) over S > 0.
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Figure 10: Visualization of f(c, 0.8,Γ) (left) and f(c, 2,Γ) over 0 ≤ c ≤ 1.

E.2 PROOF OF LEMMA E.1

Lemma E.1. For all 0 < c < 1 and S > 0,

A :=
√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√

S2 − 2cS + 1
(
3c2S + 2c(S2 + 1) + S

)
> 0.

Proof. We prove by contradiction. Suppose√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
+
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
< 0.

Then

0 <
√
S2 − 2cS + 1

(
3c2S + 2c(S2 + 1) + S

)
< −

√
S2 + 2cS + 1

(
3c2S − 2c(S2 + 1) + S

)
.

where the first inequality comes from S2 − 2cS + 1 > S2 − 2cS + c2 = (S − c)2 ≥ 0.

Squaring everything gives

(S2 − 2cS + 1)
(
3c2S + 2c(S2 + 1) + S

)2
< (S2 + 2cS + 1)

(
3c2S − 2c(S2 + 1) + S

)2
.

Taking the difference gives

4cS(2 + 3S2 − 9c4S2 + 2S4 + 2c2(1− S2 + S4)) < 0

Given that c > 0, S > 0, we have

2 + 3S2 − 9c4S2 + 2S4 + 2c2(1− S2 + S4) < 0

Denoting X := S2 and viewing the above as a quadratic polynomial of X , we have

(2c2 + 2)X2 + (3− 2c2 − 9c4)X + (2c2 + 2)︸ ︷︷ ︸
1⃝

< 0

Using the closed-form minimizer of quadratic polynomial 1⃝, after some heavy algebra, one can
check the minimum of 1⃝ is

(1 + 3c2)2(1− c2)(7 + 9c2)

8(1 + c2)

which is clearly positive. Contradiction!
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E.3 PROOF OF LEMMA E.2

Lemma E.2. For all 0 < c < 1 and S > 1,

(S2 + 3cS + 2)
√
S2 − 2cS + 1− (S2 − 3cS + 2)

√
S2 + 2cS + 1 > 0.

Proof. Notice that (S2 + 3cS + 2) > S2 + 2 > 0 and
√
S2 ± 2cS + 1 > 0. Therefore if S2 −

3cS + 2 ≤ 0, we are done.

Otherwise, we prove by contradiction and suppose

0 < (S2 + 3cS + 2)
√
S2 − 2cS + 1 < (S2 − 3cS + 2)

√
S2 + 2cS + 1.

under the condition that S2 − 3cS + 2 > 0.

Squaring everything gives

(S2 + 3cS + 2)2(S2 − 2cS + 1) < (S2 − 3cS + 2)2(S2 + 2cS + 1).

Taking the difference gives

cS(8 + 20S2 − 36c2S2 + 8S4) < 0

Given that c > 0, S > 0, we have

2 + 5S2 − 9c2S2 + 2S4 < 0

Denoting X := S2 and viewing the above as a quadratic polynomial of X , we have, for X > 1,

2X2 + (5− 9c2)X + 2︸ ︷︷ ︸
2⃝

< 0

The closed-form minimizer of quadratic polynomial 2⃝ is (9c2−5)
4 . Given that 0 < c < 1, we must

have − 5
4 < 9c2−5

4 < 1. Hence the minimizer is not within the feasible domain (1,∞) of X . Thus
the minimum of 2⃝ is achieved with X = 1 at 9(1− c2). This is positive. Contradiction!

E.4 PROOF OF FACT E.3

Fact E.3. For a quadratic polynomial Ax2 +Bx+C with A,B,C > 0, the minimum value on the
domain x ≥ 0 is C, at x = 0. Therefore Ax2 +Bx+ C > 0.

Proof. Since A > 0, the quadratic polynomial is convex and increasing on the domain x > − B
2A .

Since B > 0 as well, we know − B
2A < 0 and hence the quadratic polynomial is strictly increasing

on x > 0. Therefore the minimum value is achieved when x = 0, and we obtain Ax2 +Bx+ C ≥
C > 0 for all x ≥ 0.

F EXAMPLES OF LAZY REGIONS

F.1 BALANCED BINARY CLASSIFICATION

We describe the data generation in Section 3.3. The label is uniformly ±1, that is P(yi = +1) =
P(yi = −1) = 0.5. We have 10000 positive and negative samples xi ∼ N (yi, 1). We consider a
logistic regression model P(Y = y|x) = I(y = 1) ·Sigmoid(x+θ)+ I(y = −1) · (1−Sigmoid(x+
θ)) = 1

1+e−y(θ+x) , where θ ∈ R is the intercept. The gradient with respect to this only trainable

parameter is ∂Li

∂θ = −y
(
1− 1

1+e−y(θ+x)

)
. We set the clipping threshold R = 0.01 and the stability

constant γ = 0.01.
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Figure 11: Scalar gradient ∂L
∂θ at each θ.

F.2 MEAN ESTIMATION ON GAUSSIAN MIXTURE DATA

We also observe the lazy region issue in the mean estimation problem minθ
1
2∥θ−xi∥2. Here P(xi ∼

N (4, 1)) = P(xi ∼ N (4, 1)) = 0.5. We have 10000 samples from each Gaussian distribution. The
regular minimum is clearly

∑
i xi → 0, where the regular gradient and AUTO-S clipped gradient

vanish. Yet both AUTO-V and Abadi’s clipping lose motivation to update the mean estimator on the
interval (−1, 1). We set the clipping threshold R = 0.01 and the stability constant γ = 0.1.

G EXPERIMENTS SETTINGS

G.1 IMAGE CLASSIFICATION SETTINGS

We give the experiments settings for computer vision tasks in Table 1.

• MNIST: We use the network architecture from Papernot et al. (2021); Tramer & Boneh (2020);
Shamsabadi & Papernot (2021), with 40 epochs, 512 batch size, 0.5 learning rate (or 0.005 non-
DP learning rate), 0.1 clipping threshold, DP-SGD with 0.9 momentum, and without pretraining.
This setting is the same as Tramer & Boneh (2020).

• FashionMNIST: We use the same network architecture as MNIST, with 40 epochs, 2048 batch
size, 4 learning rate (or 0.04 non-DP learning rate), DP-SGD with 0.9 momentum, and without
pretraining. This setting is the same as Tramer & Boneh (2020).

• CIFAR10 pretrained: We use the SimCLR model from Chen et al. (2020a)9, with 50 epochs,
1024 batch size, 4 learning rate (or 0.04 non-DP learning rate), 0.1 clipping threshold, and DP-
SGD with 0.9 momentum. The SimCLR model is pretrained on unlabelled ImageNet dataset.
After pretraining, we obtain a feature of dimension 4096 on which a linear classifier is trained
privately. This setting is the same as Tramer & Boneh (2020).

• ImageNette: We use the ResNet9 (2.5 million parameters) with Mish activation function Misra
(2019). We set 50 epochs, 1000 batch size, 0.0005 learning rate (or 0.000005 non-DP learning
rate), 1.5 clipping threshold, and use DP-NAdam, without pretraining. This setting is the same
as Klause et al. (2022) except we did not apply the learning rate decaying scheduler.

• CelebA (Smiling and Male and Multi-label) We use the same ResNet9 as above, with 10
epochs, 500 batch size, 0.001 DP learning rate (or 0.00001 non-DP learning rate), 0.1 clipping
threshold, and use DP-Adam, without pretraining. We use the labels ‘Smiling’ and ‘Male’ for
two binary classification tasks, with cross-entropy loss. For the multi-label task uses a scalar loss
by summing up the 40 binary cross-entropy losses from each label.

We refer the code for MNIST, FashionMNIST, CIFAR10, CIFAR10 pretrained to https://
github.com/ftramer/Handcrafted-DP by Tramer & Boneh (2020). ResNet9 can be
found in https://github.com/cbenitez81/Resnet9.

9See implementation in https://github.com/google-research/simclr.
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Throughout all experiments, we do not apply tricks such as random data augmentation (single or
multiple times De et al. (2022)), weight standardization Qiao et al. (2019), or parameter averaging
Polyak & Juditsky (1992).

G.2 SENTENCE CLASSIFICATION SETTINGS

We experiment on five datasets in Table 2 and Table 3.

• MNLI(m) MNLI-matched, the matched validation and test splits from Multi-Genre Natural Lan-
guage Inference Corpus.

• MNLI(mm) MNLI-mismatched, the matched validation and test splits from Multi-Genre Natu-
ral Language Inference Corpus.

• QQP The Quora Question Pairs2 dataset.

• QNLI The Stanford Question Answering dataset.

• SST2 The Stanford Sentiment Treebank dataset.

The datasets are processed and loaded from Huggingface Lhoest et al. (2021), as described in
https://huggingface.co/datasets/glue. We follow the same setup as Yu et al. (2021)
and Li et al. (2021). We refer the interested readers to (Li et al., 2021, Appendix G,H,I,K,N) for
more details.

We emphasize that our automatic clipping uses exactly the same hyperparameters as the Abadi’s
clipping in Li et al. (2021), which is released in their Private-Transformers library 10.

Dataset MNLI(m/mm) QQP QNLI SST2
Epoch 18 18 6 3

Batch size 6000 6000 2000 1000
clipping threshold R 0.1 0.1 0.1 0.1

DP learning rate 5e-4 5e-4 5e-4 5e-4
non-DP learning rate 5e-5 5e-5 5e-5 5e-5
learning rate decay Yes Yes Yes Yes

AdamW weight decay 0 0 0 0
Max sequence length 256 256 256 256

Table 5: Hyperparameters of automatic clipping and Abadi’s clipping, for sentence classification in
Table 2 and Table 3, using either RoBERTa base or large.

Notice that we use DP learning rate 5e-4 across tasks for the R-dependent automatic DP-Adam,
which is equivalent to R-independent automatic DP-Adam with the same learning rate. We demon-
strate that the results are not sensitive to learning rates around the optimal choice. That is, the
automatic clipping does not eliminate R at the cost of more difficult tuning of learning rate.

learning rate 1e-4 3e-4 5e-4 8e-4 1e-3
RoBERTa-base 93.92 94.38 94.49 94.72 93.35
RoBERTa-large 95.76 96.21 96.21 96.33 95.99

Table 6: SST2 accuracy with respect to learning rate.

G.3 TABLE-TO-TEXT GENERATION SETTINGS

We experiment multiple GPT2 models on E2E dataset from Huggingface Lhoest et al. (2021) in
Table 4. We follow the same setup as Li et al. (2021), and our automatic clipping uses exactly the

10See https://github.com/lxuechen/private-transformers/blob/main/
examples/classification/run_wrapper.py
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same hyperparameters as the Abadi’s clipping in Li et al. (2021), which is released in their Private-
Transformer library 11.

Model GPT2 GPT2 medium GPT2 large
Epoch 10 10 10

Batch size 1024 1024 1024
clipping threshold R 0.1 0.1 0.1

DP learning rate 2e-3 2e-3 2e-3
non-DP learning rate 2e-4 1e-4 1e-4
learning rate decay No No No

AdamW weight decay 0.01 0.01 0.01
Max sequence length 100 100 100

Table 7: Hyperparameters of automatic clipping and Abadi’s clipping, for the E2E generation task
in Table 4.

H FIGURE ZOO

H.1 FREQUENCY OF CLIPPING

We show that in all sentence classification tasks, Abadi’s clipping happens on a large proportion of
per-sample gradients. This supports the similarity between Abadi’s clipping and AUTO-V in (3.1).

We note that for GPT2, GPT2 medium and GPT2 large, empirically in all iterations 100% of the per-
sample gradients are clipped by the Abadi’s clipping, making the performance of Abadi’s clipping
equivalent to AUTO-V clipping, as shown in Table 4.

H.2 STABILITY CONSTANT HELPS AUTO CLIPPING REDUCE GRADIENT NORM

To corroborate our claim in Theorem 6, that the stability γ reduces the gradient norm, we plot the
actual gradient norm by iteration.

H.3 CHOICE OF STABILITY CONSTANT IS ROBUST

We claim in Theorem 6 that, as long as γ > 0 in our automatic clipping, the asymptotic convergence
rate of gradient norm is the same as that by standard non-private SGD. We plot the ablation study
of learning rate and the stability constant γ to show that it is easy to set γ: in Table 2 and Table 3,
we adopt learning rate 0.0005, under which a wide range of 0.0001 < γ < 1 gives similar accuracy.
Note that the largest good γ is 1000 times bigger than the smallest good γ.

H.4 AUTOMATIC CLIPPING AVOIDS ABLATION STUDY

We plot the ablation study of learning rate and clipping threshold in Abadi’s clipping below. This
demonstrates that, AUTO-S clipping only requires 1D grid search to tune the learning rate, avoiding
the expensive 2D grid search that is unfortunately necessary for the Abadi’s clipping. Hence our
automatic clipping can save the tuning effort substantially.

I FULL TABLE OF GPT2 GENERATION TASK ON E2E DATASET

This is the extended version of Table 4 on E2E dataset. The performance measures are BLEU
Papineni et al. (2002), ROGUE-L Lin (2004), NIST Sadjadi et al. (2018), METEOR Banerjee &
Lavie (2005), and CIDEr Vedantam et al. (2015) scores. Here ϵ is accounted by RDP Mironov
(2017), where ϵ = 3 corresponds to 2.68 if accounted by Gaussian DP Dong et al. (2022); Bu et al.
(2020) or to 2.75 if accounted by numerical composition Gopi et al. (2021), and ϵ = 8 corresponds
to 6.77 if accounted by Gaussian DP or to 7.27 if accounted by numerical composition.

11See https://github.com/lxuechen/private-transformers/blob/main/
examples/table2text/run.sh
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Figure 12: Percentage of clipped per-sample gradients when training with DP-AdamAbadi (ϵ = 3),
as in Section 6.2. Left panel is RoBERTa-base and right panel is RoBERTa-large. Top row: MNLI.
Middle row: QNLI. Bottom row: QQP.
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Figure 13: Gradient norm by different automatic clipping methods, on SST2 (left) and MNLI (right),
trained with RoBERTa-base.

We observe that GPT2 (163 million parameters), GPT2-medium (406 million), and GPT2-large
(838 million), Table 4 trained with our automatic clipping consistently perform better in comparison
to other methods. In some cases, LoRA trained with Abadi’s clipping also demonstrates strong
performance and it would be interesting to see how LoRA trained with the automatic clipping will
behave.
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Figure 14: Test accuracy by different stability constant γ and learning rate η in automatic clipping
(ϵ = 3). Upper row: SST2 for full 3 epochs. Middle row: QNLI for full 6 epochs. Lower row:
QNLI for one epoch. Trained with RoBERTa-base (left) and RoBERTa-large (right).
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Figure 15: Test accuracy by different clipping threshold R in DP-AdamAbadi and learning rate η,
on SST2 (left, 3 epochs) / QNLI (middle, 1 epoch) / MNLI (right, 1 epoch), ϵ = 3, trained with
RoBERTa-base.

J FURTHER EXPERIMENTS ON CELEBA DATASET

In this section, we present a complete summary of accuracy results, with DP constraint or not, for
the CelebA dataset. We do not apply any data-preprocessing. In the first experiment, we apply a
single ResNet on the 40 labels as the multi-task/multi-label learning. In the second experiment, we
apply one ResNet on one label. As expected, our automatic DP optimizers have comparable test
accuracy to the Abadi’s DP optimizers, but we do not need to tune the clipping threshold for each
individual task/label. We also notice that, learning different labels separately gives better accuracy
than learning all labels together, though at the cost of heavier computational burden.

32



Under review as a conference paper at ICLR 2023

DP GPT2 GPT2 GPT2
Metric guarantee large medium

full full full full full LoRA RGP prefix top2 retrain
AUTO-S AUTO-S AUTO-S AUTO-V Li et al. (2021) Hu et al. (2021) Yu et al. (2021) Li & Liang (2021) Li et al. (2021) Li et al. (2021)

BLEU
ϵ = 3 64.180 63.850 61.340 61.519 61.519 58.153 58.482 47.772 25.920 15.457
ϵ = 8 64.640 64.220 63.600 63.189 63.189 63.389 58.455 49.263 26.885 24.247

non-DP 66.840 68.500 69.463 69.463 69.463 69.682 68.328 68.845 65.752 65.731

ROGUE-L
ϵ = 3 67.857 67.071 65.872 65.670 65.670 65.773 65.560 58.964 44.536 35.240
ϵ = 8 68.968 67.533 67.073 66.429 66.429 67.525 65.030 60.730 46.421 39.951

non-DP 70.384 71.458 71.359 71.359 71.359 71.709 68.844 70.805 68.704 68.751

NIST
ϵ = 3 7.937 7.106 7.071 6.697 6.697 5.463 5.775 5.249 1.510 0.376
ϵ = 8 8.301 8.172 7.714 7.444 7.444 7.449 6.276 5.525 1.547 1.01

non-DP 8.730 8.628 8.780 8.780 8.780 8.822 8.722 8.722 8.418 8.286

METEOR
ϵ = 3 0.403 0.387 0.387 0.384 0.384 0.370 0.331 0.363 0.197 0.113
ϵ = 8 0.420 0.418 0.404 0.400 0.400 0.407 0.349 0.364 0.207 0.145

non-DP 0.460 0.449 0.461 0.461 0.461 0.463 0.456 0.445 0.443 0.429

CIDEr
ϵ = 3 2.008 1.754 1.801 1.761 1.761 1.581 1.300 1.507 0.452 0.116
ϵ = 8 2.163 2.081 1.938 1.919 1.919 1.948 1.496 1.569 0.499 0.281

non-DP 2.356 2.137 2.422 2.422 2.422 2.491 2.418 2.345 2.180 2.004

Table 8: Test performance on E2E dataset with GPT2. The best two GPT2 models for each row are
marked in bold.

J.1 MULTI-LABEL CLASSIFICATION

We apply ResNet9 as in Appendix G.1 on the multi-label classification task. I.e. the output layer
has 40 neurons, each corresponding to one sigmoid cross-entropy loss, that are summed to a single
loss and all labels are learnt jointly.
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Index Attributes Abadi’s AUTO-S Abadi’s AUTO-S non-DP
ϵ = 3 ϵ = 3 ϵ = 8 ϵ = 8 ϵ = ∞

0 5 o Clock Shadow 90.64 90.99↑ 90.81 91.28↑ 93.33
1 Arched Eyebrows 75.15 76.31↑ 76.84 77.11↑ 81.52
2 Attractive 75.85 76.10↑ 77.50 77.74↑ 81.15
3 Bags Under Eyes 80.75 81.12↑ 82.15 82.13↓ 84.81
4 Bald 97.84 97.87↑ 98.04 97.98↓ 98.58
5 Bangs 92.71 92.68↓ 93.46 93.55↑ 95.50
6 Big Lips 67.51 67.78↑ 68.34 68.44↑ 71.33
7 Big Nose 78.01 80.23↑ 76.69 80.59↑ 83.54
8 Black Hair 81.92 80.95↓ 83.33 83.28↓ 88.55
9 Blond Hair 92.25 92.38↑ 93.52 93.09↓ 95.49

10 Blurry 94.91 94.82↓ 95.08 94.90↓ 95.78
11 Brown Hair 80.13 82.50↑ 83.74 83.89↑ 87.79
12 Bushy Eyebrows 88.06 88.23↑ 89.72 88.80↓ 92.19
13 Chubby 94.72 94.54↓ 94.54 94.50↓ 95.56
14 Double Chin 95.19 95.49↑ 95.50 95.51↑ 96.09
15 Eyeglasses 97.06 97.64↑ 98.32 98.06↓ 99.39
16 Goatee 95.68 95.45↓ 95.84 95.87↑ 97.06
17 Gray Hair 96.77 96.79↑ 97.02 97.03↑ 98.06
18 Heavy Makeup 84.96 85.70↑ 87.58 87.29↓ 90.76
19 High Cheekbones 81.46 81.42↓ 82.62 82.72↑ 86.62
20 Male 92.05 92.17↑ 93.32 93.17↓ 97.46
21 Mouth Slightly Open 86.20 86.32↑ 87.84 88.48↑ 93.07
22 Mustache 96.05 95.96↓ 96.08 95.99↓ 96.74
23 Narrow Eyes 84.90 84.78↓ 85.14 85.18↑ 86.98
24 No Beard 91.55 91.67↑ 92.29 92.45↑ 95.18
25 Oval Face 71.26 71.42↑ 71.98 71.25↓ 74.62
26 Pale Skin 96.09 96.04↓ 96.15 96.17↑ 96.93
27 Pointy Nose 70.34 72.11↑ 72.23 73.01↑ 75.68
28 Receding Hairline 91.53 91.37↓ 91.75 91.74↓ 92.87
29 Rosy Cheeks 93.26 93.02↓ 93.56 93.35↓ 94.86
30 Sideburns 96.16 96.09↓ 96.27 96.46↑ 97.44
31 Smiling 86.39 87.08↑ 88.87 88.63↓ 92.25
32 Straight Hair 76.20 77.95↑ 78.78 78.52↓ 80.66
33 Wavy Hair 70.30 71.79↑ 73.58 73.19↓ 79.15
34 Wearing Earrings 80.53 81.52↑ 82.29 82.20↓ 87.56
35 Wearing Hat 96.99 96.83↓ 97.46 97.31↓ 98.68
36 Wearing Lipstick 88.95 88.04↓ 89.87 90.72↑ 93.49
37 Wearing Necklace 84.59 85.83↑ 85.93 85.42↓ 86.61
38 Wearing Necktie 93.91 93.91– 94.43 94.08↓ 96.30
39 Young 81.35 81.21↓ 82.18 82.52↑ 87.18

Table 9: Accuracy on CelebA dataset with settings in Appendix G.1 from one run. The green
arrow indicates AUTO-S is better than Abadi’s clipping under the same ϵ; the red arrow indicates
otherwise; the black bar indicates the same accuracy.

J.2 MULTIPLE BINARY CLASSIFICATION

For the second experiment, we apply ResNet9 on each label as a binary classification task. I.e. the
output layer has 1 neuron and we run 40 different models for all labels separately.

K CODE IMPLEMENTATION OF AUTOMATIC CLIPPING

Changing Abadi’s clipping to automatic clipping is easy in available codebases. One can set the
clipping R = 1 or any other constant, as explained in Theorem 1 and Theorem 2.
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Index Attributes
Abadi’s AUTO-S Abadi’s AUTO-S non-DP
Single Single Multi Multi Multi
ϵ = 8 ϵ = 8 ϵ = 8 ϵ = 8 ϵ = ∞

0 5 o Clock Shadow 92.15 92.29↑ 90.81 91.28↑ 93.33
1 Arched Eyebrows 81.18 80.19↓ 76.84 77.11↑ 81.52
2 Attractive 79.31 79.79↑ 77.50 77.74↑ 81.15
3 Bags Under Eyes 83.52 83.48↓ 82.15 82.13↓ 84.81
4 Bald 97.89 97.88↓ 98.04 97.98↓ 98.58
5 Bangs 94.52 94.83↑ 93.46 93.55↑ 95.50
6 Big Lips 67.32 67.53↑ 68.34 68.44↑ 71.33
7 Big Nose 82.31 82.36↑ 76.69 80.59↑ 83.54
8 Black Hair 87.08 86.93↓ 83.33 83.28↓ 88.55
9 Blond Hair 94.29 94.73↑ 93.52 93.09↓ 95.49

10 Blurry 94.95 95.20↑ 95.08 94.90↓ 95.78
11 Brown Hair 87.41 87.19↓ 83.74 83.89↑ 87.79
12 Bushy Eyebrows 91.23 91.43↑ 89.72 88.80↓ 92.19
13 Chubby 94.70 94.70– 94.54 94.50↓ 95.56
14 Double Chin 95.43 95.43– 95.50 95.51↑ 96.09
15 Eyeglasses 98.88 99.14↑ 98.32 98.06↓ 99.39
16 Goatee 96.12 96.07↓ 95.84 95.87↑ 97.06
17 Gray Hair 97.48 97.34↓ 97.02 97.03↑ 98.06
18 Heavy Makeup 88.85 88.72↓ 87.58 87.29↓ 90.76
19 High Cheekbones 85.66 85.45↓ 82.62 82.72↑ 86.62
20 Male 95.42 95.70↑ 95.53 93.17↓ 97.46
21 Mouth Slightly Open 92.67 92.74↑ 87.84 88.48↑ 93.07
22 Mustache 96.13 96.13– 96.08 95.99↓ 96.74
23 Narrow Eyes 85.13 85.13– 85.14 85.18↑ 86.98
24 No Beard 94.26 94.58↑ 92.29 92.45↑ 95.18
25 Oval Face 70.77 73.05↑ 71.98 71.25↓ 74.62
26 Pale Skin 96.38 96.34↓ 96.15 96.17↑ 96.93
27 Pointy Nose 71.48 73.37↑ 72.23 73.01↑ 75.68
28 Receding Hairline 91.51 91.51– 91.75 91.74↓ 92.87
29 Rosy Cheeks 93.26 93.35↑ 93.56 93.35↓ 94.86
30 Sideburns 96.46 96.34↓ 96.27 96.46↑ 97.44
31 Smiling 90.82 90.87↑ 88.87 88.63↓ 92.25
32 Straight Hair 79.01 79.01– 78.78 78.52↓ 80.66
33 Wavy Hair 77.55 78.83↑ 73.58 73.19↓ 79.15
34 Wearing Earrings 87.33 87.50↑ 82.29 82.20↓ 87.56
35 Wearing Hat 98.04 98.11↑ 97.46 97.31↓ 98.68
36 Wearing Lipstick 92.05 90.46↓ 89.87 90.72↑ 93.49
37 Wearing Necklace 86.21 86.21– 85.93 85.42↓ 86.61
38 Wearing Necktie 95.85 95.94↑ 94.43 94.08↓ 96.30
39 Young 85.19 84.12↓ 82.18 82.52↑ 87.18

Table 10: Accuracy on CelebA dataset with settings in Appendix G.1 from one run. ‘Single’ means
each attribute is learned separately as a binary classification task. ‘Multi’ means all attributes are
learned jointly as a multi-label classification task. The green arrow indicates AUTO-S is better than
Abadi’s clipping under the same ϵ and the same task; the red arrow indicates otherwise; the black
bar indicates the same accuracy.

K.1 OPACUS

For Opacus Yousefpour et al. (2021) version 1.1.2 (latest), we can implement the all-layer au-
tomatic clipping by changing Line 399-401 in https://github.com/pytorch/opacus/
blob/main/opacus/optimizers/optimizer.py to

per_sample_clip_factor = self.max_grad_norm /(per_sample_norms + 0.01)
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The per-layer automatic clipping requires changing Line 61-63 in https://github.com/
pytorch/opacus/blob/main/opacus/optimizers/perlayeroptimizer.py to

per_sample_clip_factor =max_grad_norm / (per_sample_norms + 0.01)

For older version (< 1.0, e.g. 0.15) of Opacus, we can implement the all-layer automatic clip-
ping by changing Line 223-225 in https://github.com/pytorch/opacus/blob/v0.
15.0/opacus/utils/clipping.py to

per_sample_clip_factor = self.flat_value / (norms[0] + 0.01)

or implement the per-layer automatic clipping by changing Line 301-302 in https://github.
com/pytorch/opacus/blob/main/opacus/optimizers/perlayeroptimizer.
py to

per_sample_clip_factor = threshold / (norm + 0.01)
clipping_factor.append(per_sample_clip_factor)

K.2 OBJAX

For ObJAX version 1.6.0 (latest), we can implement the automatic clipping in https://github.
com/google/objax/blob/master/objax/privacy/dpsgd/gradient.py by
changing Line 92 to

idivisor = self.l2_norm_clip / (total_grad_norm+0.01)

and changing Line 145 to

idivisor = self.l2_norm_clip/(grad_norms+0.01)

K.3 PRIVATE-TRANSFORMERS

To reproduce our experiments for sentence classification and table-to-text generation,
we modify the ‘private-transformers’ codebase of Li et al. (2021). The modifica-
tion is in https://github.com/lxuechen/private-transformers/blob/main/
private_transformers/privacy_utils/privacy_engine.py, by changing Line
349 to

return self.max_grad_norm / (norm_sample + 0.01)

and Line 510-512 to

coef_sample = self.max_grad_norm * scale / (norm_sample + 0.01)
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