
1 Supplement

1.1 Model Architectures

Figure 1: Model Architectures for Latent Integration
Using a latent vector of dimension k, our multiplicative model is able to learn k interpretations of
the observation, which are each modulated by a dimension of the latent vector. A skip connection
allows the model to learn policies faster than without. As a baseline, we use a concatenation model,
in which the latent vector z is concatenated with the environment observation at each timestep. In
both cases, by setting corresponding model weights to zero, a learned policy could completely ignore
the latent vector to yield a standard RL policy architecture.

Note that the multiplicative model architecture comes with increased computational cost, in which for
a hidden dimension of size d and latent dimension k, the number of parameters of the hidden layers
are bounded by Θ((k + 1)d2), whereas in the concatenation model, they are bounded by Θ(d2). In
practice, since k and d are small (k = 3 and d ∈ {16, 32, 64}) in our experiments, the increase in
computational cost is not significant.

1.2 Algorithm Pseudocode

Algorithm 1 ADAP with PPO
1: m the number of sampled latents in diversity estimation
2: n the number of sampled states in diversity estimation
3: k latent vector size
4: α diversity regularization coefficient
5: for for iteration = 1, 2, ... do
6: Let B be an empty batch of (s, a, r) tuples
7: for actor a = 1, 2, ..., N do
8: Sample latent z from latent distribution
9: B ← Run policy π(·|θold; z) in environment for T steps

10: Compute advantage estimates Â1, ..., ÂT

11: end for
12: Sample M ∈ Rm×k from the latent distribution ▷ latent matrix
13: Sample a batch S of n states from B
14: Ldiv ← 0
15: for i = 1, 2, ...,m− 1 do
16: for j = i+ 1, i+ 2, ...,m do
17: Ldiv ← Ldiv +

1
n

∑
s∈S DKL(π(s|θold,M (i)), π(s|θold,M (j)))

18: end for
19: end for
20: Ldiv ← 2

m(m−1)Ldiv ▷ Scale by number of policy-distance pairs
21: Maximize LPPO − αLdiv w.r.t. θ via SGD.
22: θold ← θ
23: end for

1

Algorithm 2 Latent Distribution Optimization
1: Input: g the number of optimization generations
2: Input: E an environment
3: Input: G a policy generator
4: Input: Z a latent distribution with dimension k
5: Initialize: best← descending sorted array
6: for i = 1, 2, ..., g do
7: explor ∼ Unif([0, 1])
8: r ∼ Unif([0, 1])
9: if (explor ≤ 0.5 and i ≤ 3

4g) or len(best) ≤ 10 then
10: if r ≤ 0.5 or len(best) ≤ 10 then
11: z ∼ Z ▷ Random Sampling
12: else
13: z ← sample(best[0:10])
14: z ← z + projectZ(Unif[-0.1, 0.1]k) ▷ Mutation
15: end if
16: else
17: if r ≤ 0.5 then
18: z ← sample(best[0:10]) ▷ Replication
19: else
20: z ← pop(best[0:10]) ▷ Pruning
21: end if
22: end if
23: score← Reward from running πG,z on E
24: best.push(z) with key score
25: end for
26: Return best[0]

1.3 Description of Farmworld

Farmworld is an open-ended gridworld environment designed with two goals in mind: high customiz-
ability and support for diverse solutions. The environment is written entirely in Python, and is easily
hackable. Maps can be hand-crafted, or randomly generated. At a high level, agents must traverse
the environment to find resource units, and harvest health from these resources. Agents can interact
directly by attacking each other, or indirectly by competing for shared and limited resources.

Units have configurable levels of health, damage, food yield, and respawn, which can be utilized to
encourage learning a variety of different policies. For example, by placing low food yield on resource
units (chickens and towers) and high food yield on agent units, one may incentivize direct multi-agent
competition (agents must attack each other to get health). Conversely, setting a high resource unit
health can encourage multi-agent co-operation - agents will have to work in parallel to mine a chicken
or tower before their health runs out.

Figure 2: Illustration of Farmworld and Units

2

Observation Space Can be either RGB images, or a flattened array of unit-encoding vectors. If
RGB images are used, agents ‘see’ exactly what we see: units visibly lose health by damage patterns
that appear over time, and unit orientations can be discerned by the unit ‘eyes’ (see the Example Map
in Figure 2). If unit-encoding vectors are used, then all units have encoded health, orientation
(by default, 0 - 3 to represent each possible cardinal direction), and unit type (e.g. 0 for ground, 1
for agents, 2 for chickens, 3 for towers, 4 for fences). Encodings are scaled to be within [0, 1].

Agents have partially-observable observations: they do not see the entire map. By default, they can
see units in a L1 radius of 2 unit squares.

Action Space The action space is 6-dimensional categorical, respresenting up, down, right, left,
attack, mine. Actions can be added or removed as necessary.

Unit Pecularities towers and chickens each have a corresponding non-negative respawn_time.
chickens disappear after they get hit max_health times by an agent attack. Unlike towers, chickens
are able to move 1 square in any direction on each timestep, with chicken_move_probability.

tower units are more tricky: they turn into a haystack in the same location after
max_chicken_health of attack. Haystacks must be mined with a pickaxe, and only after
max_tower_health will they yield food resources.

Fence units are simple: they cannot be destroyed or moved. Additionally, no units can pass through
them.

Reward Agents get an individual reward of 0.1 for each timestep that they are alive. If an agent’s
health reaches 0, it is removed from the map and other agents can carry on as normal. The entire
episode ends when max_episode_timesteps is reached, or when no more agents are alive on the
map.

3

1.4 Round Robin Tournament in Markov Soccer

Let S(πa, πb) be the score of player πa in one round of the game against player πb. Then to find the
score of a generator G1 versus G2, we attempt to find the best policy of G1 with respect to the best
policy of G2 against G1 on average. Formally, let

z∗2 = argminz2Ez1∼Z [S(πϕ1,z1 , πϕ2,z2)]

z∗1 = argmaxz1S(πϕ1,z1 , πϕ2,z∗
2
)

Then, the score of G1 versus G2 is S(πϕ1,z∗
1
, πϕ2,z∗

2
) over 1000 games. The final score of G1 is the

average of (G1 versus G2) and (G2 versus G1).

1.5 Baselines

DIAYN [1] originally attempts to maximize the mutual information between the state and a discrete
categorical latent vector by optimizing an intrinsic reward generated from discriminator error. We
wanted to make a comparison of DIAYN to ADAP in which both methods used continuous latents
to find a potentially unbounded number of niches. To this end, we augmented DIAYN and called
this DIAYN*. In DIAYN*, we train the discriminator to regress the latent, rather than predict the
latent category. We add this intrinsic reward to the extrinsic environmental reward, giving us the new
reward function r′:

r′t = errt + rt

where
errt = −α(qϕ(st)− z)2 −mean(errbatch)

z is the latent vector, mean(errbatch) is the mean discriminator error across the update batch, and α
is the scaling of the intrinsic reward (generally set at 0.05). We subtract by the batch mean so that
on average, the expected agent reward equals only what is provided by the extrinsic environment.
Otherwise, original DIAYN and DIAYN* stuggled with balancing dense extrinsic environmental
rewards from the experiment with the intrinsic discriminator reward. In our niche specialization
experiment, we also experimented with the canonical DIAYN. In this implementation, we use
categorical contexts and we add extrinsic reward directly to intrinsic discriminator reward. As
mentioned in the paper, this method did not perform well in our Farmworld Niche Specialization
experiment.

Finally, we treat DIAYN and DIAYN* like a generative model of policies (since we are not trying to
learn options). To do so, we keep z fixed throughout an agent episode. Included in the website are
toy experiments that benchmark our implementations of DIAYN*.

4

1.6 Smoothing Parameter b

In continuous domains with action distribution N (µ, σ), we observed that the KL-divergence in
Equation 1 may encourage very low σ values early in ADAP training. To solve this, we used standard
deviation σ′ = σ + b, where b is a small constant (ex: 0.05). We similarly use the smoothing
parameter b in the discrete action spaces, but have not tested whether or not it is necessary in these
situations.

1.7 Training Hyperparameters

Unless otherwise mentioned, we used optimized our policies using a clipped PPO surrogate objective
with learning rate 3e-4. Advantages were computed using Generalized Advantage Estimation, with
a γ discount factor of 0.99, a λ smoothing parameter of 1, and a gradient clip of 0.5. We use the
RLLib [2] framework for training, using their default PPO configuration. For all experiments, we
use concatenation and multiplicative model architectures as seen in the main paper. Importantly,
we always use separate value and policy networks. Attempts to combine these networks generally
resulted in non-diverse policy spaces, which we believe is a result of the importance of the value
function in recognizing the differing expected rewards conditional on each latent from the latent
space.

For multi-agent environments, batch sizes are always in agent steps, rather than in environment steps.
Thus, if there are 40 agents in an environment, then 1 environment step is 40 agent steps.

To optimize our diversity regularization objective, we use parameters m = 10, b = 30, k = 3, as
detailed in 1. However, preliminary investigation into the effect of these hyperparameters indicates
that it is possible to get away with even smaller samples of latent vectors and states, while still
effectively optimizing for a diverse policy manifold.

Unless otherwise specified we use a diversity regularizer coefficient on our novel objective of
coefficient of 0.1 in CartPole, 0.2 in Farmworld, 0.2 in Markov Soccer, and 0.5 in MultiGoal. When
using DIAYN and DIAYN*, we found that a small intrinsic reward coefficient of 0.05 was best.
Anything beyond that, and DIAYN and DIAYN* had issues optimizing for actual extrinsic reward.

For all methods, we generally use an 0.05 entropy coefficient, except in Markov Soccer in which
we also run Vanilla PPO with 0.1 entropy coefficient and were able to achieve slightly stronger
performance. In our Markov Soccer experiment, we report the average of these two Vanilla results.

5

Batch size 4000
Minibatch size 400
SGD iterations per batch 10
Training epochs 200
Hidden dimension 16
Value Activations ReLU
Policy Activations Tanh

Table 1: CartPole

Batch size 4000
Minibatch size 400
SGD iterations per batch 10
Training epochs 500
Hidden dimension 32
Value Activations ReLU
Policy Activations Tanh
Table 2: Multi-Agent MultiGoal

Batch size 8000
Minibatch size 8000
SGD iterations per batch 10
Training epochs 10 thousand
Hidden dimension 64
Value Activations ReLU
Policy Activations Tanh

Table 3: Niche Specialization and Farmworld Ablation Experiment

Batch size 8000
Minibatch size 8000
SGD iterations per batch 10
Training epochs 10 thousand
Hidden dimension 64
Value Activations Tanh
Policy Activations Tanh
GAE lambda 0.95
GAE gamma 0.9

Table 4: Markov Soccer

6

References
[1] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is All You

Need: Learning Skills without a Reward Function. arXiv e-prints, page arXiv:1802.06070,
February 2018.

[2] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 3053–3062. PMLR, 10–15 Jul 2018.

7

	Supplement
	Model Architectures
	Algorithm Pseudocode
	Description of Farmworld
	Round Robin Tournament in Markov Soccer
	Baselines
	Smoothing Parameter b
	Training Hyperparameters

