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A Proof of Proposition 1

Proof. By the Total Law of Expectation, we have that

BiasDP (lev(t)) =

∣∣∣∣∣
(

E(ŷi|i ∈ levℓ(t), zi = 1)P (i ∈ levℓ(t)|zi = 1)

+ E(ŷi|i ∈ levr(t), zi = 1)P (i ∈ levr(t)|zi = 1)
)

−

(
E(ŷi|i ∈ levℓ(t), zi = 0)P (i ∈ levℓ(t)|zi = 0)

+ E(ŷi|i ∈ levr(t), zi = 0)P (i ∈ levr(t)|zi = 0)
)∣∣∣∣∣.

Notice that the expectation of ŷi ∈ levℓ(t) = πlevℓ(t). Replacing the expectation terms with πlevℓ(t) and
πlevr(t), we can see that

BiasDP (lev(t)) =

∣∣∣∣∣πlevℓ(t)P (i ∈ levℓ(t)|zi = 0) + πlevr(t)P (i ∈ levr(t)|zi = 0)

− πlevℓ(t)P (i ∈ levℓ(t)|zi = 1) − πlevr(t)P (i ∈ levr(t)|zi = 1)

∣∣∣∣∣
=

∣∣∣∣∣
∑

i 1{zi=1,i∈levℓ(t)} ∗ πlevℓ(t) +
∑

i 1{zi=1,i∈levℓ(t)} ∗ πlevr(t)∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levℓ(t)} ∗ πlevℓ(t) +
∑

i 1{zi=0,i∈levℓ(t)} ∗ πlevr(t)∑
i 1{zi=0,i∈lev(t)}

∣∣∣∣∣.
Combining similar terms and simplifying, we have that

BiasDP (lev(t)) =

∣∣∣∣∣πlevℓ(t)

(∑
i 1{zi=1,i∈levℓ(t)}∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levℓ(t)}∑
i 1{zi=0,i∈lev(t)}

)

+ πlevr(t)

(∑
i 1{zi=1,i∈levr(t)}∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levr(t)}∑
i 1{zi=0,i∈lev(t)}

) ∣∣∣∣∣.

The proof for E
[
BiasEQOP (lev(t))

]
is analogous to the proof for demographic parity.
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For the multiclass classification case, let πm
levℓ(t) and πm

levr(t) denote a vector of length K, where πk denotes
the proportion of that class in the node.
Corollary 1. Consider multiclass classification with probabilistic trees:

BiasDP (lev(t)) =

∣∣∣∣∣πm
levℓ(t)

(∑
i 1{zi=1,i∈levℓ(t)}∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levℓ(t)}∑
i 1{zi=0,i∈lev(t)}

)

+ πm
levr(t)

(∑
i 1{zi=1,i∈levr(t)}∑
i 1{zi=1,i∈lev(t)}

−
∑

i 1{zi=0,i∈levr(t)}∑
i 1{zi=0,i∈lev(t)}

) ∣∣∣∣∣
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B Additional Simulation Results

B.1 Classification Results

We evaluate our method on the same experiments as Figure 2 in the main paper but in Figure A1, N = 500
and in Figures A2 and A3, we use Equality of Opportunity as the fairness metric. In Figure A4, we consider
a simulation with a large number of features with p = 250. In the large p simulation, there are 5 features in
each group and we otherwise follow the same setting as our other classification simulations. In the correlated
simulations, shown in Figure A5, we use an autoregressive design with Σ−1

j,j+1 = 0.5 instead of Σ = I in
the uncorrelated p simulations. Similar to the results in the main paper, we see the correct magnitude and
direction of the scores in all of the simulation scenarios.
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Figure A1: Classification TreeFIS and FairTreeFIS results for accuracy and Demographic Parity on three
major simulation types that include a linear model (left), a non-linear additive model (middle), and a non-
linear additive model with pairwise interactions (right), with N = 500 and p = 12. We examine a decision
tree classifier, a boosting classifier, and a random forest classifier.
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Figure A2: Classification TreeFIS and FairTreeFIS results for accuracy and Equality of Opportunity on
three major simulation types that include a linear model (left), a non-linear additive model (middle), and
a non-linear additive model with pairwise interactions (right), with N = 500 and p = 12. We examine a
decision tree classifier, a boosting classifier, and a random forest classifier.
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Figure A3: Classification TreeFIS and FairTreeFIS results for accuracy and Equality of Opportunity on
three major simulation types that include a linear model (left), a non-linear additive model (middle), and
a non-linear additive model with pairwise interactions (right), with n = 1000 and p = 12. We examine a
decision tree classifier, a boosting classifier, and a random forest classifier.
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Figure A4: Large p classification TreeFIS and FairTreeFIS results for accuracy and Demographic Parity for
a decision tree classifier, a boosting classifier, and a random forest classifier, with N = 1000 and p = 250.
We show the TreeFIS and FairTreeFIS scores for the first 20 features.
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Figure A5: Correlated feature classification TreeFIS and FairTreeFIS results for accuracy and Demographic
Parity for a decision tree classifier, a boosting classifier, and a random forest classifier, with N = 1000 and
p = 12.
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B.2 Regression Results

In Figure A6, we evaluate FairTreeFIS results for Demographic Parity in the regression setting. Here, βj = 3
for j ∈ G1 or G3 and βj = 0 for j ∈ G2 or G4 and αj = 0.4 for j ∈ G1 or G2 and αj = 0 for j ∈ G3 or
G4. All other aspects of the base simulation as described in the main paper remain the same. Similar to
the results in the main paper and the additional classification results, the magnitudes and directions of the
scores are as expected from the simulation design.
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Figure A6: Regression TreeFIS and FairTreeFIS results for accuracy and Demographic Parity on three major
simulation types that include a linear model (left), a non-linear additive model (middle), and a non-linear
additive model with pairwise interactions (right), with N = 500 and p = 12. We examine a decision tree
regressor, a boosting regressor, and a random forest regressor.
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C Additional Results on Benchmark Datasets

We include the same experiment as Figure 6 from the main paper for the C & C dataset with Race as the
protected attribute and the German dataset with Gender as the protected attribute in order to validate the
use of global surrogates. We see that the magnitudes and the directions between the scores of the boosting
classifier and the tree-based surrogate of the boosting classifier are similar.

−0.4

−0.2

0.0

0.2

0.4

A
ge

C
ap

 G
ai

n

C
ap

 L
os

s

E
du

 N
um

H
rs

/W
ee

k

M
ar

rie
d

S
el

f I
nc

S
el

f N
o 

In
c

U
S

 N
C

W
ife

Adult (Gender)

−0.5

0.0

0.5

A
ge

:<
25

A
ge

:>
45

A
ge

:2
5−

45

C
ha

rg
e:

F

C
ha

rg
e:

M

N
um

 P
ri:

>
3

N
um

 P
ri:

0

N
um

 P
ri:

1−
3

COMPAS (Race)

−0.5

0.0

0.5

A
ge

Fa
m

 In
co

m
e

F
ul

lti
m

e

LS
AT

U
nd

er
gr

ad
 G

PA

Y
r 

1 
G

PA

Y
r 

3 
G

PA

Law (Race)

−0.4

−0.2

0.0

0.2

0.4

A
ge

C
ap

 G
ai

n

C
ap

 L
os

s

E
du

 N
um

H
rs

/W
ee

k

M
ar

rie
d

S
el

f I
nc

S
el

f N
o 

In
c

U
S

 N
C

W
ife

−0.5

0.0

0.5

A
ge

:<
25

A
ge

:>
45

A
ge

:2
5−

45

C
ha

rg
e:

F

C
ha

rg
e:

M

N
um

 P
ri:

>
3

N
um

 P
ri:

0

N
um

 P
ri:

1−
3

−0.5

0.0

0.5

A
ge

Fa
m

 In
co

m
e

F
ul

lti
m

e

LS
AT

U
nd

er
gr

ad
 G

PA

Y
r 

1 
G

PA

Y
r 

3 
G

PA

TreeFIS:ACC

FairTreeFIS:DP

Feature

F
ea

tu
re

 Im
po

rt
an

ce

Figure A7: Global surrogate validation. The top row shows TreeFIS and FairTreeFIS results on a boosting
classifier for the C & C dataset with Race as the protected attribute and the German dataset with Gender as
the protected attribute.The bottom row shows TreeFIS and FairTreeFIS results for a tree-based surrogate
of a boosting classifier. The scores between the top and bottom rows are similar in magnitude and direction,
indicating that our scores are effective when used to interpret tree-based global surrogates.

In Figure A8, we explore the quality of FairTreeFIS interpretations of tree-based surrogates of a deep
learning model (multi-layer perception with two hidden layers each with p units and ReLU activation) on
the German dataset with Gender as the protected attribute and the Law School dataset with Race as the
protected attribute. As shown in the main paper when discussing Figure 4, the FairTreeFIS results provide
reasonable feature interpretations in terms of fairness.

In order to validate using trees for interpretation of deep learning models versus model-specific interpretation,
we compare TreeFIS scores of a tree-based surrogate of a deep learning model (multi-layer perception with
two hidden layers each with p units and ReLU activation) to scores from Layerwise Relevance Propagation
(LRP) Montavon et al. (2019) of the same deep learning model for the Adult dataset with Gender as the
protected attribute, the Law School dataset with Race as the protected attribute, the COMPAS dataset with
Race as the protected attribute, and the German dataset with Gender as the protected attribute as shown
in Figure A9. We implement LRP using the DeepExplain package with “elrp” set as the method name. We
set the first layer of the MLP as the input layer and the last layer as the output. For all the datasets, we
see that in general the magnitude of the importance scores for the tree surrogate and LRP surrogate are
comparable. Specifically, both methods identify the same features as highly predictive, as reflected in the
magnitude of the scores. These results validate that we can reasonably use trees for interpretation versus
model-specific validation Lundberg & Lee (2017).
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Figure A8: Importance scores for a tree-based surrogate of a deep learning model for the German dataset
with Gender as the protected attribute (left) and Law School dataset with Race as the protected attribute
(right).
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Figure A9: Validation for using trees as surrogates. For the Adult dataset with Gender as the protected
attribute, the Law dataset with Race as the protected attribute, the COMPAS dataset with Race as the
protected attribute, and the German dataset with Gender as the protected attribute, we show TreeFIS scores
for a tree-based surrogate of an MLP and an LRP surrogate. The magnitudes between the two methods are
similar, validating we can use trees for interpreting deep learning models.
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